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Abstract. A model of ordinary differential equations is formulated for popu-

lations which are structured by many stages. The model is motivated by ticks
which are vectors of infectious diseases, but is general enough to apply to many

other species. Our analysis identifies a basic reproduction number that acts as

a threshold between population extinction and persistence. We establish con-
ditions for the existence and uniqueness of nonzero equilibria and show that

their local stability cannot be expected in general. Boundedness of solutions

remains an open problem though we give some sufficient conditions.

1. Introduction. Individual characteristics affect the development of populations
and, to take this into account, structured population models are a golden middle
ground between unstructured models of total densities and very detailed individual
based models (see [6, 22, 24, 39], e.g.).

In many mammalian and other species, development occurs in a rather contin-
uous way and can best be traced along age or size structure leading to systems of
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partial differential and/or integral equations (see [1, 4, 5, 9, 11, 12, 14, 16, 29, 35,
36, 38, 41], e.g., and the literature cited there).

Stage-structured models are a very natural choice when the life cycle of a species
is divided into well distinguishable discrete stages each of which may have their
specific climatic and nutritional requirements and their specific vulnerabilities to
predators or human control measures. Such models typically lead to systems of
ordinary and/or delay differential equations and of difference equations [7, 16, 17].
An example par excellence is the tick Ixodes Scpularis that has four main stages:
eggs, larvae, nymphs, and adults [27, 28]. All stages except the egg stage have
questing, feeding and engorged substages (or phases) with the adults having an
additional egg-laying phase and larvae having an additional hardening phase (a
total of twelve stages). Adult ticks mainly feed on deer, while nymphs and larvae
mainly feed on rodents, and only feeding ticks are able to contract and transmit
the infectious diseases like Lyme disease [18, 28]. Questing activity is temperature
dependant with adults being active at quite cooler temperatures than larvae and
nymphs [26, Fig.3]. Only a stage-structured model can hope to catch the impact
of these abiotic and biotic factors on the dynamics of a tick population. Density-
dependent negative feedback is also stage-specific. Feeding ticks induce an immune
reaction of their hosts that increases their mortality, slows down their development,
and decreases their fertility with the latter effect being postponed to the egg-laying
phase [26, 28].

The model in this manuscript is mainly motivated by tick dynamics, notably by
the computer model in [26], but will be formulated general enough to apply to a wide
range of stage structured populations. Similarly to [21, 43, 44], it is a model of many
ordinary differential equations (Section 2); for a model of delay-differential equa-
tions focussing on ticks see [13]. Our model also applies to epidemic models with
many disease stages [20, 30] provided that the equations for susceptible and/or vac-
cinated individuals can be eliminated. The model incorporates density-dependent
feedbacks between the stages that affect mortality, stage-transition, and procreation
rates. Our analysis, after establishing uniqueness and global existence of solutions
(Section 3), identifies reproduction numbers in a biologically meaningful way and
establishes the basic reproduction number as a threshold deciding about extinction
or persistence of the population (Sections 4 and 5). We discuss the boundedness of
solutions (Section 7) which is a difficult problem if density-dependent negative feed-
back is exclusively interstage. For this reason, existence of nonzero equilibria is not
derived as a consequence of permanence ([23], [34, Ch.6], [45]), but via fixed point
theorems in conical shells [8] (Section 6). Since the systems are large, uniqueness
and stability of nonzero equilibria become a challenge (Sections 6.2 and 8). We give
an example where a nonzero equilibrium is unstable while the negative feedback is
of a very simple nature (Section 8). If a system has several feedbacks, for instance
both on stage transition and procreation, then even models with only two stages
can show multiple nonzero equilibria and a plethora of complicated bifurcations [2].
We take the difficulties of proving boundedness of solutions as an indication that a
literal translation of the computer model in [26] into ordinary differential equations
may not capture the negative feedback from adult feeding to adult egg-laying via
host immunity or resistance in the right way. We therefore suggest an alternative
model formulation in the epilog (Section 9).
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2. The model. Let 2 ≤ n ∈ N and consider a system modeling a population
structured by n stages,

x′1 = g(x)− (γ1(x) + µ1(x))x1

x′j = γj−1(x)xj−1 − (γj(x) + µj(x))xj
j = 2, . . . , n

 x = (x1, . . . , xn). (2.1)

Here xj is the size of the jth stage of the population (eggs or other forms of off-
spring and various larval, pupal, and adult stages). The vector x = (x1, . . . , xn),
comprising all stage sizes, gives the population state, here the stage distribution.
The first stage contains the offspring with g(x) being the rate at which offspring
enters the stage if the stage distribution is x ∈ Rn+, g(0) = 0. µj(x) ≥ 0 are the per
capita mortality rates in stage j at population state x. γj(x) ≥ 0 are the per capita
transition rates from stage j to stage j + 1 at stage distribution x.

Our system is potentially very large. The tick models in [21, 43, 44] have 12
ordinary differential equations (ODEs) and could possibly contain more. They are
pure ODE versions of the computer model in [26] where some of the terms have
delays. Since, analytically, it is not much more difficult to handle 24 rather than
12 ODEs, it is an attractive alternative to mimic the delay differential equations by
subsystems of ODEs (linear chain trick) leading to even larger systems [6, 24, 29, 32].

2.1. A leaner model. Since the systems are large, it is important to use a lean
notation. So we introduce the per capita stage exit rates,

ηj(x) = γj(x) + µj(x), j = 1, . . . , n− 1
ηn(x) = µn(x)

}
x ∈ Rn+. (2.2)

The system (2.1) then takes the form,

x′1 = g(x)− η1(x)x1

x′j = γj−1(x)xj−1 − ηj(x)xj
j = 2, . . . , n

x = (x1, . . . , xn). (2.3)

We have more flexibility if we formulate our overall assumptions in terms of system
(2.3).

Overall Assumptions. All functions g, γj , ηj : Rn+ → R+ are Lipschitz continuous
on bounded subsets of Rn+,

ηj(x) ≥ γj(x) ≥ 0, j = 1, . . . , n− 1, x ∈ Rn+. (2.4)

The population birth rate g : Rn+ → R+ is differentiable at 0.

The partial derivatives at 0,

∂jg(0) =: βj , j = 1, . . . , n, (2.5)

can be interpreted as the per capita birth rates of individuals in the jth stage if
there is no competition. The numbers

pj(x) =
γj(x)

ηj(x)
∈ [0, 1], j = 1, . . . , n− 1, (2.6)

provide the probabilities of getting through the jth stage alive if the stage distribu-
tion of the population is x. Indeed, 1

ηj(x) is the mean sojourn time in the jth stage

(counting death) and γj(x) is the per capita rate of leaving the stage alive. See [36,
Sec.13.6] for a more systematic exposition.
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2.2. Cyclic stage models. A special case is the cyclic stage model in which only
the last stage produces offspring,

x′1 = γn(x)xn − η1(x)x1

x′j = γj−1(x)xj−1 − ηj(x)xj
j = 2, . . . , n

x = (x1, . . . , xn). (2.7)

While we keep the assumptions γj(x) ≤ ηj(x) for all j = 1, . . . , n − 1, no such
assumption is made for γn because γn is the per capita reproduction rate and not
a transition rate. The models considered in [21] and [43] fit into this framework by
assuming

γn(x) =γ̃n(xn−2), γj(x) = γ̃j , j = 1, . . . , n− 1,

ηj(x) =γ̃j + µ̃j(xj), j = 1, . . . , n,
(2.8)

with some of the µ̃j being constant. Here xn is interpreted as the (number of)
egg-laying adult ticks, xn−1 engorged adult ticks, and xn−2 feeding adult ticks.
There is good reason to let γj(x) depend on x because hosts can develop immunity
or resistance to ticks that do not only lead to weight reduction in engorged ticks
and to reduced tick fecundity but also to prolonged feeding times [42]. It is also
suggestive to consider a more general dependence of µj on x than xj : If host
immunity or resistance which are triggered by feeding ticks increase the per capita
mortality rate of feeding ticks, then they may also increase the per capita mortality
rate of engorged ticks, i.e., µn−1 could depend on xn−2.

