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Abstract. Launching a prevention campaign to contain the spread of infec-

tion requires substantial financial investments; therefore, a trade-off exists be-

tween suppressing the epidemic and containing costs. Information exchange
among individuals can occur as physical contacts (e.g., word of mouth, gath-

erings), which provide inherent possibilities of disease transmission, and non-

physical contacts (e.g., email, social networks), through which information can
be transmitted but the infection cannot be transmitted. Contact network

(CN) incorporates physical contacts, and the information dissemination net-

work (IDN) represents non-physical contacts, thereby generating a multilayer
network structure. Inherent differences between these two layers cause alerting

through CN to be more effective but more expensive than IDN. The constraint
for an epidemic to die out derived from a nonlinear Perron-Frobenius prob-

lem that was transformed into a semi-definite matrix inequality and served as

a constraint for a convex optimization problem. This method guarantees a
dying-out epidemic by choosing the best nodes for adopting preventive behav-

iors with minimum monetary resources. Various numerical simulations with
network models and a real-world social network validate our method.

1. Introduction. Complications associated with modeling and analyzing epidemic
spreading processes are well-studied problems. This paper focuses on mitigation of
epidemic spreading, including consideration of available resources. Research in [7]
and [8] showed that human behavior influences the spreading trend of an epidemic.
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These works introduced an extension of the “Susceptible-Infected-Susceptible” (SIS)
model by adding an “Alert” state that incorporates preventive behavior. Sahneh
et al. revealed an operating region in which the infection eventually dies out due
to cautious behavior of people exposed to infected neighbors. Consequently, if an
epidemic is stronger than the SIS classical threshold, long-term disease elimination
is possible after a break-out period.

Sun et al. used an SI model to study causes of disease extinction, such as infec-
tion rate and migration [25]. In [24], Sun studied disease transmission and spatial
patterns of spreading with nonlinear incidence rates. He demonstrated the positive
correlation of force of infection β on these patterns.

Granell et al. studied interplay between disease and information in a two-layer
network consisting of one physical contact network that spread the disease and a
virtual overlay network that spread information to mitigate the disease [14]. They
found a meta-critical point for the epidemic depending on awareness dynamics and
the overlay network structure.

A majority of works concerning epidemic models have been conducted on a sin-
gle graph. However, the study of disease spread in physical systems requires an
elaborate interaction model based on multiple interconnected networks ([12], [10],
[22], and [28]). [3] contains a comprehensive review on structural and dynamical
organization of multilayer networks.

Sahneh et al. extended their analysis for multilayer networks in [9] by considering
an additional directed network layer with nodes identical to the contact network
(CN) but with different edges between these nodes. Information exchange was
realized through these networks and each individual became aware of the state of
infected neighbors at rates proportional to the number of neighbors. They proposed
an optimal structure for information dissemination network (IDN) by introducing
an information dissemination metric.

Preciado et al. controlled the spreading process by investing in alertness rates
using the “Susceptible-Alert-Infected-Susceptible” (SAIS) model and considering
some realistic assumptions on the cost function in order to obtain a convex op-
timization framework. In [21], Preciado et al. attempted to ensure that largest
eigenvalue was smaller than the persisting threshold introduced in [8], consequently
leading to rate control based on CN structure.

Motivated by [21] and using threshold concepts in [8] and [7], we attempted
to identify alertness rates on multilayer networks in order to achieve a dying-out
epidemic. However this problem is more general than [9] because each layer can
have an arbitrary structure. The second threshold was obtained from a nonlinear
eigenvalue problem that is a nonlinear form of the Perron-Frobenius problem. In
order to obtain optimal rates, we coupled this nonlinear Perron-Frobenius problem
(NPF) with a convex optimization problem, creating a general method that can be
applied to solve a variety of optimization problems combined with NPF problems
in various disciplines. Optimal rates were obtained for a specific effective infection
rate, so epidemics with identical or weaker effective infection rates will certainly die-
out with a safety margin. In addition, by monitoring the status of a small subgroup
and characterizing epidemic properties and behavioral response, we obtained a cost
effective strategy to mitigate long run spreading for the entire population.

