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Abstract. An evolutionary game theoretic model for a population subject to

predation and a strong Allee threshold of extinction is analyzed using, among

other methods, Poincaré-Bendixson theory. The model is a nonlinear, plane
autonomous system whose state variables are population density and the mean

of a phenotypic trait, which is subject to Darwinian evolution, that determines
the population’s inherent (low density) growth rate (fitness). A trade-off is

assumed in that an increase in the inherent growth rate results in a propor-

tional increase in the predator’s attack rate. The main results are that orbits
equilibrate (there are no cycles or cycle chains of saddles), that the extinction

set (or Allee basin) shrinks when evolution occurs, and that the meant trait

component of survival equilibria occur at maxima of the inherent growth rate
(as a function of the trait).

1. Introduction. There is a growing literature on the modeling and analysis of
Allee effects in population dynamics and related fields (e.g., the management of re-
newable resources and endangered species, ecosystem dynamics, the and the spread
of epidemics). See [5, 6, 7, 8, 8, 10, 13, 15, 16, 22, 23, 25]. One result of this interest
is an ongoing classification of different types of Allee effects and mechanisms [7].
One basic notion is that of a strong Allee effect, which is a dynamic scenario in
which both extinction and survival attractors (usually equilibria) simultaneously
exist. This bi-stability is usually considered to be the defining hallmark of an Allee
effect and is a property that is often of central interest in studies of Allee effects.
The basin of attraction of the extinction state (the Allee basin) is a region in which
a population is threatened with extinction. This is the primary motivation for
studying models that include mechanisms that result in a strong Allee effect.

Our primary goal in this paper is to study the effect that evolutionary adaptation
can have on the Allee basin. Our main ecological result is that this basin shrinks
in the presence of evolution, at least for the model considered. By this is meant
that there are population states that lead to extinction in the absence of evolution
but lead to survival in the presence of evolution (but not vice versa). This is the
same general result as obtained in [9], but for a different population model. The
differential equation model we consider here is one often used in the study of strong
Allee effects [7, 10]. It has more biological underpinnings than the more qualitative
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model used in [9] and, unlike the model in [9], can have or not have a strong Allee
effect depending on model parameter values. We derive the model in Section 2. It
is based on the assumption that model parameters depend on a phenotypic trait
that can be subject to Darwinian evolution. We study the model’s global dynamics
in the absence and in the presence of evolution in Sections 3 and 4 respectively. A
specific example in Section 5 illustrates the general results of the global analysis.

2. Preliminaries. The phase line portrait of a first order, autonomous differential
equation dx/dt = f(x), where f (x) is continuously differentiable on an open interval
I of the real line R, consists of equilibria and orbits (of monotone solutions) in I that
either approach an equilibrium in I or end point of I (including +∞ and/or −∞).
An equilibrium x = xe is an attractor (respectively a repeller) if f (x) decreases
(respectively increases) as x increases through xe. An equilibrium is, respectively,
a right or left shunt if the graph of f(x) has a local minimum or maximum at
x = xe. These alternatives can be determined by the geometric properties of the
graph of f (x) or analytically, if f(x) is sufficiently differentiable, by derivatives of
f(x) evaluated at x = xe.

First order differential equations used to model population dynamics often have
the form

dx

dt
= g(x)x. (1)

The per unit growth rate (or population fitness) g (x) is a function of population
density x and (because there are no contributions to population growth or decline
due to external factors such as immigration or emigration) the equilibrium x = 0
represents an extinction state. We suppose g (x) is continuously differentiable on
an open interval I containing the nonnegative real numbers R̄+ and that its roots
in R̄+ are isolated.

We say that equation (1) has a strong Allee effect if there positive initial con-
ditions that lead to extinction and positive initial conditions that do not lead to
extinction. Mathematically, equation (1) has a strong Allee effect if there positive
initial conditions whose orbits tend to 0 as t→ +∞ and positive initial conditions
whose orbits tend to xk as t→ +∞ where 0 < xk ≤ +∞.

A strong Allee effect implies the existence of a positive equilibrium, xa > 0, (a
root of g (x)) that serves as a threshold between those positive initial conditions
(less than xa) whose orbits approach 0 and those positive initial conditions (greater
than xa) whose orbits do not. The equilibrium xa is called the Allee threshold.

Note that a strong Allee effect implies 0 is either an attractor or a left shunt.
Therefore, a necessary condition for a strong Allee effect is g (0) ≤ 0. Sufficient
conditions for a strong Allee effect are g (0) < 0 and the existence of a positive root
of g (x) (a positive equilibrium).

Most population models assume negative feedback density effects occur for large
population densities, which mathematically means g (x) is negative for large values
of x > 0. This implies orbits with initial conditions larger than xa are bounded and
consequently must approach an equilibrium (larger than or equal to xa).

The basic prototypical phase line portrait representing a strong Allee effect is
0← xa → xk ← where xa > 0 and xk > xa are roots of g (x).

Let v denote the trait of a typical or focal individual, let u denote the population
mean of the trait, and assume that the fitness of an individual depends on its
trait v and, possibly, the trait of other individuals as represented by the mean u,
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i.e. g = g (v, u, x). A model for the evolutionary or Darwinian dynamics of the
population is the plane, autonomous system of differential equations [1, 11, 17, 24]

du

dt
= σ2 ∂g (v, u, x)

∂v

∣∣∣∣
v=u

(2a)

dx

dt
= g (v, u, x)x|v=u (2b)

Here the parameter σ2 ≥ 0 in the trait equation (2a), sometimes referred to as
Breeder’s or Lande’s equation, is related to the variation of the phenotypic trait in
the population which is assumed constant in time [14, 18, 20].