3. Solutions. Let f : Rn+ → Rn be the vector field given by the right hand side
of (2.3) and let fj denote the components of f , j = 1, . . . , n. The assumptions
mentioned before imply that the vector field is Lipschitz continuous on bounded
subsets of Rn+. By standard ODE theory, solutions to initial values in Rn+ exist
on open intervals containing 0 and are uniquely determined by and continuously
depend on those initial values.

To show that solutions that start in Rn+ stay in Rn+ in forward time as long as
they exist, we use [33, Prop.B.7] (see also [36, Prop.A.1]). We only need to check
the following:

If x ∈ Rn+ and x1 = 0, then f1(x) = g(x) ≥ 0.
If j = 2, . . . , n, x ∈ Rn+ and xj = 0, then fj(x) = γj−1(x)xj−1 ≥ 0.
To show that no solution blows up in finite forward time, we consider the total

population size

y(t) =

n∑
j=1

xj(t).

We add the equations in (2.3),

y′ = g(x)− η1(x)x1 +

n∑
j=2

[γj−1(x)xj−1 − ηj(x)xj ].

We regroup and change the index of summation in one sum,

y′ = g(x) +

n−1∑
j=1

[γj(x)− ηj(x)]xj − ηn(x)xn.

Since the solution is non-negative, by (2.4),

y′ ≤ g(x).
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We make the following assumption.

Assumption 3.1. There exists some c > 0 such that g(x) ≤ c‖x‖ for all x ∈ Rn+.

Here ‖·‖ is your favorite norm on Rn. Then there exists some c̃ such that y′ ≤ c̃y
and y(t) ≤ y(0)ec̃t for all t ≥ 0 for which the solution exists.

Theorem 3.2. Let Assumption 3.1 be satisfied. Then, for each x◦ ∈ Rn+, there
exists a unique solution x : R+ → Rn+ with x(0) = x◦.

4. Stability of the extinction equilibrium. Since we have assumed that g(0) =
0, the origin is an equilibrium of (2.3) that represents a steady state at which the
population is extinct (extinction equilibrium). We will analyze the stability of the
origin in a way that does not require writing down huge matrices and right away
leads to an expression for the reproduction number R0 that is readily interpretable.

Since g is also assumed to be differentiable at 0, the vector field f is differentiable
at 0 and

f ′1(0)x = g′(0)x− η1(0)x1

f ′j(0)x = γj−1(0)xj−1 − ηj(0)xj
j = 2, . . . , n

x = (x1, . . . , xn) ∈ Rn+. (4.1)

We make another assumption.

Assumption 4.1. γj(0) > 0 for all j = 1, . . . , n − 1 and ηj(x) > 0 for all j =
1, . . . , n and x ∈ Rn+.

These assumptions are reasonable because, without competition, transition to
the next stage should always be possible and exit from a stage should occur under
all stage distributions at a positive rate by either transition or death. Since the
system is large, we do our stability analysis ab ovo (from scratch) starting from
eigenvalues and eigenvectors (cf. [36, Sec.23.3] and [43]).

Let λ ∈ C be an eigenvalue of f ′(0) and x ∈ Cn, x 6= 0, an associated eigenvector.
Then

λx1 = g′(0)x− η1(0)x1,
λxj = γj−1(0)xj−1 − ηj(0)xj , j = 2, . . . , n.

This gives us a recursive relation for the coordinates of x,

x1 =
g′(0)x

λ+ η1(0)
,

xj =
γj−1(0)xj−1

λ+ ηj(0)
, j = 2, . . . , n.

We solve,

xk =

k∏
j=2

γj−1(0)

λ+ ηj(0)
x1, k = 2, . . . , n. (4.2)

We notice that x 6= 0 implies xj 6= 0 for all j = 1, . . . , n. We substitute these ex-
pression into the first equation, notice that g′(0)x =

∑n
k=1 βkxk with the per capita

reproduction rates βk from (2.5) and divide by x1 6= 0. After some regrouping, we
obtain the characteristic equation

1 =

n∑
k=1

βk
λ+ ηk(0)

k−1∏
j=1

γj(0)

λ+ ηj(0)
=: χ(λ).
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Here
∏0
j=1 := 1. Notice that

χ(0) =

n∑
k=1

βk
ηk(0)

qk =: R0, qk =

k−1∏
j=1

γj(0)

ηj(0)
=

k−1∏
j=1

pj(0) (4.3)

has the interpretation of a basic reproduction number. Since pj is the probability
of surviving the jth stage, qk is the probability of making it to the kth stage, while
1/ηk(0) is the expected length of the kth stage and βk is the per capita reproduction
rate during the kth stage (all without competition). So χ(0) is the expected amount
of offspring an average newborn (or newly laid egg) can produce during its lifetime
if there is no competition.

Assume that R0 = χ(0) > 1. Since χ is strictly decreasing in λ ≥ 0 and χ(λ)→ 0
as λ→∞ and χ is continuous, by the intermediate value theorem there exists some
λ > 0 such that χ(λ) = 1. Working backwards and defining x by (4.2) with
x1 = 1, we see that this λ is an eigenvalue of f ′(0) associated with an eigenvector
x ∈ (0,∞)n. This implies that the origin is unstable.

Now assume that R0 = χ(0) < 1. Then χ(λ) < 1 for all λ ≥ 0 and there are
no eigenvalues λ of f ′(0) with λ ≥ 0. Suppose there is an eigenvalue λ ∈ C with
<λ ≥ 0. We apply absolute values to the characteristic equation, use the triangle
inequality and the multiplicity of the absolute value,

1 ≤
n∑
k=1

βk
|λ+ ηk(0)|

k−1∏
j=1

γj(0)

|λ+ ηj(0)|
.

Since

|λ+ ηj(0)| ≥ <λ+ ηj(0),

we have

1 ≤ χ(<λ) ≤ χ(0) < 1,

a contradiction. This shows that all eigenvalues have negative real parts if R0 < 1.
We summarize.

Theorem 4.2. Let the Assumptions 4.1 be satisfied. Then the origin is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

In order to explore the possible global stability of the origin if R0 < 1, we
introduce a Lyapunov function to-be,

V (x) =

n∑
j=1

αjxj , x ∈ Rn+, (4.4)

with αj > 0, α1 = 1. Let x be a solution of (2.3). Then

(d/dt)V (x) =

n∑
k=1

αjx
′
j = g(x)− η1(x)x1 +

n∑
j=2

αj [γj−1(x)xj−1 − ηj(x)xj ].

We regroup, change the summation index in one sum and regroup again,

(d/dt)V (x) = g(x)− αnηn(x)xn +

n−1∑
j=1

[αj+1γj(x)− αjηj(x)]xj .
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We assume that g(x) ≤
∑n
j=1 βjxj for all x ∈ Rn+ and ηn(x) ≥ ηn(0). Then

(d/dt)V (x) ≤ [βn − αnηn(0)]xn +

n−1∑
j=1

[βj + αj+1γj(x)− αjηj(x)]xj .

We choose the coefficients αj recursively as

αj+1 =
αjηj(0)− βj

γj(0)
=

αj
pj(0)

− βj
γj(0)

. (4.5)

Then

(d/dt)V (x) ≤[βn − αnηn(0)]xn +

n−1∑
j=1

βj

(
1− γj(x)

γj(0)

)
xj

+

n−1∑
j=1

αj

(ηj(0)γj(x)

γj(0)
− ηj(x)

)
xj .