The remainder of the paper is organized as follows. In Section 2, we introduce
our notation and modeling method and we analyze characteristics of the multilayer
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model. In Section 3, we introduce problem statements, and in Section 4 we demon-
strate how to approach this problem, proving necessary properties and introducing
the coupled NPF problem with the convex problem. In Section 5, we solve several
examples of standard networks and a real-world network and discuss results.

2. Model development.

2.1. Graph theory preliminaries. Graph theory is used to represent contact
topology in an epidemic network [11]. Using the same notations and assumptions
as in [9], G = {V, E} represents a graph and V = {1, . . . , N} denotes the set of
vertices. The set of edges is denoted by E ⊂ V × V, and each edge is an ordered
pair (i, j) ∈ E .

2.2. Multilayer Network structure. We used a multilayer network structure to
represent multiple types of interconnection among individuals in the population. A
multilayer network consists of L layers of graphs that have identical nodes but their
edges can be different and independently formed. In this work, we considered a two-
layer network. Although a disease can propagate among individuals through the
physical contact network (CN), information can spread among the same individuals
through an on-line information dissemination network (IDN).

Since physical interactions can be considered as undirected edges and we omit
individuals who do not interact with the population, therefore, these assumptions
lead to an undirected and connected graph for CN. Some people may not have
a social network account or a person may follow a celebrity on Twitter but that
celebrity does not reciprocate; therefore, IDN can be directed and not connected.
A = [aij ] ∈ RN×N denotes the adjacency matrix of CN, where aij = 1 if and only

if (i, j) ∈ E ; otherwise aij = 0. Similarly, we defined the adjacency matrix of IDN
as B = [bij ]N×N . The largest eigenvalue of the adjacency matrix A, known as the
spectral radius of A, is denoted by λ1(A); elements of the corresponding eigenvector
v1 are real and non-negative. Spectral centrality of nodes in a graph is determined
by the rank of corresponding elements of v1.

2.3. Model development. In this paper, results are based on the SAIS model
developed in [8]. Each node is allowed to be in one of three states: ‘susceptible’,
‘infected’, or ‘alert’ and a node maintained the same state in all layers. A susceptible
node becomes infected with a given infection rate through infected neighbors in CN
and becomes alert through infected neighbors in different layers with corresponding
rates. An alert node becomes infected with a rate less than the initial infection rate.
An infected node is recovered at a given removing/recovery rate. For each agent
i ∈ {1, ..., N}, let the random variable xi(t) = e1, if the agent i is susceptible at time
t, xi(t) = e2 if alert, and xi(t) = e3 if infected, where e1 = [1, 0, 0]T , e2 = [0, 1, 0]T ,
and e3 = [0, 0, 1]T are standard unit vectors of R3. Throughout this paper, the
infection rate for an alert individual is assumed to be a reduced version of β, i.e.,
rβ with r ≤ 1.

In the following equations, Pr[·] denotes probability, X(t) , {xi(t), i = 1, ..., N}
is the joint state of the network, ∆t > 0 is a time step, and the indicator function
1{X} is 1 if X is true and 0 otherwise. A function f(∆t) is said to be o(∆t) if

lim∆t→0
f(∆t)

∆t = 0. For node i, Yi (t) is the number of neigbors in CN who are
infected at time t and Zi is the number of neigbors in IDN who are infected at time
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t:

Yi (t) ,
N∑
j=1

aij1{xj(t)=e3},

Zi(t) ,
N∑
j=1

bij1{xj(t)=e3}.