In the evolutionary model (2) the user must specify an interval U ⊆ R for the
mean trait mean trait. The feasible state space for (2) is then U × R̄+. While it
is clear that the x component of an orbit (u (t) , x (t)) with initial condition in R̄+

remains in R̄+ for all t, it is not in general true that the u component remains in
U . The modeler must also place constraints on g so as to keep the u component
of orbits within the trait interval U or, alternatively, must decide upon a biological
interpretation of what it means should the u component of an orbit leaves U . Note
that if x (0) = 0 then x (t) ≡ 0 for all t (because of the factor of x in the population
equation (2b)) and therefore the u-axis in the phase plane is invariant, with a phase
line portrait determined by (2a) with x = 0. Orbits in the upper half (u, x)-plane
must remain in the upper half plane for all t.

In this paper we are interested in the evolutionary model (2) when the population
dynamic model (2b) has a strong Allee effect in the absence of evolution. By the
absence of evolution we mean when σ2 = 0, and hence u remains a fixed constant,
and the resulting population dynamic equation (2b) has a strong Allee effect. How
does a strong Allee effect affect the evolutionary dynamics when σ2 > 0? How does
evolutionary adaptation affect the threat of extinction posed by an Allee threshold?

The global dynamics of the evolutionary model (2) were analyzed in ([9]) for the
fitness function

g (x) =̊r

(
1− x

xk

)(
x

xa
− 1

)
(3)

r > 0, 0 < xa < xk

under the assumption that the three model parameters r, xk and xa are functions
of a phenotypic trait subject to Darwinian evolution. This modification of the
classic logistic equation is one generic example of a model with a strong Allee effect
[7, 19, 23]. One of the main results from that study was that evolutionary adaptation
is beneficial in the sense that the Allee basin (the set of initial conditions whose
orbits result in extinction) is a proper subset of the Allee basin in the absence
of evolution. Our goal is to do a similar study, with an eye towards addressing
this same issue (among others), the model (2) using a different fitness function g
possessing a strong Allee effect, one that has often appears in the literature.

Consider a logistically growing population subject to an additional density de-
pendent loss δ (x):

g (x) = r − cx− δ (x) .

As in the logistic equation, r is the per capita birth rate a low population density
and cx is a per capita death rate due to density effects caused by intraspecific com-
petition. The density dependent loss δ (x) is due to other causes, such as predation,
parasitism, and lost mating opportunities, for example [7].
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As pointed out above, necessary for a strong Allee effect in (1) is r − δ (0) ≤ 0,
and sufficient for a strong Allee effect is r− δ (0) < 0 together with the existence of
a positive root of the equation r − cx − δ (x) = 0. In this paper, we will consider
the specific case when δ (x) is a Holling type II function (aka Monod or Michaelis-
Menten) [7]

δ (x)x = m
x

θ + x
, m, θ > 0.

This functional response to increased population density often used to model preda-
tion under the assumption that predation saturates with increased prey saturation
density. Here m is the maximum predation rate and θ is the half saturation level
of predators.

This same functional expression for δ (x) also arose in a seminal study of Allee
effects caused by low density mating limitations [10]. In this paper, we will focus
on the predation interpretation and write

δ (x) = a
1

1 + hax

where a = m/θ and h = 1/θ are the predator attack rate and prey handling time
respectively [12, 21]. The resulting population dynamic equation

dx

dt
= (r − cx− a 1

1 + hax
)x. (4)

has fitness function

g (x) = r − cx− a 1

1 + hax
. (5)

This equation has a strong Allee effect occurs if r < a and the quadratic

(a− r) + (c− rha)x+ chax2 = 0

has a positive root x > 0. As a result, the equation (4) has a strong Allee effect for
some parameter values, but not for others, which is in contrast to the equation (3)
considered in [9].

In this paper we consider the evolutionary model (2) with fitness function (5)
under the following assumptions.

(1) An individual’s birth rate r = r (v) is a function of a phenotypic
trait v that is subject to evolution.

(2) The intraspecific competitive effect on the individual’s chance
of survival is frequency dependent, i.e. depends on how many
other individuals have the same trait v which we model by a
function of the difference v − u. Thus, the competition coefficient
c = c (v − u) is a function of the different v − u.

(3) The predator attack rate on individual is a function of the
individual’s trait v, so that a = a (v).

(4) The predator attack rate is proportional to the birth rate of prey
so that a (v) = kr (v).

We assume the intraspecific competition function c = c (w) satisfies

ċ (0) = 0, c̈ (0) < 0

where throughout the paper “·” denotes differentiation with respect to a function’s
argument, e.g.

ċ (δ) $
dc (w)

dw
, r̈ (u) $

d2r (u)

du2
, etc..
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The reason we require these two conditions is that we are assuming that the max-
imum competitive intensity occurs among individuals of the same trait. Conse-
quently, the maximum competitive intensity felt by the individual occurs when its
trait v equals the population mean u.

Under the assumptions (1)-(2), the evolutionary equations (2) become

du

dt
= σ2ṙ (u)

(
1− k

(1 + hkr (u)x)
2

)
(6a)

dx

dt
=

(
r (u)− cx− kr (u)

1 + hkr (u)x

)
x (6b)

where for notational simplicity we denote c (0) by simply c = c (0).
Let

U = {u : um < u < uM}
−∞ ≤ um < uM ≤ +∞

denote the trait interval. We consider the evolutionary equations (6) on the feasible
set

F $ Ū × R̄+.

under the smoothness assumption

A1: r (u) ∈ C2
(
Ω→ R1

+

)
where Ω is an open interval in R such that Ū ⊆ Ω.