(4.6)

The finite recursion (4.5) is solved by

α1 =1, α2 =
1

p1(0)
− β1

γ1(0)
,

αj =
1

pj−1(0) · · · p1(0)
−
j−2∑
k=1

1

pj−1(0) · · · pk+1(0)

βk
γk(0)

− βj−1

γj−1(0)
.

(4.7)

By (2.6) and (4.3), this can be rewritten as

αj = q−1
j

(
1−

j−1∑
k=1

qk
βk
ηk(0)

)
≥ q−1

j (1−R0), j = 2, . . . , n. (4.8)

In particular,

αn = q−1
n

(
1 + qn

βn
ηn(0)

−R0

)
(4.9)

and

βn − αnηn(0) = q−1
n ηn(0)(R0 − 1). (4.10)

We substitute the last formula into (4.6),

(d/dt)V (x) ≤q−1
n ηn(0)(R0 − 1)xn +

n−1∑
j=1

βj

(
1− γj(x)

γj(0)

)
xj

+

n−1∑
j=1

αj

(ηj(0)γj(x)

γj(0)
− ηj(x)

)
xj .

(4.11)

We assume that R0 < 1 or R0 = 1 and βn > 0. Then αj > 0 for j = 1, . . . , n.
In order to enforce that (d/dt)V (x) ≤ 0, we make the following assumptions.

Recall (2.6), the probabilities of surviving the jth stage at stage distribution x,

pj(x) =
γj(x)
ηj(x) .

Assumption 4.3. (a) If j ∈ {1, . . . , n− 1}, x ∈ Rn+, then pj(x) ≤ pj(0).
(b) If j ∈ {1, . . . , n− 1} and βj > 0, then γj(x) ≥ γj(0) for all x ∈ Rn+.
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Assumption (a) is very plausible stating that stage survival is larger without than
with intraspecific competition. Assumption (b) may seem counterintuitive at the
first glance. Notice, however, that it is trivially satisfied, if reproduction only occurs
in the last stage or if the transition rates are constant. It can also be plausible if there
are several reproductive stages and the later stages are less reproductive than the
earlier ones. Then intraspecific competition would move reproductive individuals
faster into the less reproductive stages.

Theorem 4.4. Let the Assumptions 4.1 and 4.3 be satisfied and either R0 < 1 or
R0 = 1 and βn > 0. Then the origin is globally stable in the sense that there exists
some c > 0 such that

n∑
j=1

xj(t) ≤ c
n∑
j=1

xj(0), t ≥ 0,

for all solutions with x(0) ∈ Rn+.

Proof. By our assumptions (d/dt)V (x(t)) ≤ 0 and V (x(t)) is a decreasing function
of t ≥ 0. In view of our choice of V in (4.4), set c =

maxαj
minαj

.

Theorem 4.5. Let the Assumptions 4.1 and 4.3 be satisfied and R0 < 1. Then the
origin is globally asymptotically stable.

Proof. By Theorem 4.4, every solution starting in R+ is bounded in forward time
and has a nonempty ω-limit set ω. Since V introduced in (4.4) is a Lyapunov
function, V is constant on ω. Let x ∈ ω. Since ω is invariant, there exists a solution
y : R→ ω with y(0) = x. By (4.11) and Assumption 4.3,

0 =(V ◦ y)′(0)

≤ q−1
n ηn(0)(R0 − 1)xn +

n−1∑
j=1

αj

(ηj(0)γj(x)

γj(0)
− ηj(x)

)
xj

≤ q−1
n ηn(0)(R0 − 1)xn + αn−1

(ηn−1(0)γn−1(x)

γn−1(0)
− ηn−1(x)

)
xn−1.

(4.12)

Since R0 < 1, xn = 0. Further, if γn−1(x) = 0, then xn−1 = 0.
So, for all x ∈ ω, we have xn = 0 and, if γn−1(x) = 0, then xn−1 = 0.
Now let x ∈ ω and γn−1(x) > 0. Since ω is invariant, there again exists a solution

y : R → ω with y(0) = x. By our previous consideration, yn(t) = 0 for all t ∈ R
and, from the differential equation for the last stage,

0 = y′n(0) = γn−1(x)xn−1 − ηn(x)xn = γn−1(x)xn−1.

Thus, again, xn−1 = 0. So, for all x ∈ ω(x), xn−1 = 0.
Continuing this way, we obtain that x = 0. So ω = {0}. Since the ω-limit set

attracts the solution, all solutions converge to the origin as time tends to infinity.

Theorem 4.6. Let the Assumptions 4.1 and 4.3 be satisfied and R0 = 1. Further
assume that there is some k ∈ {1, . . . , n− 1} with the following properties:

• pk(x) < pk(0) if x ∈ Rn+ and xk > 0,
• ηj is bounded away from 0 for j = k + 1, . . . , n.

Then the origin is globally asymptotically stable.
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Proof. Let ω be the ω-limit set of a solution. Let x ∈ ω. Then there exists a
solution y : R→ ω with y(0) = x. Since V is constant on ω, d

dtV (y) = 0. Let k be
as specified in the assumption. By (4.12), xk = 0. So xk = 0 for all x ∈ ω.

As in the proof of Theorem 4.5, we obtain xj = 0 for j = 1, . . . , k and all x ∈ ω.
Let x ∈ ω again. As before, there exists a solution y : R→ ω with y(0) = x. By

our previous results, yk(t) = 0 for all t ∈ R. So

y′k+1 = −ηk+1(y)yk+1.

If yk+1(r) > 0 for some r ∈ R, then yk+1(t) → ∞ as t → −∞ because ηk+1 is
bounded away from 0. This contradicts the boundedness of y. So yk+1(t) = 0 for
all t ∈ R. Continuing this argument, we successively obtain that yj(t) = 0 for all
j = k, . . . , n, t ∈ R. Thus x = y(0) = 0 and ω = {0}. Since a solution is attracted
by its ω-limit set, all solutions converges to 0 as time tends to infinity.

5. Persistence. We strive for persistence results that do not require any dissipa-
tivity of the model system. Even boundedness of solutions will not be required
because it would need more restrictive assumptions than we would like to make
(Section 7). The Assumptions 3.1 and 4.1 are supposed to hold throughout this
section. We make another assumption.

Assumption 5.1. The per capita transition rates γj are bounded and the exit rates
ηj are bounded away from 0. Further, for any δ ∈ (0, 1), there exists some ε > 0
such that

g(x) ≥ (1− δ)
n∑
j=1

βjxj , x ∈ Rn+, ‖x‖ ≤ ε.

Example 5.2. Let

g(x) =

n∑
j=1

bj(x)xj , x = (x1, . . . , xn) ∈ Rn+,

where the bj : Rn+ → R+ are Lipschitz continuous on bounded subsets on Rn+. bj(x)
can be interpreted as the per capita birth (or egg-laying) rate during stage j at stage
distribution x. Then g satisfies the Assumptions 5.1. Further g is differentiable at
0 and ∂jg(0) = bj(0) = βj .

Theorem 5.3. Let Assumption 5.1 be satisfied. If R0 > 1, there exists some ε > 0
such that

lim sup
t→∞

x1(t) ≥ ε

for all solutions x with x(0) ∈ Rn+, x1(0) > 0.

Proof. In the following let ‖·‖ denote the sum-norm. Suppose the claim is not true.
Let δ > 0 be arbitrary. Since ηj and γj are continuous and ηj(x) > 0, there exists
some ε > 0 such that

γj(x) ≥ (1− δ)γj(0)
ηj(x) ≤ (1 + δ)ηj(0)

}
, x ∈ Rn+, ‖x‖ ≤ ε. (5.1)

Further, by assumption,

g(x) ≥ (1− δ)
n∑
j=1

βjxj , x ∈ Rn+, ‖x‖ ≤ ε.
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Since we have assumed that the claim is false, for any ε̃ > 0 there exists a solution
x (which depends on ε̃) such that x(0) ∈ Rn+, x1(0) > 0, and lim supt→∞ x1(t) < ε̃.
This implies that x2 is bounded. By the fluctuation lemma [19] [36, Prop.A.22],
there exists a sequence tk →∞ such that

x2(tk)→ x∞2 := lim sup
t→∞

x2(t), x′2(tk)→ 0.