There are four stochastic transitions in the SAIS model:

1. A susceptible agent becomes infected with infection rate β times the number
of infected neighbors:

Pr [xi (t+ ∆t) = e3|xi (t) = e1, X (t)] = βYi (t) ∆t+ o (∆t) , (1)

for i ∈ {1, ..., N}.
2. An infected agent recovers to the susceptible state with curing rate δ:

Pr [xi (t+ ∆t) = e1|xi (t) = e3, X (t)] = δ∆t+ o (∆t) . (2)

3. A susceptible agent may become alert if surrounded by infected individuals in
both CN and IDN. Specifically, a susceptible node becomes alert with alerting
rate κ ∈ R+ times the number of infected neighbors in CN and with alerting
rate µ ∈ R+ times the number of infected neighbors in IDN:

Pr [xi (t+ ∆t) = e2|xi (t) = e1, X (t)] = (κiYi (t) + µiZi (t)) ∆t+ o (∆t) , (3)

4. An alert agent can become infected but with a weaker infection rate 0 < rβ <
β:

Pr [xi (t+ ∆t) = e3|xi (t) = e2, X (t)] = rβYi (t) ∆t+ o (∆t) . (4)

Stochastic compartmental transitions of a node are depicted in Figure 1-a. An
Illustrative schematic of CN and IDN is shown in Figure 1-b.
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Figure 1. From left to right, (a) Compartmental transition graph
according to the SAIS model with information dissemination. Yi
and Zi are the number of infected neighbors of agent i in contact
network and information dissemination network, respectively [9];
(b) Multilayer contact topology.

Let pi and qi denote the probabilities that agent i is and alert, respectively.
The SAIS model with the information dissemination layer is obtained with some
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modification from [9]:

ṗi = β (1− pi − qi)
N∑
j=1

aijpj + rβqi

N∑
j=1

aijpj − δpi; (5)

q̇i = (1− pi − qi)

κi
N∑
j=1

aijpj + µi

N∑
j=1

bijpj

− rβqi
N∑
j=1

aijpj . (6)

Equations (5) and (6) are derived by a mean field Type approximation [26].

2.4. Analysis of SAIS model.

2.4.1. SAIS with no alertness (SIS). When no alertness transmission is present
through CN or IDN, κi = 0 and µi = 0, the model reduced to the original SIS
model, as discussed in [7]. Therefore, the system exhibits a threshold for the effec-

tive infection rate τ , β
δ , under which the infection dies out exponentially. This

threshold has been proven to be the inverse of the largest eigenvalue of CN adjacency
matrix in τc1 , 1

λ1(A) ([13], [5], and [27]).

2.4.2. SAIS with alertness dissemination.

Theorem 2.1. In the SAIS model (5-6), initial infections will die out exponentially
if the effective infection rate τ is less than τc1 = λ−1

1 and a second threshold, τc2 ,
exists such that if τc1 < τ < τc2 , then the infection dies out asymptotically after
an initial spread. In addition, the second threshold τc2(κi, µi) is a monotonically
increasing function of κi and µi.

Proof. [9] contains the proof.

The first threshold depends only on topology of the CN layer, but the second
threshold depends on behavioral properties and topology of both layers.

After the second threshold, i.e., τ > τc2 , steady-state values of infection probabil-
ities are positive and τc2 can be determined by studying the steady-state solution.
According to (5) and (6), at the steady-state,

(1− p∗i )

κi
N∑
j=1

aijp
∗
j + µi

N∑
j=1

bijp
∗
j

− q∗i
κ

N∑
j=1

aijp
∗
j + k

N∑
j=1

bijp
∗
j


− rβq∗i

N∑
j=1

aijp
∗
j = 0; (7)

q∗i = (1− p∗i )
κ̄i
∑N
j=1 aijp

∗
j + µ̄i

∑N
j=1 bijp

∗
j

(1 + κ̄i)
∑N
j=1 aijp

∗
j + µ̄i

∑N
j=1 bijp

∗
j

, (8)

where p∗i and q∗i are steady-state probabilities and κ̄i ,
κi

rβ and µ̄ , µ
rβ are normal-

ized alertness rates. Combining (7) and (8), the steady-state equation becomes,

τ(1 − p∗i )

N∑
j=1

aijp
∗
j
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− τ(1− r)(1− p∗i )
κ̄i
∑N
j=1 aijp

∗
j + µ̄i

∑N
j=1 bijp

∗
j

(1 + κ̄i)
∑N
j=1 aijp

∗
j + µ̄i

∑N
j=1 bijp

∗
j

N∑
j=1

aijp
∗
j

= p∗i . (9)

Theorem 2.2. The second threshold is the nontrivial solution of the following non-
linear eigenvalue problem:

τc2diag

(
(1 + rκ̄i)

∑N
j=1 aijwj + rµ̄i

∑N
j=1 bijwj

(1 + κ̄i)
∑N
j=1 aijwj + µ̄i

∑N
j=1 bijwj

)
AGw = w, (10)

where w = [w1, ..., wN ]T , with wi > 0 ∀i = 1, ..., N .

