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Abstract. The basic reproduction number of deterministic models is an essen-

tial quantity to predict whether an epidemic will spread or not. Thresholds for
disease extinction contribute crucial knowledge of disease control, elimination,

and mitigation of infectious diseases. Relationships between basic reproduc-

tion numbers of two deterministic network-based ordinary differential equa-
tion vector-host models, and extinction thresholds of corresponding stochastic

continuous-time Markov chain models are derived under some assumptions.

Numerical simulation results for malaria and Rift Valley fever transmission on
heterogeneous networks are in agreement with analytical results without any

assumptions, reinforcing that the relationships may always exist and proposing
a mathematical problem for proving existence of the relationships in general.

Moreover, numerical simulations show that the basic reproduction number does

not monotonically increase or decrease with the extinction threshold. Consis-
tent trends of extinction probability observed through numerical simulations

provide novel insights into mitigation strategies to increase the disease extinc-

tion probability. Research findings may improve understandings of thresholds
for disease persistence in order to control vector-borne diseases.

1. Introduction. Vector-borne diseases greatly impact health of humans and an-
imals and are among the leading causes of worldwide death every year [12]. These
diseases may cause significant economic losses in regard to animal trade, agricul-
ture, health care, and tourism. From economy and humanity point of view, there
is a need for prevention and control of vector-borne diseases. A dynamic model
of vector-borne diseases may be used to learn many characteristics of an outbreak
such as the probability of an outbreak, the size of outbreak, duration time of the
outbreak, or the probability for the epidemic to die out [6] to improve understand-
ing of disease transmission and persistence. Efficient mitigation strategies deduced
from model results may stop an outbreak at early stages by reducing spreading
parameters [6].

Globalization of trade and travel is one key factor driving the emergence of vector-
borne diseases; heterogeneous structure also plays an important role in infectious
disease dynamics [16]. Modeling the spatial spread of vector-borne diseases is a
challenging task [3], but one possible approach is to consider a meta-population
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as a directed graph, or a network, with each node representing a subpopulation
in a location, and links placed between two locations if possibility of transmission
exists, such as movement or proximity [5]. Network models are widely used in
epidemiology to understand the spread of infectious diseases through connected
populations [22, 34].

The basic reproduction number, R0, defined as the number of secondary cases
produced by an infected individual in a naive population [10], is an important
threshold on epidemiology, as well as type reproduction number [27], target re-
production [29], and threshold index for epidemicity [14]. The basic reproduction
number is an important metric, predicting whether a disease will spread or die
out in deterministic population and communicable disease theory [2]. If R0 > 1,
one infectious individual generally produces more than one infection, leading to the
spread of an epidemic; whereas, on average, if R0 < 1, one infectious individual
generates less than one infection, and the epidemic may die out [10]. The same
trajectory can always be observed with deterministic models given the same initial
conditions [17]. If it is possible for an epidemic to reoccur, a real world epidemic
does not allow observations of the same infection happening to the same person at
the same time [17]. Moreover, deterministic models have the disadvantage that the
number of infected individuals may go to less than one [19].

In comparison, Markov chain models are more realistic in the sense of only taking
integer values instead of continuously varying quantities [19] and taking into account
chances by approximating or mimicking random or probabilistic factors. The last
infectious individual may recover before the infection is transmitted to other sus-
ceptible individuals so that the disease may become extinct [19]. Consequently,
an infection introduced to a completely susceptible population may not invade the
system even if R0 > 1 [19]. Threshold for the extinction of an infectious disease to
occur and probability of disease extinction are of our interests. Bienaymé-Galton-
Watson branching processes are widely used to study disease extinction involving
multi-type infections.