From the differential equation for x2,

x∞2 ≤
sup γ1

inf η2
x∞1 .

We apply the fluctuation lemma multiple times and find some c ≥ 1 which only
depends on the ηj and γj such that lim supt→∞ ‖x(t)‖ < cε̃. Further x1(t) > 0
for all t ≥ 0. After a forward shift in time, we can assume that ‖x(t)‖ < cε̃ and
x1(t) > 0 for all t ≥ 0, j = 1, . . . , n. Choose ε̃ = ε/c. Then

x′1 ≥(1− δ)
n∑
j=1

βjxj − (1 + δ)η1(0)x1,

x′j ≥(1− δ)γj−1(0)xj−1 − (1 + δ)ηj(0)xj , j = 2, . . . , n.

For λ > 0, let x̂j(λ) =
∫∞

0
e−λtxj(t)dt denote the Laplace transform of xj . Notice

that x̂(λ) exists for λ > 0 and x̂(λ) ≤ ε/λ,

λx̂1(λ) ≥(1− δ)
n∑
j=1

βj x̂j(λ)− (1 + δ)ηj(0)x̂1(λ),

λx̂j(λ) ≥(1− δ)γj−1(0)x̂j−1(λ)− (1 + δ)ηj(0)x̂j(λ), j = 2, . . . , n.

We reorganize

x̂1(λ) ≥
(1− δ)

∑n
j=1 βj x̂j(λ)

λ+ (1 + δ)η1(0)
,

x̂j(λ) ≥ (1− δ)γj−1(0)x̂j−1(λ)

λ+ (1 + δ)ηj(0)
.

We solve these recursive inequalities,

x̂j(λ) ≥ (1− δ)j−1

j∏
k=2

γk−1(0)

λ+ (1 + δ)ηk(0)
x̂1(λ).

We substitute these formulas into the one for x̂1(λ) and divide by x̂1(λ), which is
positive, and reorganize,

1 ≥
n∑
j=1

(1− δ)jβj
λ+ (1 + δ)ηj(0)

j−1∏
k=1

γk(0)

λ+ (1 + δ)ηk(0)
.

Notice that this inequality no longer contains any terms belonging to the solution
x (which depends on δ) and thus holds for any δ ∈ (0, 1) and λ > 0. So we can take
the limit as δ, λ→ 0 and obtain 1 ≥ R0 (recall (4.3)), a contradiction.

Unfortunately, it seems to be difficult to turn the uniform weak persistence result
in Theorem 5.3 into a uniform persistence result. So we try the next approach as
well.

The linear map f ′(0) on Rn can be written as

f ′(0) = B + C, (5.2)
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with B = (B1, . . . , Bn) and C = (C1, . . . , Cn) and Bj , Cj : Rn → R,

B1x =− η1(0)x1,

Bjx =γj−1(0)xj−1 − ηj(0)xj , j = 2, . . . , n,
(5.3)

and

C1x =

n∑
j=1

βjxj

Cjx = 0, j = 2, . . . , n

 x = (x1, . . . , xn). (5.4)

The eigenvalues of B are −η1(0), . . . ,−ηn(0), and so B has a negative spectral
bound. Further B is quasipositive and C is positive. So the spectral bound of f ′(0)
has the same sign as r(C(−B)−1)− 1 with r denoting the spectral radius. See [10],
[37, Thm.3.5], [40]; the map C(−B)−1 can be interpreted as a next generation map
(or matrix).

Let λ be an eigenvalue of C(−B)−1 and y be an associated eigenvector. By the
form of C, we have yj = 0 for j = 2, . . . , n and, without loss of generality, y1 = 1.
Then x = (−B)−1y can be found by solving the system

η1(0)x1 =1, ηj(0)xj − γj−1(0)xj−1 = 0, j = 2, . . . , n, (5.5)

for x ∈ Rn. This leads to the recursion

x1 =
1

η1(0)
, xj =

γj−1(0)

ηj(0)
xj−1, j = 2, . . . , n. (5.6)

This recursion is solved by (recall (4.3))

xj =
qj

ηj(0)
, j = 1, . . . , n. (5.7)

By (5.4), λ =
∑n
j=1 βjxj = R0 and R0 is the spectral radius of C(−B)−1.

We can now prove the following result.

Theorem 5.4. Let R0 > 1 and βn = ∂ng(0) > 0. Then there exists some ε > 0
such that

lim inf
t→∞

n∑
j=1

xj(t) ≥ ε

for all solutions x of (2.3) in Rn+ with x(0) 6= 0.

The assumptions of this theorem and those of Theorem 5.3 are not comparable,
but if it comes to applications the assumption βn = ∂ng(0) > 0 will be more
restrictive than those of Theorem 5.3.

Proof. By the preceding consideration, the spectral bound of f ′(0) is positive. Since
βn > 0 and γj(0) > 0 for j = 1, . . . , n − 1, f ′(0) is irreducible. By consequences
of the Perron-Frobenius theory (see [36, Thm.A.45], e.g.), there exist λ > 0 and
v ∈ (0,∞)n such that v is a left eigenvector of the matrix associated with f ′(0),

〈v, f ′(0)x〉 = λ〈v, x〉, x ∈ Rn, (5.8)

with 〈 , 〉 denoting the Euclidean inner product on Rn. Since v ∈ (0,∞)n,

‖x‖0 =

n∑
j=1

vj |xj |, x ∈ Rn,
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is a norm on Rn which is equivalent to the sum-norm (and any other norm on Rn).
We define

ρ(x) = ‖x‖0 = 〈v, x〉, x ∈ Rn+.

We claim that the semiflow induced by (2.3) is uniformly weakly ρ-persistent,
i.e., there exists some ε > 0 such that lim supt→∞ ρ(x(t)) ≥ ε for all solutions with
ρ(x(0)) > 0.

Let δ ∈ (0, λ). Since f is differentiable and f(0) = 0, there exists some ε > 0
such that

‖f(x)− f ′(0)x‖0 ≤ δ‖x‖0, x ∈ Rn+, ‖x‖0 < ε. (5.9)

Suppose that the semiflow is not uniformly weakly ρ-persistent. Then there exists
some solution x : R+ → Rn+ with x(0) 6= 0 such that

lim sup
t→∞

ρ(x(t)) < ε.

It follows from the form of the equations, that xj(t) > 0 for j = 1, . . . , n and t > 0.
Shifting forward in time, we can assume that xj(t) > 0 for j = 1, . . . , n and t ≥ 0
and

‖x(t)‖0 < ε, t ≥ 0.

Then ρ(x(t)) > 0 for t ≥ 0 and

d

dt
ρ(x(t)) = 〈v, f ′(0)x(t)〉+

〈
v, f(x(t))− f ′(0)x(t)

〉
.

By (5.8) and (5.9),

d

dt
ρ(x(t)) ≥λ〈v, x(t)〉 − ‖f(x(t))− f ′(0)x(t)‖0

≥λρ(x(t))− δ‖x(t)‖0 = (λ− δ)ρ(x(t)).

Since λ− δ > 0 and ρ(x(t)) > 0, ρ(x(t))→∞, a contradiction.
This proves that the semiflow induced by (2.3) is uniformly weakly ρ-persistent.

By [36, Thm.A.32] or [34, Thm.4.13], the semiflow is uniformly ρ-persistent. Notice
that any ρ-ring {ε1 ≤ ρ(x) ≤ ε2}, 0 < ε1 < ε2 < ∞, is compact. The statement of
the theorem now follows from the equivalence of the sum norm and ‖ · ‖0.