With regard to equilibria (u, x) of (6) we distinguish those with x = 0, called
extinction equilibria, and those with x > 0, called survival equilibria.

Our mathematical goal is to carry out a global analysis of the plane autonomous
system (6) on the feasible set F . Specifically, we show that (forward) bounded orbits
equilibrate (and, therefore, there are no limit cycles or cycle chains of saddles).
We will use the results to address the following questions: which orbits lead to
population extinction and which to survival (i.e. which approach an extinction
equilibrium and which approach a survival equilibrium)? Is evolutionary adaptation
helpful with regard to survival? Specifically, are there orbits that lead to population
extinction in the absence of evolution (σ2 = 0), but which result in survival when
evolution occurs (σ2 > 0)? Conversely, are there orbits that lead to survival in the
absence of evolution, but which result in extinction when evolution occurs? We will
give answers to these questions in Section 4.2.

3. Non-evolutionary dynamics (σ2 = 0). If σ2 = 0 in the system (6), then
du/dt = 0 and u ∈ Ū remains fixed in time. All non-equilibrium orbits in F =
Ū × R̄+ are vertical line segments. The population dynamics are governed by the
scalar differential equation (6b) for the x component, which we can write as

dx

dt
=

−p (x, u)

1 + hkr (u)x
x. (7)

where

p (x, u) =̊ (k − 1) r (u) +
(
c− hkr2 (u)

)
x+ chkr (u)x2.

Equilibria of (6) in F are the extinction equilibria (u, 0) for any u ∈ Ū and survival
equilibria (u, x (u)) for any u ∈ Ū for which the quadratic polynomial p (x, u) has a
positive root x (u) > 0.
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If k < 1 the extinction equilibrium (u, 0) is a repeller (7) and there exists a
unique positive attractor at the root

x0 (u) =
−
(
c− hkr2 (u)

)
+

√
(c− hkr2 (u))

2 − 4chk (k − 1) r2 (u)

2chkr (u)
(8)

of p (x, u), which is a repeller for (7). The (u, x) phase plane portrait for the
evolutionary equations (6) in this case is shown in Figure 1(a).

Suppose k > 1. Then p (x, u) has no real, positive roots x if c ≥ hkr2 (u). If, on
the other hand, c < hkr2 (u) then it has two roots

x± (u) =
−
(
c− hkr2 (u)

)
±
√

(c− hkr2 (u))
2 − 4chk (k − 1) r2 (u)

2chkr (u)
(9)

positive provided when u satisfies

c < c0 (u)

where we have defined

c0 (u) $
(

2k − 1− 2
√
k (k − 1)

)
hkr2 (u) . (10)

Note that the parenthetical factor equals 1 at k = 1 and monotonically decreases
to 0 as k → +∞. As a result

c0 (u) < hkr2 (u) for k > 1.

We summarize these results in the following theorem.

Theorem 3.1. Assume A1 and σ2 = 0.
(a) If k < 1 then for all values of u ∈ Ū the evolutionary model (6) has two

equilibria in F, namely, the extinction equilibrium (u, 0) and the survival equilibrium
(u, x0 (u)) where x0 (u) is given by (8).

(b) If k > 1 then for each u ∈ Ū , the equilibria (u, x) of the planar system (6)
are as follows:

c0 (u) < c⇒ the extinction equilibria (u, 0) is the only equilibrium;

c = c0 (u)⇒ there exist two equilibria, the extinction equilibrium (u, 0) and
the survival equilibrium (u, x0 (u)) where x0 (u) is given by (8);

c0 (u) > c⇒ there exist three equilibria: the extinction equilibrium (u, 0) and
two survival equilibria (u, x− (u)) and (u, x+ (u)) where
x− (u) < x+ (u) are given by (9).

The linearization of (7) at the equilibrium x = 0 is dx/dt = r (u) (1− k)x. When
k < 1, x = 0 is a repeller and when k > 1 it is an attractor, giving the phase line
portrait

← 0→ x (u)←
When k > 1 there are several possible phase line portraits, depending on the value
of u :

→ 0← if c > c0 (u)
→ 0← x0 (u)← if c = c0 (u)

→ 0← x− (u)→ x+ (u)← if 0 < c < c0 (u)

All these phase plane portrait possibilities are illustrated (vertically) in Figure 1.
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When k < 1 there are no initial conditions that lead to extinction. When k > 1
there are extinction orbits, and we denote survival and extinction sets of initial
conditions respectively by

S0=̊ {(u, x) ∈ F : c ≤ c0 (u) and x− (u) ≤ x} (11)

E0=̊F\S0. (12)

The boundary ∂S0 = B1 ∪BL2 ∪BR2 ∪B3 of the survival region S0 consists of

(a) a lower portion B1 defined by the curve x = x− (u) between roots
u = u0 of c = c0 (u) and at which the two survival equilibria
x+ (u0) = x− (u0) coalesce);

(b) vertical half lines BL2 and BR2 located at u = u0 for x ≥ x0;
(c) vertical line segments B3 located at a boundary point u = um

and/or u = uM (for x > x− (um) and/or x > x− (uM )).

(13)

See Figure 1(b).

Figure 1. Assume σ2 = 0 in (6). The phase plane portrait on
F of (6) is shown in the two cases when k < 1 and k > 1. All
non-equilibrium orbits are vertical line segments and equilibrate
as t → +∞. The survival set S0 is the shaded region and the
extinction set E0 is the unshaded region.

(a) When k < 1 all orbits approach the survival equilibrium
(u, x0 (u)) given by (8). Three sample vertical phase line portraits
are shown.