Proof. Define τ̃ , τ − τc2 . Close to the second threshold, i.e., as τ̃ → 0+, we have

p∗i = τ̃
∂p∗i
∂τ |τ=τc2

+ o(τ̃). Letting τ → τ+
c2 in (9),

τc2

N∑
j=1

aij
∂p∗j
∂τ
|τ=τc2

− τc2(1− r)
κ̄i
∑N
j=1 aij

∂p∗j
∂τ |τ=τc2

+ µ̄i
∑N
j=1 bij

∂p∗j
∂τ |τ=τc2

(1 + κ̄i)
∑N
j=1 aij

∂p∗j
∂τ |τ=τc2

+ µ̄i
∑N
j=1 bij

∂p∗j
∂τ |τ=τc2

N∑
j=1

aij
∂p∗j
∂τ
|τ=τc2

=
∂p∗i
∂τ
|τ=τc2

. (11)

Because τc2 is the second threshold,
∂p∗i
∂τ |τ=τc2

must be positive for every i ∈
{1, ..., N}. Therefore, τc2 is such that the set of algebraic equations (10) has positive

solutions. By substituting wj =
∂p∗j
∂τ |τ=τc2

in (11), the nonlinear eigenvalue problem

in (10) can be obtained.

3. Problem statement. Given network layer adjacency matrices A and B and
disease properties β, δ, and r, the following optimization problem is considered:

minimize
κ̄i,µ̄i

N∑
i=1

fi (κ̄i, µ̄i)

subject to τc2 (κ̄i, µ̄i) ≥ τ,
µ̄min ≤ µ̄i ≤ µ̄max,
κ̄min ≤ κ̄i ≤ κ̄max.

(12)

where fi is a linear fractional cost function to promote alertness in the population
[21]. Minimization of this objective function while constraining the system to die
out asymptotically, requires a trade-off.

Asymptotic stability constraint. According to Theorem 2.1, in order to have an
asymptotically dying-out infection, the effective infection rate should be less than
the second threshold, corresponding to the first constraint in (12).

The nonlinear eigenvalue problem in (10) can be written as follows:

diag (hi (ξi,w))Aw = λw, (13)
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where diag (hi (ξi,w)) is a nonnegative diagonal matrix with unknown parameters
ξi = [κ̄i, µ̄i] , ∀i = 1, ..., N and λ corresponds to the inverse of the second threshold
τc2 . Therefore the eigenvalue problem in (13) is a NPF problem [17].

According to NPF theory, the largest eigenvalue is positive and real and the
corresponding normalized eigenvector w is unique and positive [17].

4. Solution methodology. Given ξi using the power iteration algorithm, the
largest eigenvalue and corresponding eigenvector of (13) can be found. Starting
with an initial guess for w(0), the following iteration is performed:

diag
(
hi

(
ξi,w

(l)
))

Aw(l) = λ(l+1)w(l+1), (14)

where λ(k+1) and w(k+1) are the approximated value of the largest eigenvalue and
corresponding eigenvector in the k’th step. They are obtained from the following
relations:

λ(l+1) =‖ diag
(
hi

(
ξi,w

(l)
))

Aw(l) ‖; (15)

w(l+1) =
diag

(
hi
(
ξi,w

(l)
))
Aw(l)

‖ diag
(
hi
(
ξi,w

(l)
))
Aw(l) ‖

. (16)

This algorithm has guaranteed convergence to the largest eigenvalue and cor-
responding eigenvector of (13) with a chosen tolerance ε [1]. Pseudocode for this
algorithm is given in Algorithm 1.