Remark 5.5. We could have used the relation between R0 and the spectral bound
of f ′(0) to prove a global stability result for the origin as in [21, Thm.2] if R0 < 1.
This would require f(x) ≤ f ′(0)x for all x ∈ Rn+ which would in turn require
γj(x) ≤ γj(0) and ηj(x) ≥ ηj(0). While the first assumption is suggestive and has
been made in Assumption 4.3 (though only for those j for which βj > 0), the second
assumption is less suggestive. Recall that ηj = γj(x)+µj(x). Again, it is suggestive
to assume that µj(x) ≥ µj(0), but this does not imply ηj(x) ≥ ηj(0). However,

pj(x) =
γj(x)

ηj(x)
≤ pj(0),

as assumed in Assumption 4.1, does follow. Further, we would not obtain a globally
asymptotic stability result for R0 = 1 (Theorem 4.6) this way.
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6. Persistence equilibria. A vector x ∈ Rn+ is an equilibrium of (2.3) if and only
if it satisfies the fixed point system

x1 =
g(x)

η1(x)
=: F1(x)

xj =
γj−1(x)

ηj(x)
xj−1 =: Fj(x)

j = 2, . . . , n


x = (x1, . . . , xn). (6.1)

We choose this reformulation because of the wealth of fixed point theorems available
in the literature. Since 0 is a fixed point of F = (F1, . . . , Fn) : Rn+ → Rn+, fixed
point theorems in conical shells are particularly useful [8, Sec.20.2].

In this section, we assume that

g(x) =

n∑
j=1

bj(x)xj , x ∈ Rn+. (6.2)

Here bj(x) is the per capita birth (or egg-laying) rate in stage j at stage distribution
x. Analogously to (4.3), we define the reproduction number at stage distribution x
by

R(x) =

n∑
j=1

bj(x)

ηj(x)
qj(x), qj(x) =

j−1∏
`=1

γ`(x)

η`(x)
, x ∈ Rn+. (6.3)

Solving the recursive equations in (6.1) and substituting the solutions into the first
equation shows that any nonzero equilibrium x satisfies R(x) = 1.

We deal with the existence and the uniqueness of persistence equilibria separately
because they hold under quite different assumptions.

6.1. Existence of persistence equilibria. We specialize [8, Thm.20.1] to our
situation.

Proposition 6.1. Let F : Rn+ → Rn+ be continuous. Let 0 < r1 < r2 <∞ and

(a) F (x) 6= λx for all λ > 1 and x ∈ Rn+ with ‖x‖ = r2;
(b) there exists some u ∈ Rn+, u 6= 0, such that x− F (x) 6= αu for all α > 0 and

all x ∈ Rn+ with ‖x‖ = r1.

Then there exists some x ∈ Rn+ with r1 ≤ ‖x‖ ≤ r2 and F (x) = x.

Theorem 6.2. Assume that the functions bj are bounded on Rn+ and the functions
ηj are bounded away from 0. Assume that R0 = R(0) > 1 and there exists some
c > 0 such that

R(x) < 1, x ∈ Rn+, ‖x‖ ≥ c.

Then there exists an equilibrium in (0,∞)n.

Proof. We choose ‖ · ‖ as the sum norm on Rn. Suppose that assumption (a) in
Proposition 6.1 is not satisfied for any r2 > 1. Then there exist sequences (xk) in
Rn+ and (λk) in (1,∞) such that ‖xk‖ → ∞ and F (xk) = λkx

k. By the definition
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of F in (6.1),

xk1 =
g(xk)

λkη1(xk)

xkj =
γj−1(xk)

λkηj(xk)
xkj−1

j = 2, . . . , n


xk = (xk1 , . . . , x

k
n).

By iteration,

xkj =

j∏
`=2

γl−1(xk)

λkηl(xk)
x1 =

qj(x
k)η1(xk)

λj−1
k ηj(xk)

xk1 . (6.4)

We conclude that xk1 6= 0. We substitute these equations into the equation for xk1
and divide by xk1 ,

1 =

n∑
j=1

bj(x
k)

qj(x
k)

λjkηj(x
k)
≤ R(xk). (6.5)

Our assumptions imply that R(xk) < 1 for sufficiently large k contradicting (6.5).
So assumption (a) of Proposition 6.1 is satisfied with some r2 > 1.
Now suppose that assumption (b) of Proposition 6.1 is not satisfied for any

r1 ∈ (0, 1) with u = (1, . . . , 1). Then there exists a sequence (xk) in Rn and some
sequence (αk) in (0,∞) such that 0 6= ‖xk‖ → 0 and xk − F (xk) = αku. Since

F (0) = 0 and F is continuous, αk → 0. Set yk = xk

‖xk‖ . Then

yk − F (xk)

‖xk‖
∈ Rn+.

Since F is differentiable at 0,

0 = lim
k→∞

F (xk)− F ′(0)xk

‖xk‖
= lim
k→∞

(F (xk)

‖xk‖
− F ′(0)yk

)
.

After choosing a subsequence, we can assume that yk → y ∈ Rn+ with ‖y‖ = 1 and
F (xk)
‖xk‖ → F ′(0)y. Then y − F ′(0)y ∈ Rn+ and

y1 ≥
g′(0)y

η1(y)

yj ≥
γj−1(0)

ηj(0)
yj−1

j = 2, . . . , n


y = (y1, . . . , yn). (6.6)

A similar consideration as before implies that R0 ≤ 1, a contradiction.
So assumption (b) of Proposition 6.1 is satisfied and there exists a nonzero fixed

point x of F in Rn+. Then x ∈ (0,∞)n.

Theorem 6.2 does not cover the models in [21, 43] because not all exit rates are
density-dependent.

Therefore, we establish an existence result that is tailored to the cyclic model
(2.7). For this model, the reproduction rate at stage distribution x is

R(x) =

n∏
j=1

γj(x)

ηj(x)
, x ∈ Rn+.
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So ‖x‖ → ∞ could mean that x1 →∞ and xj = 0 for j = 2, . . . , n. Since γ1/η1 is
assumed constant in [21, 43], R(x) = R(0) as ‖x‖ → ∞ is possible.

Theorem 6.3. Assume that the functions γj are bounded and the functions ηj are
bounded away from 0 on Rn+, j = 1, . . . , n. Assume that R0 = R(0) > 1 and that
there exists some c > 0 such that

R(x) < 1 for all x ∈ Rn+ with
n

min
j=1

xj ≥ c.

Then there exists an equilibrium of (2.7) in (0,∞)n.

Proof. Suppose that assumption (a) in Proposition 6.1 is not satisfied for any r2 > 1.
Then there exist sequences (xk) in Rn+ and (λk) in (1,∞) such that ‖xk‖ → ∞ and

F (xk) = λkx
k. Then

xk1 =
γn(xk)

λkη1(xk)
xkn

xkj =
γj−1(xk)

λkηj(xk)
xkj−1

j = 2, . . . , n


xk = (xk1 , . . . , x

k
n). (6.7)

By iteration,

xkj =

j∏
`=2

γl−1(xk)

λkηl(xk)
x1 =

qj(x
k)η1(xk)

λj−1
k ηj(xk)

xk1 , j = 2, . . . , n.

We conclude that xk1 6= 0. We substitute these equations into the equation for xk1
and divide by xk1 ,

1 =
1

λnk

n∏
j=1

γj(x
k)

ηj(xk)
≤ R(xk). (6.8)

This implies that the sequence (λk) is bounded.
Assume that the sequence (xkn) is bounded. Then, by (6.7), since the γj are

bounded and the ηj are bounded away from 0, all sequences (xkj )k∈N are bounded

contradicting that ‖xk‖ → ∞. So (xkn) is unbounded and converges to ∞ after
choosing subsequences. Again by (6.7), all sequences (xkj )k∈N converge to ∞.