Lloyd [19] reviewed theory of branching processes and computed extinction prob-
ability using branching processes for Ross malaria model [28] taking into account
stochasticity and heterogeneity. Pénisson [23] presented several statistical tools
to study extinction of populations composed of different types of individuals, and
their behaviors before extinction and in the case of a very late extinction. Allen
and Lahodny Jr [1] computed basic reproduction numbers for deterministic models,
and extinction thresholds, denoted by E0 here, for corresponding continuous-time
Markov chain (CTMC) models using continuous-time branching process, and de-
rived relationships between the two thresholds. A CTMC model is a stochastic
counterpart of a ordinary differential equation (ODE) model [1].

According to current knowledge, very little work has been done on deriving re-
lationships between basic reproduction numbers for network-based deterministic
models and extinction thresholds for corresponding stochastic CTMC models. La-
hodny Jr and Allen [18] estimated probability of disease extinction for a Susceptible-
Infected-Susceptible (SIS) multipatch model and illustrated some differences be-
tween thresholds for deterministic models and stochastic models numerically. Allen
and van den Driessche [2] established connections between extinction thresholds for
continuous-time models and discrete-time models and proved that R0 ≤ 1 if and
only if E0 ≤ 1 for network-based models under the assumption that the expectation
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matrix for computing E0 is symmetric, which is not required in our approach. Al-
though probability of disease extinction is defined as the probability for the number
of infections to become zero when time goes to infinity, various numerical approxima-
tions for many types of models within finite time showed agreement with predicted
extinction probability using branching processes [1, 2, 18].

Objectives of our research are to relate the extinction threshold, E0, in a sto-
chastic setting and the basic reproduction number, R0, in a deterministic setting
for vector-host meta-population models, as well as gain understanding as to how to
increase extinction probability.

The contribution of our work is summarized as follows:

1. Relationships between extinction thresholds and basic reproduction numbers
are derived for network-based vector-host models under some assumptions.

2. Numerical simulations show that the relationships still exist after removing
above assumptions.

3. Consistent trends of extinction probability varying with disease parameters
are observed through extensive numerical simulations.

4. The relationship between varying disease parameters and potential mitigation
strategies is biologically interpreted.

This paper is organized as follows. Section 2 reviews the next generation matrix
approach for computing R0 and the branching process for deriving E0. Section 3
calculates R0 for a deterministic vector-host model in which transmission dynam-
ics of vectors are described by a Susceptible-Infected (SI) model and transmission
dynamics of hosts are described by an SIS model. We relate E0 of corresponding
CTMC model and R0 analytically. In Section 4, an analogue of results in Section
3 is obtained for a model in which transmission dynamics of vectors are described
by a Susceptible-Exposed-Infected (SEI) model and transmission dynamics of hosts
are described by a Susceptible-Exposed-Infected-Recovered (SEIR) model. The ho-
mogeneous models presented [1] are generlized to network models by taking into
account local transmission and trans-location transmission due to proximity. In
Section 5, the relationships derived in Sections 3 and 4 are numerically shown to
exist without any assumptions for simplified malaria and Rift Valley fever meta-
population models. The sensitivity test determined key parameters in predicting
uncertainty of extinction probability. Relationships between varying parameters
and extinction probabilities are explored through extensive simulations for homo-
geneous populations and a two-node network. Section 6 provides a summary and
discussion of mathematical derivations and simulation results.

2. Preliminary. The next generation matrix approach used to compute R0 for
compartmental models is reviewed here, followed by a review of the multitype
branching process approximation used to derive E0 for corresponding CTMC mod-
els.

2.1. Computation of R0 using the next generation matrix approach. The
next generation matrix approach is frequently used to compute R0. In this section,
we briefly review this approach. For more details, we refer to [9, Chapter 5], [33].
For simplicity, let x = (x1, · · · , xm)T , where each xi stands for compartments that
are only related to infected and asymptomatically infected individuals. The original
nonlinear system of ODEs including these compartments can be written as

dx

dt
= F − V , (1)
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where F = (Fi) and V = (Vi) represent new infections and transfer between com-
partments, respectively. Moreover, Fi represents the rate at which new infections
appear in compartment i, and Vi = V −i −V +

i , where V −i (resp. V +
i ) represents the

rate at which individuals transfer from (resp. into) compartment i. The Jacobian
matrices F representing transmission, and V representing transition are defined as:

F = [
Fi(x

0)

∂xj
], V = [

∂Vi(x0)

∂xj
], (2)

where x0 denotes disease free equilibrium (DFE). Matrix F is nonnegative and V
is a nonsingular M-matrix. Recall that an n× n matrix A is called an M-matrix if
it can be be expressed in the form A = sI −B, such that matrix B is non-negative,
and s ≥ ρ(B), the spectral radius of B.