(b) When k > 1 some orbits approach an extinction equilibrium
(u, 0) and some approach a survival equilibrium (u, x+ (u)).

4. Evolutionary dynamics (σ2 > 0). Our goal is to carry out a global analysis of
the (u, x)-phase plane of the evolutionary model (6) by means of Poincaré-Bendixson
theory. We will also compare the extinction set, i.e. the set of initial conditions in
F whose orbits lead to population extinction when σ2 > 0, to the extinction set E0

when σ2 = 0. We begin with a study of equilibria and their local stability properties
obtained by the linearization principle.
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4.1. Local analysis of equilibria. The equilibrium equations of (6) are

0 = ṙ (u)

(
1− k

(1 + hkr (u)x)
2

)
(14a)

0 =

(
r (u)− cx− kr (u)

1 + hkr (u)x

)
x (14b)

The lower left entry in the Jacobian

J (u, x) =

 ∂
∂uσ

2ṙ (u)
(

1− k
(1+hkr(u)x)2

)
∂
∂xσ

2ṙ (u)
(

1− k
(1+hkr(u)x)2

)
∂
∂u

(
r (u)− cx− kr(u)

1+hkr(u)x

)
x ∂

∂x

(
r (u)− cx− kr(u)

1+hkr(u)x

)
x


equals 0 when evaluated at an equilibrium (u, x). This is obvious if x = 0 and
follows by the trait equilibrium equation (14a) if x 6= 0. Thus, the eigenvalues are
the diagonal entries evaluated at the equilibrium, namely

λ1 (u, x) =̊ σ2r̈ (u)

(
1− k

(1 + hkr (u)x)
2

)

+σ2ṙ (u)

(
2

hk2ṙ (u)x

(1 + hkr (u)x)
3

)
(15)

λ2 (u, x) =̊

(
r (u)− cx− kr (u)

1 + hkr (u)x

)
+

(
−c+

hk2r2 (u)

(1 + hkr (u)x)
2

)
x. (16)

We first turn our attention to extinction equilibria. We define a critical trait
to be a real number u∗ ∈ Ω such that ṙ (u∗) = 0. From (14) we see that a pair
(u, x) = (u∗, 0) ∈ F is an extinction equilibrium if and only if

ṙ (u∗) (1− k) = 0

If k = 1 then (u∗, 0) is an extinction equilibria for all u∗ ∈ Ū . Moreover, λ1 (u∗, 0) =
0 and the equilibrium is nonhyperbolic and the linearization principle fails. We
ignore this nongeneric case and assume if k 6= 1. In this case (u∗, 0) is an extinction
equilibrium if and only if u∗ is a critical point of r (u). The eigenvalues eigenvalues
of the Jacobian at an extinction equilibrium are

λ1 (u, 0) = σ2r̈ (u∗) (1− k) , λ2 (u∗, 0) = (1− k) r (u∗) .

The linearization principle implies the following result.

Theorem 4.1. Assume A1 and let u∗ ∈ Ū be a critical trait of r (u).
(a) If k < 1 then the extinction equilibrium (u∗, 0) is unstable.
(b) If k > 1, we have the following alternatives:

(i) r̈ (u∗) > 0 implies the extinction equilibrium (u∗, 0)
is a locally asymptotically stable (LAS) node;

(ii) r̈ (u∗) < 0 implies the extinction equilibrium (u∗, 0) is a saddle.

Theorem 4.1 gives criteria for the instability and stability of an extinction equi-
librium (u∗, 0). If k < 1 then any extinction equilibrium is unstable in both the
evolutionary and non-evolutionary model. Since our interest is on the interplay of
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extinction versus survival and the effect of evolution on the extinction basin, we
will focus on the case k > 1.

We next turn our attention to survival equilibria. The algebraic equations for
survival equilibria (u, x), x > 0, are

0 = ṙ (u)

(
1− k

(1 + hkr (u)x)
2

)
(17a)

0 = r (u)− cx− kr (u)

1 + hkr (u)x
. (17b)

We begin be observing that if (u, x) solves these equations with x > 0, then it
must be true that ṙ (u) = 0 (i.e. that u is a critical trait u∗). To see this, suppose
ṙ (u) 6= 0. Then (u, x) solves the equation

k

(1 + hkr (u)x)
2 = 1

which when used in (17b) yields

0 = r (u)− cx− (1 + hkr (u)x) r (u)

or
(
c+ hkr2 (u)

)
x = 0, which implies the contradiction x = 0. Therefore, the u-

component in a survival equilibria (u, x) must be a critical trait. The x-component
is a positive root of equation (17b), which is an algebraic equation we studied in
the non-evolution case in Section 3.

Theorem 4.2. Assume A1, σ2 > 0 and k > 1. The only equilibria of the evolution
equations (6) in F are located at critical traits of r (u) in Ū . Suppose u∗ ∈ Ū is a
critical trait of r (u). In addition to the extinction equilibrium (u∗, 0), there

(a) are two survival equilibria (u∗, x± (u∗)) if c < c0 (u∗)
where x− (u) < x+ (u) are given by (9);

(b) is one survival equilibrium (u∗, x0 (u∗)) if c = c0 (u∗);
(c) are no survival equilibria at u = u∗ if c > c0 (u∗).

To obtain stability criteria for a survival equilibrium by means of the linearization
principle, we investigate the eigenvalues (15) and (16) of the Jacobian evaluated at
the two survival equilibria (u∗, x± (u∗)). Our first observation is that the inequalities

λ2 (u∗, x− (u∗)) > 0 and λ2 (u∗, x+ (u∗)) < 0 (18)

follow from the analysis of the non-evolutionary case. As a result the equilibrium
(u∗, x− (u∗)) is always unstable. The local stability and phase portrait of (u, x± (u))
depends on the signs of the remaining eigenvalues

λ1 (u∗, x− (u∗)) and λ1 (u∗, x+ (u∗)) .