Our assumptions imply thatR(xk) < 1 for sufficiently large k contradicting (6.8).
So assumption (a) of Proposition 6.1 is satisfied with some r2 > 1.
Assumption (b) of Proposition 6.1 follows in the same way as in the proof of

Theorem 6.2.

6.2. Uniqueness of persistence equilibria. Any positive equilibrium x = (x1,
. . . , xn) satisfies

1 = R(x) =

n∑
k=1

bk(x)

ηk(x)
qk(x), qk =

k−1∏
j=1

γj(x)

ηj(x)
,

ηj(x)xj = γj−1(x)xj−1, j = 2, . . . , n.

(6.9)

Let ≤ denote the componentwise ordering in Rn, x ≤ x̃ (equivalently x̃ ≥ x) if and
only if xj ≤ x̃j for j = 1, . . . , n. We write x < x̃ if x ≤ x̃ and x 6= x̃, and x � x̃ if
xj < x̃j for j = 1, . . . , n.
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Assumption 6.4. The rate functions γj and ηj and the reproduction number func-
tion R have the following monotonicity properties:

(a) If x, x̃ ∈ Rn+, j ∈ {1, . . . , n− 1} and xj < x̃j, then γj(x)xj < γj(x̃)x̃j.
(b) If x, x̃ ∈ Rn+, j ∈ {2, . . . , n}, and x` < x̃` for ` = j, . . . , n, then ηj(x)xj <

ηj(x̃)xj.
(c) If x, x̃ ∈ Rn+ and x� x̃, then R(x) > R(x̃).

Remark 6.5. (a) Assumption 6.4 (a) implies that γj(x) only depends on xj .
(b) Assumption 6.4 (b) implies that ηj(x) does not depend on x1 . . . xj−1, j =

2, . . . , n.
(c) R(x) ≥ R(x̃) if x � x̃ in Assumption 6.4 (c) is satisfied if the functions ηj

are increasing and the functions γj and bj are decreasing. To get a strict inequality,
qj(y) > 0 for all y ≥ 0, j = 1, . . . , n− 1, and some appropriate monotonicities must
be strict. For instance, for some k ∈ {1, . . . , n}, bk(x) > bk(x̃) if x, x̃ ∈ Rn+ and
x� x̃.

Theorem 6.6. If Assumption 6.4 holds, there is at most one nonzero equilibrium.

Proof. Let x, x̃ ∈ Rn+ be two equilibria. Without loss of generality we can assume
that xn ≤ x̃n. By Assumption 6.4 (b), ηn(x)xn ≤ ηn(x̃)x̃ with the inequality being
strict if and only if xn < x̃n. Since ηn(x)xn = γn−1(x)xn−1 and the same equation
holds with x̃ replacing x, it follows from Assumption 6.4 (a) that xn−1 ≤ x̃n−1 with
the inequality being strict if and only if xn < x̃n.

Assumption 6.4 (b) now implies that ηn−1(x)xn−1 ≤ ηn−1(x̃)x̃n−1 with strict
inequality if and only if xn < x̃n. Since ηn−1(x)xn−1 = γn−2(x)xn−2 and the
same equation holds with x̃ replacing x, it follows from Assumption 6.4 (a) that
xn−2 ≤ x̃n−2 with the inequality being strict if and only if xn < x̃n.

Proceeding this way, we find that xj ≤ x̃j for j = 1, . . . , n, with equality holding
for all j if xn = x̃n, and strict inequality holding for all j if xn < x̃n. Suppose that
xn < x̃n. Then x� x̃ and R(x) > R(x̃), a contradiction because R(x) = 1 = R(x̃).
So xn = x̃n and x = x̃.

7. Boundedness and dissipativity for cyclic stage structure. We consider
the system (2.7).

Assumption 7.1. The functions γj are bounded, and the functions ηj are bounded
away from 0.

We define

νj(y) = inf{ηj(x);x ∈ Rn+;xj ≥ y}, y ≥ 0, j = 1, . . . , n. (7.1)

These properties of νj follow directly from the definition and from Assumption
7.1.

Lemma 7.2. For all x ∈ Rn+, ηj(x) ≥ νj(xj) > 0. Further νj is increasing (not
necessarily strictly) on R+.

We set Γj = supx∈Rn+ γj(x). From (2.7), (7.1) and our assumptions, we have the

following system of differential inequalities,

x′1 ≤ Γnxn − ν1(x1)x1

x′j ≤ Γj−1xj−1 − νj(xj)xj
j = 2, . . . , n

x = (x1, . . . , xn). (7.2)
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Let j = 1, . . . , n, and T > 0. We define

xTj = max
0≤t≤T

xj(t). (7.3)

Let j ≥ 2 and assume xTj > xj(0). Then xTj is taken at some t ∈ (0, T ],

xj(t) = xTj , x′j(t) ≥ 0.

By the differential inequality for xj ,

xTj ≤
Γj−1

νj(xTj )
xTj−1. (7.4)

Without assuming xTj > xj(0),

xTj ≤ max
{
xj(0),

Γj−1

νj(xTj )
xTj−1

}
, j = 2, . . . , n. (7.5)

Similarly, we derive that

xT1 ≤ max
{
x1(0),

Γn
ν1(xT1 )

xTn

}
. (7.6)

Theorem 7.3. Let Assumption 7.1 be satisfied and Γj := supx∈Rn+ γj(x).

Assume that there exists some c > 0 and ξ ∈ (0, 1) such that
n∏
j=1

Γj
ηj(xj)

≤ ξ for all vectors x1, . . . , xn ∈ Rn+ with xjj ≥ c.

Then all solutions of (2.3) are bounded. Further the system is dissipative: There
exists some c̃ > 0 such that x∞j := lim supt→∞ xj(t) ≤ c̃ for all solutions of (2.3).
Finally minnj=1 x

∞
j ≤ c.

Proof. Let c > 0 be as in the assumptions of the theorem. Since the νj are increas-
ing,

1 > ξ ≥
n∏
j=1

Γj
νj(c)

≥
n∏
j=1

Γj
νj(∞)

. (7.7)

Suppose that xn is not bounded. Then xTn → ∞ as T → ∞. It follows from (7.5)
that xTj → ∞ as T → ∞. So, for sufficiently large T , (7.4) holds for j = 2, . . . , n.

We solve (7.4) recursively, substitute the result into (7.6) and divide by xT1 to obtain

1 ≤
n∏
j=1

Γj
νj(xTj )

.

We take the limit as T →∞ and obtain

1 ≤
n∏
j=1

Γj
νj(∞)

,

a contradiction to (7.7).
Thus xn is bounded. By (7.6), x1 is bounded and then the xj are bounded for

j = 1, . . . , n.
Now we can apply the fluctuation method [19] [36, Prop.A.22]. Let

x∞j = lim sup
t→∞

xj(t).
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There exists a sequence (tk) in R+ with tk → ∞, xj(tk) → x∞j , and x′j(tk) → 0.
By (7.2),

0 ≤ Γj−1x
∞
j−1 − νj(x∞j )x∞j

and so

x∞j ≤
Γj−1

νj(x∞j )
x∞j−1.

Similarly

x∞1 ≤
Γn

ν1(x∞1 )
x∞n .

We solve the first set of inequalities recursively and substitute it into the last,

x∞1 ≤
n∏
j=1

Γj
νj(x∞j )

x∞1 .

Without loss of generality we can assume that x∞1 > 0 and divide by it. Since the
νj are increasing,

1 ≤
n∏
j=1

Γj
νj(x̃∞)

, x̃∞ =
n

min
j=1

x∞j ,

and, by (7.7), we have x̃∞ ≤ c. Since x∞j ≤
Γj−1

νj(0)x
∞
j−1 and x∞1 ≤ Γn

ν1(0)x
∞
n , we find

a c̃ > 0 that only depends on Γj and νj(0) such that x∞j ≤ c̃.