Algorithm 1 Power iteration

Input guess← w(0)

Output: w = w(l+1)

1: for l do
2: w(l) ←guess

3: w(l+1) =
diag(hi(ξi,w

(l)))Aw(l)

‖diag(hi(ξi,w
(l)))Aw(l)‖

4: if | w(l+1) −w(l) |≤ ε then
5: stop
6: end if
7: guess← w(l+1)

8: end for

Proposition 1. Optimal parameters in (10) can be found by alternating between
the NPF problem and the optimization problem.

Proof. Starting with a guess for ξ
(0)
i ,

diag
(
hi

(
ξ

(0)
i ,w

))
Aw = λw. (17)

Using the derived eigenvector w(0) from the power method, we approximate
diag (hi (ξi,w)) as diag

(
hi
(
ξi,w

(0)
))

and then solve the optimization problem

in (12), and find new approximation for parameters ξ
(1)
i as the new guess. Be-

cause of existing constraints, new obtained parameters ensure initial NPF problem
properties. Using the updated guess, we alternate between the NPF problem and
the optimization problem until these guesses converges with a tolerance ε, i.e.,

| ξ(k)
i − ξ

(k−1)
i |≤ ε.
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At each step with approximated diag
(
hi
(
ξi,w

(k)
))

, the NPF problem in 10
becomes a linear Perron-Frobenius problem. Therefore, the first constraint in (12)
transforms to a semidefinite inequality with the following lemma.

Lemma 4.1. If D is a diagonal matrix with positive diagonal entries, A is a sym-
metric matrix, τc and τ are scalars, and the following eigenvalue problem exists:

τcDAw = w, (18)

for τ ≤ τc:
A− (τD)

−1 � 0. (19)

Proof. First, we show that eigenvalues of τcDA are real with the following variable
change:

w = D
1
2x. (20)

Rewriting (18),

τcDAD
1
2x = D1/2x, (21)

and multiplying both sides by D−
1
2 produces

τcD
1
2AD

1
2x = x, (22)

which shows that DA and D
1
2AD

1
2 share similar eigen-properties. Then, since

D
1
2AD

1
2 is symmetric, it has real eigenvalues; therefore, DA also has real eigenva-

lues.
From (18):

λ1 (τcDA) = 1. (23)

If τ ≤ τc
τλ1 (DA)− 1 ≤ 0,

which can be rewritten as

λ1 (τDA− I) ≤ 0. (24)

Equations (24) and (22) show that(
τD

1
2AD

1
2 − I

)
� 0, (25)

or

A− (τD)
−1 � 0. (26)

Convex formulation. According to Lemma 4.1, the dying-out constraint, τc2 (κ̄i,

µ̄i) ≥ τ = β
δ can be written as,

A− δ

β
diag

(
(1 + κ̄i)φ

A
i + µ̄iφ

B
i

(1 + rκ̄i)φAi + rµ̄iφBi

)
� 0, (27)

where φAi and φBi represent
∑N
j=1 aijwj and

∑N
j=1 bijwj , respectively. For a linear

fractional cost function,
N∑
i=1

ciκ̄i + tiµ̄i
rκ̄iφAi + rµ̄iφBi + φAi

, (28)

the problem in (12) is a quasiconvex optimization problem [4].
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Because all equations are homogeneous, we choose a scale zi such that for i ∈
1, · · · , N , zi

(
rκ̄iφ

A
i + rµ̄iφ

B
i + φAi

)
= 1. Substituting1 ui = ziκ̄i and vi = ziµ̄i

produced the following semi-definite optimization problem (SDP) equivalent to (12):

minimize
ui,vi,zi

N∑
i=1

(ciui + tivi)

subject to A− δ

β
diag

(
uiφ

A
i + viφ

B
i + ziφ

A
i

)
� 0,

rUΦA + rV ΦB + ZΦA = I,

µ̄minzi ≤ ui ≤ µ̄maxzi,
κ̄minzi ≤ vi ≤ κ̄maxzi.