From (17b) follows

r (u∗)− cx
r (u∗)

=
k

1 + hkr (u∗)x± (u∗)
,

from which in turn follow

r (u∗)− cx± (u∗) > 0 (19)
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and

λ1 (u∗, x± (u∗)) = σ2r̈ (u∗)

(
1− k

(1 + hkr (u∗)x± (u∗))
2

)

= σ2r̈ (u∗)
1

k

(√
k − 1 +

cx± (u∗)

r (u∗)

)(√
k +

r (u∗)− cx± (u∗)

r (u∗)

)
.

Both parenthetical expressions are positive by (19) and our assumption that k > 1.
Consequently

sign λ1 (u∗, x± (u∗)) = sign r̈ (u∗) (20)

From (18), (20) and Theorem 4.1 we get the following result.

Theorem 4.3. Assume A1, σ2 > 0, and k > 1. The only equilibria of the evolu-
tionary equations (6) in F are located at critical traits of r (u) in Ū . If u∗ ∈ Ū is a
critical trait of r (u) then we have the following alternatives.

(a) Suppose r̈ (u∗) < 0. Then
(i) c > c0 (u∗) implies the only equilibrium is (u∗, 0) and it is a saddle.
(ii) c < c0 (u∗) implies there are three equilibria:

(u∗, 0) a saddle
(u∗, x− (u∗)) a saddle
(u∗, x+ (u∗)) a stable node.

(b) Suppose r̈ (u∗) > 0. Then
(i) c > c0 (u∗) implies the only equilibrium is (u∗, 0) and it is a stable node.
(ii) c < c0 (u∗) implies there are three equilibria:

(u∗, 0) a stable node
(u∗, x− (u∗)) an unstable node
(u∗, x+ (u∗)) a saddle.

Note 1. Stable survival equilibria are located at critical traits at which r (u)
(and hence of a (u)) has a local maximum.

Note 2. Stable survival equilibria occur only when the negative feedback of
intraspecific competition, as measured by c, is small enough, i.e. c < c0 (u∗).

Note 3. The case c = c0 (u∗) does not appear in Theorem 4.3. In this case
a unique survival equilibrium occurs as the equilibria x+ (u∗) = x− (u∗) coalesce
at x0 (u∗). This equilibrium is nonhyperbolic and linearization fails. The stability
criteria of Theorem 4.1 for the extinction equilibrium (u∗, 0) remain valid, however.

4.2. Global dynamics. From the evolutionary equations (6) we see that an initial
condition (u, x) with x > 0 and u = u∗, where u∗ ∈ Ū is a critical trait of r (u),
produces an orbit (u∗, x (t)) with a fixed u-component and where the x component
is a solution x (t) of the equation

dx

dt
=

(
r (u∗)− cx− kr (u∗)

1 + hkr (u∗)x

)
x.

These orbits are vertical lines in the upper half (u, x)-phase plane. Also, an initial
condition (u, x) with x = 0 produces an orbit (u (t) , 0) where u (t) is a solution of
the equation

du

dt
= σ2ṙ (u) (1− k)

These orbits lie along the horizontal u-axis in the (u, x)-phase plane. As a result
no orbit can leave the upper half plane.
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For u1, u2 ∈ Ū , u1 < u2, define the semi-infinite rectangle

F (u1, u2) = {(u, x) : u1 < u < u2, x > 0} .

From our observations above, we have the following result.

Theorem 4.4. Let u∗1 < u∗2 be two critical points of r (u) in Ū . The semi-infinite
rectangular region F (u∗1, u

∗
2), its boundary ∂F (u∗1, u

∗
2) (and therefore its closure

F̄ (u∗1, u
∗
2)) are invariant sets.

We assume:

A2: r (u) is bounded on Ū and has finite number n ≥ 1 of critical points
u∗1 < u∗2 < · · · < u∗n in Ū at which r̈ (u∗i ) 6= 0.

We write the feasible state space F as a union of the invariant, semi-infinite
rectangles created by the critical points ui (and the endpoints um, uM )

F = F (um, u
∗
1) ∪n−1

i=1 F̄
(
u∗i , u

∗
i+1

)
∪ F (u∗n, uM ) .

Equilibrium points in F can only occur on a vertical side of a rectangle located at
a critical trait u∗i . Note that an endpoint um and/or uM is allowed to be a critical
trait. Moreover, the vertical sides F̄

(
u∗i , u

∗
i+1

)
are invariant (they consist of orbits).

It follows that there exist no cycles or cycle chains of saddle (since either of these
must surround an equilibrium) in F . From Poincaré-Bendixson theory we conclude
that all (forward) bounded orbits remaining in F must equilibrate as t→ +∞. All
orbits in the invariant set F̄

(
u∗i , u

∗
i+1

)
are indeed forward bounded. This is because

the right side of the differential equation (6b) is bounded by (rm − cx)x and hence
is negative when x > rm/c. Thus, the vector field at points (u, x) ∈ F

(
u∗i , u

∗
i+1

)
with x > rm/c points downward in the (u, x)-phase plane. We have arrived at the
following results.

Theorem 4.5. Assume A1 and A2. A forward bounded orbit of the evolution equa-
tions (6) that remains in F approaches an equilibrium as t→ +∞. In particular, all
orbits in the invariant sets F̄

(
u∗i , u

∗
i+1

)
, i = 1, 2, . . . , n− 1, approach, as t→ +∞,

an equilibrium (u, x) located on the boundary of F̄
(
u∗i , u

∗
i+1

)
.