7.1. Back to persistence. In dynamical systems language, the result of Theorem
7.3 means that the semiflow induced by system (2.7) is point-dissipative. Since
our state space is Rn+, the semiflow is asymptotically smooth [34, Rem.2.26]. The
following persistence result follows from Theorem 5.4 and [34, Cor.4.22] (or results
in [45]).

Theorem 7.4. Let the Assumptions 4.1 and 7.1 be satisfied. Set Γj = sup γj(Rn+).
Assume that there exists some c > 0 and ξ ∈ (0, 1) such that

n∏
j=1

Γj
ηj(xj)

≤ ξ, for all vectors x1, . . . , xn ∈ Rn+ with xjj ≥ c.

Further let

1 < R0 =

n∏
j=1

γj(0)

ηj(0)
.

Then there exists some ε > 0 such that

lim inf
t→∞

xj(t) ≥ ε, j = 1, . . . , n

for any solution x of (2.7) in Rn+ with x(0) 6= 0.

Proof. We apply [34, Cor.4.22] with ρ(x) =
∑n
j=1 xj and ρ̃(x) = minnj=1 xj . By

Theorem 5.4, the semiflow induced by (2.7) is uniformly ρ-persistent.
Now let x : R→ Rn be a total trajectory, i.e. in our case, just a solution of (2.7),

x bounded, and ρ(x(t)) > 0 for all t ∈ R. By our assumptions, xj(t) > 0 for all
t ∈ R, j = 1, . . . , n. In particular, ρ̃(x(0)) > 0. By [34, Cor.4.22], there exists some
ε > 0 such that

lim inf
t→∞

ρ̃(x(t)) ≥ ε,

for all solutions x in Rn+ with ρ(x(0)) > 0, i.e., x(0) 6= 0.
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Example 7.5. We consider the cyclic stage structured system

x′1 = γn(x)xn − η1(x1)x1

x′j = γj−1(x)xj−1 − ηj(xj)xj
j = 2, . . . , n

x = (x1, . . . , xn) (7.8)

Assume that γj(x) ≤ γj(0) for all x ∈ Rn+, that all ηj are bounded away from 0,
j = 1, . . . , n, and that ηj(s)→∞ as s→∞ for at lease one j ∈ {1, . . . , n}.

Then there exists a bounded set that attracts all solutions. If R0 > 1, the
population is uniformly persistent.

8. Local stability studies in a special case. The purpose of this section is
to illustrate that it may be very difficult to show general stability results for the
persistence equilibrium in the models in [21, 43].

We consider the case that only one particular stage exerts a negative feedback
on procreating adults. Let n ≥ 3, ` ∈ {1, . . . , n}, and

x′1 = h(x`)xn − η1x1,
x′j = γj−1xj−1 − ηjxj , j = 2, . . . , n.

(8.1)

Here ηj ≥ γj > 0, j = 1, . . . , n− 1, ηn > 0. Further h : R+ → R+ is decreasing and
differentiable, h(0) > 0 ≥ h′(0). For ` = n − 2, this is a special case of the ODE
version of [26] investigated in [21, 43].

Notice that, for ` < n, Theorem 7.3 does not provide any useful condition for
the boundedness of solutions because its assumptions would imply that R0 ≤ 1.
Notice that γn(x) = h(x`). So boundedness of solutions is an open problem for this
system. Here we focus on the stability of persistence equilibria.

After scaling time, we can assume that

h(0) = 1. (8.2)

If h′(0) < 0, we can also assume that h′(0) = −1 by scaling the dependent variables.
In this special case, we obtain from Section 6 that

R0 =
q

ηn
, q = qn =

n−1∏
j=1

γj
ηj
, (8.3)

and, if R0 > 1, there is a unique persistence equilibrium x ∈ (0,∞)n determined by

1 = R(x`) = h(x`)
q

ηn
. (8.4)

We will also need the relation

xn = x`

∏n−1
k=` γk∏n
k=`+1 ηk

. (8.5)

The variational system (linearization about the equilibrium) is

y′1 = h′(x`)xny` + h(x`)yn − η1y1,
y′j = γj−1yj−1 − ηjyj , j = 2, . . . , n.

(8.6)

Eigenvectors v of the right hand side with associated eigenvalues satisfy

λv1 = h′(x`)xnv` + h(x`)vn − η1v1,
λvj = γj−1vj−1 − ηjvj , j = 2, . . . , n.

(8.7)
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This is rewritten as

v1 =
h′(x`)xnv` + h(x`)vn

λ+ η1
,

vj =
γj−1vj−1

λ+ ηj
, j = 2, . . . , n.

(8.8)

So

vj =

∏j−1
k=1 γk∏j

k=2(λ+ ηk)
v1, j = 2, . . . , n.

We substitute this into the first equation and divide by v1,

1 = h′(x`)xn

∏`−1
k=1 γk∏`

k=1(λ+ ηk)
+ h(x`)

∏n−1
k=1 γk∏n

k=1(λ+ ηk)
. (8.9)

We substitute (8.5) and (8.4),

1 =
h′(x`)x`
h(x`)

∏`
k=1 ηk∏`

k=1(λ+ ηk)
+

∏n
k=1 ηk∏n

k=1(λ+ ηk)
.

Assume that h′(x`) < 0. We rewrite this equation as

1 = −ψ(x`)
∏̀
k=1

ηk
λ+ ηk

+

n∏
k=1

ηk
λ+ ηk

(8.10)

with

ψ(x`) = −h
′(x`)x`
h(x`)

> 0. (8.11)

Then this equation, whatever `, has no solutions λ ≥ 0. We explore several cases
for `.

8.1. Negative feedback from the first stage to itself. Let ` = 1. Then we
can reorganize equation (8.10) as

1 + ψ(x`)
η1

λ+ η1
=

n∏
k=1

ηk
λ+ ηk

.

We observe that, if the real part of λ is nonnegative, the absolute value of the left
hand side is greater than 1, and the absolute value of the right hand side is at most
1. So there are no roots with nonnegative real parts. Alternatively we can argue
that the linearized system is quasipositive and the eigenvalue with leading real part
is actually real. So the persistence equilibrium is locally asymptotically stable.

8.2. Negative feedback from the last stage. Let ` = n. Then equation (8.10)
becomes

1 = (1− ψ(x`))

n∏
k=1

ηk
λ+ ηk

. (8.12)

We take absolute values and find that there are no roots with nonnegative real part
if

ψ(x`) ≤ 2.

In fact, one can show that the persistence equilibrium is globally asymptotically
stable if h is strictly decreasing and s2h(s) is an increasing function of s. This is
done by deriving a single integral equation for xn and combining Theorem B.40 and
Corollary 9.9 in [36] (see also [13]).
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Suppose that

ψ(x`) > 2.

Set all ηk equal, ηk = η. Then (8.12) amounts to solving(λ
η

+ 1
)n

= α := 1− ψ(x`),

with α < −1. For sufficiently large n, it is possible to find a solution λ with positive
real part.

Set z = λ
η + 1 and search for z in polar coordinates z = reiθ. This leads to

r = |α|1/n and nθ = −π, i.e., z = r(cos(−π/n) + i sin(−π/n)). Since r > 1,
r cos(−π/n) > 1 for large enough n. So

λ = η(z − 1)

has a positive real part independently of how η > 0 is chosen.