(29)

where U , V , Z, ΦA, and ΦB are diagonal matrices with ui, vi, zi, φ
A
i and φBi as their

entries, respectively. Using classic solvers such as interior point-based methods, the
SDP in (29) can be solved in a fast and robust fashion for networks up to 1000
nodes [19]. In this work, we use CVX [15]. Subgradient methods [16] or smoothing
and accelerated algorithms [18] can be used to efficiently solve (29) in very large
networks. These methods are well-studied and powerful commercial solvers are
developed for applying them.

From Proposition 1, ΦA and ΦB update with each iteration and carry new struc-
tural properties; therefore, a new optimization problem should be solved each time
causing κ̄i, µ̄i, and wi to converge to the desired solution. Pseudocode is given in
Algorithm 2.

Algorithm 2 Power iteration

Input guess← ξ
(0)
i

Output: ξ = ξ
(k)
i

1: for k do
2: ΦA(k)

,ΦB(k) ←Power method

3: Convex Problem← ΦA(k)
,ΦB(k)

4: ξ
(k)
i ←Convex Problem

5: if | ξ(k)
i − ξ

(k−1)
i |≤ ε then

6: stop
7: end if
8: guess← ξ

(k)
i

9: end for

5. Numerical simulations. We considered an infectious disease with an effective
infection rate β

δ = 3
λ1(A) , an unstable situation in SIS, and a reduction in infection

rate r = 1
3 due to alertness. Alertness rates vary between an upper limit and a lower

limit, based on response capacity of the population. Due to inherent differences
between µi and κi, a higher awareness may be reached through CN, but these rates
are more expensive than rates in IDN. In the following simulations, we assume that
µmax = 5, κmax = 10, and µmin = κmin = 0, and cost function weights are c = 1.5
and t = 1.

1This transformation is similar to Charnes-Cooper transformation [6].
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For the following multilayer structures, if no information dissemination is avail-
able the second threshold does not exist and dying-out epidemic occurs if βδ <

1
λ1(A) .

Considering information dissemination through CN and without IDN, if we as-
sign the highest amount of alertness rate for all individuals, i.e., κi = κmax, then
τc2 (κi = κmax, µi = 0) = 1+κmax

1+rκmax

1
λ1(A) = 2.51 1

λ1(A) which cannot suppress the epi-

demic even though it is very expensive. However, use of IDN and proposed optimal
rates helps achieve a cost-efficient suppression of the epidemic.

In the following simulations, we selected a preferential attachment network [2] for
IDN. Four networks were selected for CN: a regular random network, a geometric
random network [20], a preferential attachment network, and a real-world social
(face-to-face) network.

Example 1: CN is a regular random graph. In this example, the CN layer is a
regular random graph. Nodes in a regular graph has the same number of neighbors.
Obtained optimal alertness rates are depicted in Figure 2.
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Figure 2. Optimal alertness rates µi and κi for i = 1, · · · , 50,
with respect to degree of nodes in both layers. Each layer has
50 nodes. The information dissemination network is a preferential
attachment network with minimum node degree 5, and the contact
network has a random regular structure with node degree 4. Note:
There are nodes with the same node degree and same optimum
rates which caused overlapping in the figure.

Because all individuals have identical number of neighbors in CN, the only dif-
ference between them is their degree in IDN. For individuals with high degree, µi



OPTIMAL STRATEGY TO PROMOTE PREVENTIVE BEHAVIORS 619

influence is more effective compared to lower degree nodes. Since promotion of µi
is less expensive than κi, maximum investment of µi is optimum after a certain
degree (nodes with degi ≥ 6 in this example) in IDN. For nodes with lower degree
in IDN, more reliable sources of information are neighbors in CN, similar to occa-
sions when people are not active in online social networks and must be contacted
through their neighbors in CN. In this example, since promoting alertness in CN is
more expensive, although κmax > µmax, the optimization problem does not allow
any node to have κi = κmax while µi = µmax.