Corollary 1. Assume A1, A2 and that the endpoints um = u1 and uM = un of U
are critical traits, i.e. assume that

F = ∪n−1
i=1 F̄

(
u∗i , u

∗
i+1

)
. (21)

Then all orbits of the evolution equations (6) in F approach an equilibrium as
t→ +∞.

Note 4. If um is not a critical trait, then the global dynamics in the invariant
region F (um, u

∗
1) depends on the dynamics near the boundary at um. Orbits in this

region might not remain in this region or be forward bounded. For example, if um
is finite and not a critical point, then an inspection of the sign of the right side of
equation trait equation (6a) is the same as the sign of ṙ (um) when x >> 0, but is
the opposite of the sign of ṙ (um) for x ≈ 0 if k > 1. Therefore, along the left vertical
boundary of F (um, u1) at u = um the vector field points in opposite directions for
large and small values of x. This means that not all orbits in F (um, u1) will remain
in F (um, u1) as t→ +∞. A similar conclusion holds for orbits in F (u∗n, uM ) if uM
is finite and not a critical trait. On the other hand, if um = −∞ and/or uM = +∞
then it is a possibility that some orbits will not be forward bounded in their u
component. In these cases, the modeler must decide what biological meaning is
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to be ascribe to orbits that leave the feasible region F or have unbounded trait
components u.

Finally we consider the question of whether or not evolution can change the long
term survival of a population whose dynamics are modeled by the equations (6).
Specifically, we address two questions:

Q1: Are there initial points in F whose orbits approach an
extinction equilibrium when evolution occurs (σ2 > 0)
but approach a survival equilibrium when evolution
is absent (σ2 = 0)?

(22)

Q2: Are there initial points in F whose orbits approach a
survival equilibrium when evolution is absent (σ2 = 0)
but approach an extinction equilibrium when evolution
occurs (σ2 > 0)?

(23)

To answer these questions, we define the extinction and survival sets Eσ2 and Sσ2

when σ2 > 0 to be, respectively, the set of initial conditions whose orbits approach
an extinction equilibrium and the set of initial conditions whose orbits approach
a survival equilibrium. We want to compare Eσ2 and Sσ2 when σ2 > 0 to the
extinction and survival sets E0 and S0 when evolution is absent.

We restrict our analysis to the (invariant) subset ∪n−1
i=1 F̄

(
u∗i , u

∗
i+1

)
of the feasible

set F , ignoring the end regions F (um, u
∗
1) and F (u∗n, uM ) on which the global

dynamics cannot be determined without further restrictions on the model equations
for traits u near the endpoints um and uM of U (see Note 4). Equivalently, we
assume um and uM are critical traits and, hence, the feasible set is (21).

First, we note that if c > c0 (u) for all u ∈ Ū , then in the absence of evolution
all orbits tend to an extinction equilibrium. When evolution occurs, there exist no
survival equilibria in F , in which case all orbits tend to an extinction equilibrium
(Corollary 1). Therefore, evolution does not change the asymptotic outcome of ex-
tinction in this case, and the answers to both questions Q1 and Q2 is no. Therefore,
we assume

A3: um = u∗1 and uM = u∗n are critical points and there exists a trait
u ∈ F for which c < c0 (u).

If A3 holds, then by continuity c < c0 (u) holds on an open set in U and the set S0

defined by (11) is nonempty and has an open interior. The proof of the following
theorem appears in the Appendix.

Theorem 4.6. Assume A1, A2, and A3 hold and that σ2 > 0 and k > 1. Then
set S0 is a proper subset of the extinction set Sσ2 of (6) and Sσ2\S0 has positive
measure.

5. Example. We consider an example designed to illustrate the analytic results in
Section 4. This example assumes a trait interval that is bounded by two extreme
mean trait values um and uM at which the population inherent growth rate rapidly
drops to 0, that is to say, at which r (u) and ṙ(u) vanish. Obviously, r (u) attains a
maximum somewhere in the interval U . We assume that r (u) attains its maximum
at a trait value uc where r̈ (u) is negative and that there exists no other other critical
points in U . In such a case, there are three extinction equilibria, one located at
each of the traits u = um, uc and uM . Theorem 4.5 gives conditions under which
all orbits equilibrate.
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By Theorems 4.1 and 4.3 the extinction equilibria (u, x) = (um, 0) and (uM , 0)
are stable nodes and (uc, 0) is a saddle. If c > c0 (uc) all orbits (except for the
stable manifold of (uc, 0)) tend to an extinction equilibrium, specifically to either
(u, x) = (um, 0) or (uM , 0). If c < c0 (uc) then there exist two survival equilibria at
u = uc, namely a saddle at (u, x) = (uc, u− (uc)) and a stable node at (uc, x+ (uc)).
In this case, the survival equilibrium (u, x) = (uc, x− (uc)) and its stable manifold
constitute the boundary between the extinction and survival sets Eσ2 and Sσ2 .

Figure 2 illustrates these dynamics, as well as the shrinkage of the extinction set
Eσ2 implied by Theorem 4.6, using the specific example

r (v) = 16mv2 (1− v)
2

on trait interval 0 ≤ v ≤ 1 with m > 0. (24)

For this example, um = 0 and uM = 1 and r (u) attains a maximum of m at
uc = 1/2. From (10) we have

c0(1/2) =
(

2k − 1− 2
√
k (k − 1)

)
hkm2.