8.3. Negative feedback from an intermediate stage. Let 1 < ` < n. We
bring (8.10) to the standard form of a characteristic polynomial,

χ(λ) =

n∏
k=1

(λ+ ηk) + ψ(x`)
∏̀
k=1

ηk

n∏
k=`+1

(λ+ ηk)−
n∏
k=1

ηk. (8.13)

Choose ηn = 0 and η1 = · · · = η`. Then the characteristic equation has the solution
λ = 0 = ηn and the solutions λ = −ηk for k = `+ 1, . . . , n− 1 and the solutions λ
of

0 =
( λ
η1

+ 1
)`

+ ψ(x`).

By our previous consideration, this equation has a solution λ with positive real part
if ψ(x`) > 1 and ` is large enough. By Rouché’s theorem [32, A.3], the original
equation has a solution λ with positive real part if ψ(x`) > 1 and ` is large enough
and ηn is small enough.

We need to make sure that our choices are feasible. Recall ηn/q = h(x`), q
independent of ηn. If h is strictly decreasing with limit 0 at infinity, then x` →∞
as ηn → 0. For our purposes so far, we needed to have that ψ(x`) > 1 which we
can achieve if ψ(∞) = lims→∞ ψ(s) > 1 and ηn > 0 is chosen sufficiently small.

Example 8.1. Recall that we assumed h(0) = 1 and 1 = −h′(0) if h′(0) 6= 0 to
reduce degrees of freedom that do not really exist.

(a) h(y) = e−y. Then ψ(y) = y →∞ as y →∞.
(b) h(y) = α

α+yα with α > 0. Then ψ(y)→ α as y →∞ and ψ(∞) can be taken

as large as wanted by choosing α large.

Let us consider the cases n = 5 and n = 6 and ` = n− 2. For n ≥ 5,

χ(λ) =

n∑
j=0

an−jλ
j
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with a0 = 1,

a1 =

n∑
k=1

ηk = b1 + ηn,

aj =bj + φj(ηn), j = 2, . . . , n− 3,

an−2 =bn−2 + φn−2(ηn) + ψ(xn−2)

n−2∏
k=1

ηk,

an−1 =bn−1 + φn−1(ηn) + ψ(xn−2)

n−2∏
k=1

ηk(ηn + ηn−1)

an =ψ(xn−2)

n∏
k=1

ηk,

where φj(ηn)→ 0 as ηn → 0. We assume that

h(y)→ 0,
−h′(y)y

h(y)
→ ψ(∞), y →∞. (8.14)

Then xn−2 →∞ as ηn → 0 and

ψ(xn−2)→ ψ(∞).

Case. n = 5.
Then, as η5 → 0,

a1a2 − a3 =(b1 + η5)(b2 + φ2(η5))− b3 − φ3(η5)− ψ(x3)η1η2η3

−→(b1 + η5)b2 − b3 − ψ(∞)η1η2η3 < 0

if ψ(∞) is large enough. By the Routh-Hurwitz criterion (see (36’) in XV.§6 of
[15]), the equilibrium is unstable.

Case. n = 6.
The equilibrium is unstable (see (36’) in XV.§6 of [15]) if

0 >

∣∣∣∣∣∣
a1 1 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣ = −a1(a1a4 − a5) + a3(a1a2 − a3).

As η6 → 0, the second summand remains bounded and a1 remains bounded away
from 0, while

a1a4 − a5 =[a1 − (η5 + η6)]ψ(x4)

4∏
k=1

ηk + θ(η6)

=
( 4∑
k=1

ηk

)
ψ(x4)

4∏
k=1

ηk + θ(η6),

where θ(η6) remains bounded as η6 → 0. As ψ(x4) → ψ(∞) as η6 → 0 and ψ(∞)
can be made as large as wanted, a1a4−a5 can be made as large as wanted as η6 → 0.

So the persistence equilibrium is unstable for sufficiently small η6 > 0.
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9. Epilog: A modified model. We developed a model for populations with many
discrete stages. We obtained satisfactory results concerning the persistence and
extinction of the population and the existence and uniqueness of positive equilibria.
Some special cases of these models, however, present substantial difficulties for
proving the boundedness of solutions and the stability of positive equilibria. In
particular, we are not able to show boundedness of solutions for the system

x′1 =h(x`)xn − η1x1,

x′j =γj−1xj−1 − ηjxj , j = 2, . . . , n,
(9.1)

with n ≥ 3 and 1 < ` < n. Here ηj ≥ γj > 0, j = 1, . . . , n − 1, ηn > 0 and
h : R+ → R+ is strictly decreasing. (9.1) is a special case of the models in [21, 43]
with ` = n− 2 = 10, but we are not even able to prove boundedness of solutions if
n = 3 and ` = 2. This is quite disturbing because one feels that a strong immune
response or resistance of the hosts which is triggered when the adult ticks feed on
them (represented by x`) and reduces the fertility of the ticks when they lay their
eggs later (represented by xn) should be able to keep tick numbers bounded even if
there are no other overcrowding effects present.

Sometimes mathematical difficulties can be a sign that something is wrong with
the model [35], in our case with modeling the negative feedback of feeding adults
on the fertility of egg-laying adults. A first observation is that, if the negative
feedback is due to an immune reaction caused by feeding adults which only plays
out during egg-laying, then the fertility reduction of egg-laying adults is caused by
the ticks that were feeding at the same time as the egg-laying adults were, i.e.,
at some moment in the past. In a model of ordinary differential equations, where
stage lengths are exponentially distributed, it is difficult to model the appropriate
delay in a consistent way. In a model with discrete delays where stage lengths are
the same for all individuals in the stage, this is possible in a more satisfactory way
though it does not remove the mathematical difficulties [13].

Here we suggest an alternative model formulation within the framework of ordi-
nary differential equations.

Let x1 be the amount of eggs, xj (j = 2, . . . , n−3) the amount of ticks in various
larval, nymph, and adult stages, xn−2 the amount of feeding adult ticks, xn−1 the
reproductive potential of engorged adult ticks, and xn the reproductive potential of
egg-laying adult ticks. Then

x′1 = βnxn − (τ1(x1) + µ1(x1))x1,

x′j = τj−1(xj−1)xj−1 − (τj(xj) + µj(xj))xj , j = 2, . . . , n− 2,

x′n−1 = θ(xn−2)τn−2(xn−2)xn−2 − (τn−1(xn−1) + µn−1(xn−1))xn−1,

x′n = τn−1(xn−1)xn−1 − µn(xn)xn.

(9.2)

Here τj−1(xj−1) ≥ 0 is the per capita transition rate from the (j− 1)th stage to the
jth stage, µj(xj) ≥ 0 the per capita mortality in the jth stage, and θn−2(xn−2) ∈
[0, 1] the fertility reduction factor due to the immunity or resistance that the host
develops as response to the number of feeding ticks.

For x = (x1, . . . , xn), we set

ηj(x) =τj(xj) + µj(xj), j = 1, . . . , n− 1,

ηn(x) =µn(xn),

γj(x) =τj(xj), j = 1, . . . , n− 3, j = n− 1,
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γn−2(x) =θ(xn−2)τn−2(xn−2),

γn(x) =βn,

and this modified model is a special case of (2.7) and (2.3) satisfying (2.4). All
results from Sections 2 to 6 apply.

Boundedness of solutions can now simply be enforced by assuming that yτn−2(y)
θ(y) is a bounded function of y ≥ 0 which can be achieved by assuming that θ
decreases sufficiently fast as a function of y.

Global stability of the persistence equilibrium can be enforced by assuming that
the function yθ(y)τn−2(y) is increasing in y ≥ 0 and θ(y)τn−2(y) is strictly de-
creasing in y > 0 and that the functions yτj(y) are increasing in y ≥ 0 while
τj is decreasing and θ strictly decreasing. Further µj(xj) should be increasing in
xj . Then the system induces a monotone semiflow [31] with at most one nonzero
equilibrium (Section 6.2). This is a bit of a balancing act because yθ(y)τn−2(y)
should be both increasing and bounded as a function of y. Hopefully, some of these
assumptions can be weakened.
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