Example 2: CN is a random geometric graph. In this example, CN is a
random connected geometric graph in a two-dimensional coordinate system. Op-
timal alerting rates versus degree in both layers are shown in Figure 3. Because
high degree nodes in CN mean increased exposure to the infection, a high emphasis
must be assigned to them. Furthermore, low degree in CN means decreased infect-
ing opportunities and, because of limited monetary resources, the proposed method
allocates all available resources to higher degree nodes. Unlike Example 1, some
nodes are assigned with the maximum amount of κi. Nodes with µi = µmax and
κi = κmax (saturated nodes) are hubs in IDN and high degree nodes in CN.
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Figure 3. Alertness rates µi and κi for i = 1, · · · , 80, with respect
to degree of each nodes in both layers. Each layer has 80 nodes.
The IDN is a preferential attachment network with minimum node
degree 5, and the contact network has a random geometric struc-
ture. Note: Colors represent the optimum rates according to the
colorbar. Nodes with identical node degree caused overlapping in
the figure.

Example 3: CN is a random preferential attachment network. In this
example, both layers are preferential attachment networks with different preferential
attachment probabilities and 80 nodes. Optimal alerting rates as a function of node
degree in both layers are shown in Figure 4. Similar to previous examples investment
on very low degree individuals in the presence of financial restrictions is not wise.
Since high degree nodes in CN are more exposed to the infection, they must be
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encouraged to be alert through IDN or CN neighbors. Results identical to example
2 can be observed. Emphasis on high degree individuals is notable (hubs).
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Figure 4. Alertness rates µi and κi for i = 1, · · · , 80, with respect
to degree of each nodes in both layers. Each layer has 80 nodes.
The IDN is a preferential attachment network with minimum node
degree 5, and the contact network has a preferential network with
minimum node degree 3. Note: Colors represent the optimum rates
according to the colorbar. Nodes with identical node degree caused
overlapping in the figure.

Example 4: CN is a social (face-to-face) network. In this example, the CN
layer is a portion of the social contact network based on survey of a community in
Chanute, Kansas, United States [23]. In an effort to consider important connec-
tions in the network, we remove links with weights less than 0.2. Based on weight
distribution in [23], we consider the remining connected network as an unweighted
CN with 102 nodes (Figure 5).

Similar to previous examples a preferential attachment network as IDN with the
same size as CN is considered. Optimal alerting rates as a function of node degree
in both layers are shown in Figure 6. Results identical to the previous examples are
observed. In addition, for nodes with high degree in CN or more exposed to the
infection, optimal alertness investments are either through CN or IDN. An extreme
case, such as a hub, that must be considered from both networks was not observed
in this example.

The threshold phenomena predicted in [21] is observed in these examples too.
Because of effects from IDN, this threshold is not abrupt. In order to determine
optimal alertness rates, a transition zone exists with a trade-off between topological
characteristics of both layers.

6. Conclusions. Based on the SAIS epidemic model, containment and suppres-
sion of an infectious disease spreading in a CN are possible with the help of disease-
awareness diffusion among individuals. We proposed a method to optimally allocate
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Figure 5. A portion of the social (face-to-face) network built
based on a survey of a community in Chanute, Kansas, United
States [23]. Network size is 102, maximum node degree is 36, and
minimum node degree is 1
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Figure 6. Alertness rates µi and κi i = 1, · · · , 102, with respect
to degree of each nodes in both layers. Each layer has 102 nodes.
The IDN is a preferential attachment network with minimum node
degree 20, and the contact network is a portion of a rural county
social (face-to-face) network [23]. Note: Colors represent the op-
timum rates according to the colorbar. Nodes with identical node
degree caused overlapping in the figure.
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available monetary resources for disease awareness. In particular, we determined
optimal transition rates to a preventive-behavior state for each individual in the CN
and IDN layers. We demonstrated that an epidemic can be contained in a multilayer
network structure for a larger range of effective infection rates compared to a one-
layer structure with the identical amount of resources. Furthermore, by allocating
resources in both layers, epidemics can be contained that cannot be contained in
a one-layer structure with more resources. Awareness rates are obtained by alter-
nating the solution of a NPF problem and a convex optimization problem for an
epidemic with a given effective infection rate until convergence is obtained. These
optimum rates are positively correlated with node degrees in both layers. Therefore,
any epidemic with identical or weaker effective infection rate is suppressed with a
safety margin. This method selects the best individuals for adopting preventive
behaviors with minimal costs and guaranteed epidemic dying-out.
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