For c < c0 (1/2) there exist two survival equilibria (u, x) which are given by the
formulas

(1/2, x+ (1/2)) =

1

2
,
hkm2 − c+

√
(hkm2 − c)2 − 4chkm2 (k − 1)

2chkm


(1/2, x− (1/2)) =

1

2
,
hkm2 − c−

√
(hkm2 − c)2 − 4chkm2 (k − 1)

2chkm

 .

All orbits in U ×R+, other than the stable manifolds of the saddle (1/2, x− (1/2)),
approach either an extinction equilibrium (u, x) = (0, 0) or (1, 0) or the survival
equilibrium (u, x) = (1/2, x+ (1/2)). Some sample orbits are shown in Figure 2.

For c > c0 (1/2) there are no survival equilibria and all orbits tend to an extinc-
tion equilibrium. See Figure 2a.

For c < c0 (1/2) there exist survival equilibria (1/2, x± (1/2)) , as shown in Figure
2b. The stable manifold of (u, x) = (1/2, x− (1/2)) is the boundary of the extinction
set, which lies below it. The vertical line segments BL2 and BR2 lie above the stable
manifold and consequently the survival set has expanded in the presence of evolution
(compare to the survival set in Figure 1b). To illustrate this point, three orbits that
would lie in the extinction set E0 in the absence of evolution are shown in Figure
2b, two of which.

This example illustrates several ecological and evolutionary possibilities. First,
if the intensity of intraspecific competition is sufficiently high (c > c0 (1/2)), the
population will be driven to extinction. The evolutionary trajectory drives the
phenotypic trait to a value (v = 0 or 1) where the population growth rate r (v)
vanishes. Although along most orbits in Figure 2a there is an initial trend towards
trait v = 1/2 where the growth rate is maximized, this evolutionary trend is not
sufficient to save the population from extinction.

On the other hand, if the intensity of intraspecific competition is sufficiently
weak (c < c0 (1/2)), then the evolutionary trajectories occur that allow the survival
of the population, ultimately at the trait where the population growth rate r (v)
is maximized (v = 1/2). Indeed, as predicted by Theorem 4.6 this evolutionary
outcome occurs for a larger set of initial conditions than when evolution is absent.
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This can be seen in Figure 2b where the non-evolutionary extinction boundaries BL2
and BR2 lie in the shaded survival region.

Figure 2. Sample orbits are shown for the system (6) with r (u)
given by (24) and parameter values σ2 = 0.01, k = 50, h = 0.5 and
m = 4. Extinction equilibria are (u, x) = (0, 0), (1/2, 0) and (1, 0).

(a) For c = 5/2 > c (1/2) ≈ 2.02. A3 fails to hold and all orbits
tend to an extinction equilibrium.

(b) For c = 1/2 < c (1/2) ≈ 2.02. There are two survival equi-
libria (x, u) ≈ (1/2, 0.5251) and (1/2, 7.4622), a saddle and sta-
ble node respectively. The shaded region is the survival region
Eσ2 = E0.01.

6. Concluding remarks. The ordinary differential equation (4) arises in various
contexts concerning the dynamics of a biological population, for example (as we
considered here) in an interaction with a predator. The equation exhibits a strong
Allee effect, and hence the threat of extinction from an Allee threshold, for certain
values of its coefficients. If intraspecific competition is strong (i.e., the population’s
carrying capacity is low), the added predation will drive the population to extinc-
tion. However, if intraspecific competition is sufficiently weak (i.e., the population’s
carrying capacity is large enough) the population can avoid extinction provided it
maintains itself above an Allee threshold. We considered an evolutionary version
of this model by assuming that the population’s inherent growth rate r (the low
density per capita growth rate or fitness) is determined by a phenotypic trait v that
is subject to Darwinian evolution. As an evolutionary trade-off we assumed that
the predator attack rate is positively correlated with the inherent growth rate, or
more specifically, is proportional to it.

Using Poincaré-Bendixson theory we gave a global asymptotic analysis of the
resulting evolutionary game theory model, which is a plane autonomous system
with two state variables, namely, the population density and the mean phenotypic
trait u. The main result of that analysis is that orbits equilibrate (i.e. there are
no cycles nor cycle chains of saddles) and do so at equilibria whose mean trait
components are located at critical points of r (v). Survival equilibria (those with
a positive population component) occur at critical traits located local maxima of
r (v) and they are stable provided intraspecific competition is sufficiently weak.
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The second main result we obtained (Theorem 4.6) is that, under general con-
ditions, the answer to question (22) in Section 4.2 is “yes” and to question (23) is
“no”. This means the extinction set, or Allee basin, (i.e., the set of population den-
sity and mean trait combinations that lead to extinction) is, when evolution occurs,
a proper subset of the extinction set in the absence of evolution. In this sense, for
this model at least, evolution enhances survivability by reducing the threat of an
Allee threshold.

Acknowledgments. The author was partially supported by NSF grant DMS
0917435. The author would like to acknowledge the collaboration with Professor
Yun Kang of Arizona State University, Tempe, AZ.

Appendix. Proof of Theorem 4.6. We begin with two lemmas.

Lemma 1. The BL2 and BR2 portions of the boundary described in (13a) is either
an orbit or the vector field defined by (6) when σ2 > 0 points to the interior of S0.
In either case there is no flow across BL2 or BR2 .

Proof. The BL2 and BR2 portions of the boundary is a vertical half line located at
u = u0 where x± (u) coalesce, i.e. thus, c = c (u0) and x > x0=̇x− (u0) = x+ (u0) .
If the half line BL2 (or BR2 ) is located at a critical point u0, then BL2 (or BR2 ) is
an orbit and therefore there is no flow across. Suppose BL2 or BR2 is located at a
point u0 that is not a critical point, i.e. ṙ (u0) 6= 0. If ṙ (u0) > 0 then (10) implies
ċ0 (u0) > 0 which means that the survival region S0 lies to the right and the vertical
line is a BL2 part of the boundary. We will prove the the Lemma for this case. The
proof for BR2 when ṙ (u0) < 0 is similar.

We need to show that at points (u0, x) ∈ BL2 the vector fields point to the right,
i.e. du/dt > 0 or, by reference to (6a), that

x >

√
k − 1

hkr (u0)

for all x > x0, or according to the definition of x0, for all

x >
hkr2 (u0)− c0 (u0)

2c0 (u0)hkr (u0)
.

That this is true follows from the fact that the inequalities

hkr2 (u0)− c0 (u0)

2c0 (u0)hkr (u0)
>

√
k − 1

hkr (u0)

or equivalently

hkr2 (u0) >
(

2
√
k − 1

)
c0 (u0)

hold. The latter inequality is, by the definition (10) of c0 (u), equivalent to

1 >
(

2
√
k − 1

)(
2k − 1− 2

√
k (k − 1)

)
which is valid for all k > 1.

Lemma 2. When σ2 > 0 the vector field defined by (6) at non-equilibrium points
of a B1 portion of the boundary described in (13a) points into the interior of S0.



658 JIM M. CUSHING

Proof. The B1 portion of the boundary is defined by the curve x = x− (u) where
u satisfies c < c0 (u). First we note that at such points the dx/dt component of
the flow vector equals 0 since x− (u) satisfies the equation (17b). Thus, the vector
field is horizontal along x− (u) and our goal is to show that the component du/dt
of the flow vector at a boundary point (u, x− (u)) is positive when the boundary
curve x = x− (u) on which it lies is decreasing and is negative when the boundary
curve x = x− (u) on which it lies is increasing.

By (6a) the sign of du/dt, when σ2 > 0, is the sign of

ṙ (u)

(
1− k

(1 + hkr (u)x)
2

)
.

We begin by proving that the second factor is positive when evaluated at points
(u, x) = (u, x− (u)) on the B1.

Since k > 1 it follows that k >
√
k and hence that

kr (u) > (r (u)− cx)
√
k

for x ≥ 0. Evaluating this inequality at a point (u, x) = (u, x− (u)) and recalling
that x− (u) > 0 satisfies the equation (17b), we have that

kr (u) >
kr (u)

1 + hkr (u)x− (u)

√
k.

Cancelling kr (u) and squaring both sides of this inequality, we obtain

1 >
k

(1 + hkr (u)x1 (u))
2 .

It follows, when σ2 > 0, that at a point (u, x) = (u, x− (u)) on the boundary of B1,
the sign of the du/dt component of the flow vector is the same as the sign of ṙ (u)

sign

(
du

dt

)
= sign (ṙ (u)) (25)

provided of course that ṙ (u) 6= 0, i.e. that u is not a critical point.
Our final step relates the sign of ṙ (u) to the sign of the derivative ẋ− (u). We

can re-write the equation (17b) satisfied by x = x− (u) equivalently as

q (u, x)

1 + hkr (u)x
= 0

where
q (u, x) =̊ (k − 1) r (u) +

(
c− hkr2 (u)

)
x+ chkr (u)x2.

The roots x− (u) < x+ (u) satisfy this quadratic in x and, because q (u, x) defines a
concave upward parabola, we see that

dq (u, x)

dx

∣∣∣∣
x=x−(u)

< 0,
dq (u, x)

dx

∣∣∣∣
x=x+(u)

> 0. (26)

An implicit differentiation of q (u, x− (u)) = 0 with respect to u yields

∂q (u, x− (u))

∂x
ẋ− (u) +

∂q (u, x− (u))

∂u
= 0 (27)

A calculation shows

∂q (u, x)

∂u
=
q (u, x)− cx− hkr2 (u)x

r (u)
ṙ (u)
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and an evaluation at the points (u, x) = (u, x− (u)) yields

∂q (u, x− (u))

∂u
= −cx− (u) + hkr2 (u)x− (u)

r (u)
ṙ (u)

so that (27) implies

ṙ (u) =
∂q (u, x− (u))

∂x

r (u)

cx+ hkr2 (u)x− (u)
ẋ− (u) .

As a result

sign ṙ (u) = sign

(
∂q (u, x− (u))

∂x
ẋ− (u)

)
.

From this and (26) we conclude

sign ṙ (u) = − sign (ẋ− (u))

sign ṙ (u) = sign (ẋ+ (u))

and from (25)

sign
du

dt
= − sign (ẋ− (u)) .

This shows that the component du/dt of the flow vector is positive when the bound-
ary curve x = x− (u) is decreasing at (u, x− (u)) and is negative when the boundary
curve is increasing at (u, x− (u)).

Lemmas 2 and 1 show that there is no flow out of S0 along these portions of it
boundary. The only (possible) remaining portion of the boundary is a vertical half
line line B3 described by (13c), located at um and/or uM . By assumption A3 both
um and uM are critical points and therefore B3 is an orbit. Therefore, no flow can
cross this portion of the boundary.

Proof of Theorem 4.6. By Corollary 1 any orbit in S0 equilibrates. Since no extinc-
tion equilibrium lies in S0, it follows that all orbits in S0 equilibrate to a survival
equilibrium. It follows that S0 is a subset of the survival set Sσ2 . Since there is flow
across BL2 and BR2 (and also possibly across B1) into the interior of S0, it follows
that Sσ2\S0 contains an open set.

Note: A similar argument as that given in the proof of Lemma 1 shows that the
flow on the curve x = x+ (u) also points (at nonequilibrium points) into the interior
of the region between x− (u) and x+ (u).
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