Matrix FV −1 is called the next generation matrix. The (i, k) entry of FV −1

indicates the expected number of new infections in compartment i produced by the
infected individual originally introduced into compartment k, where i, k = 1, · · · ,m.

The basic reproduction number, R0, is defined as the spectral radius of FV −1,
denoted by ρ(FV −1).

2.2. Deriving E0 using branching process approximation. Calculating the
probability of disease extinction is one of the most interesting applications of branch-
ing process. The branching process may lead to disease extinction or persistence.
We are interested in conditions under which a disease may become extinct and the
probability for this event to occur. We review the approach of using branching
process to compute extinction threshold and extinction probability for multi-type
infections.

We refer to [1, 23] for the rest of this section. Let
−→
I (t) = (I1(t), · · · , In(t))T : t ∈

(0,∞) be a set of discrete-valued vector random variables. Assume that individuals
of type i produce individuals of type j and that the number of infected individuals
produced by type i are independent of the number of infected individuals produced
by other individuals of type i or type j for i, j = 1, · · · , n, i 6= j. Additionally, indi-
viduals of type i have identical probability generating function (pgf). Let {Iji}nj=1

be offspring random variables for type i, where Iji is the number of infected in-
dividuals of type j produced by individuals of type i. The probability that one
individual of type i produces ij infected individuals of type j is given as

Pi(i1, · · · , in) = Prob{I1i = i1, · · · , Ini = in}.

The offspring pgf array (g1, · · · , gn) : [0, 1]n → [0, 1]n, is defined as

gi(w1, · · · , wn) =

∞∑
in=0

· · ·
∞∑
i1=0

Pi(i1, · · · , in)wi11 · · ·winn . (3)

Note that a trivial fixed point of (g1, · · · , gn) always exists at 1 = (1, · · · , 1).
We denote by M = [mij ]n×n the expectation matrix of offspring distribution

which is nonnegative, where mij := ∂gi
∂wj
|w=1 <∞ represents the expected number

of new infected individuals of type j produced by an individual of type i, where
w = (w1, · · · , wn).

The extinction threshold, E0, is defined as the spectral radius of the expectation
matrix, denoted by ρ(M).

Recall that (B0) and (B1) assumptions in [23] are as follows:
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(B0) gi is not simple. Here, a function is called simple if it is linear with no constant
term.

(B1) Matrix M is irreducible.

If E0 > 1, under assumptions (B0) and (B1), the pgf has at most one fixed point
in (0, 1)n, denoted by w∗ = (w∗1 , · · · , w∗n), if extinction array w∗ in (0, 1)n exists.
In the following, extinction array only refers to w∗ ∈ (0, 1)n. If Ij(0) = ij , then
disease extinction probability, denoted by PE , is

PE = lim
t→∞

Prob{
−→
I (t) = 0} = w∗i11 · · ·w∗inn < 1. (4)

If E0 ≤ 1, then

PE = lim
t→∞

Prob{
−→
I (t) = 0} = 1.

3. SI vector model and SIS host metapopulation model. In this section, a
deterministic vector-host model in which disease transmission dynamics of vectors
are described by an SI model, while transmission dynamics of hosts are described
by an SIS model. This model is an extension of the vector-host model in [1] to a
meta-population model. The basic reproduction number and extinction threshold
for corresponding CTMC model are analytically related.

3.1. The basic reproduction number. The model for vectors consists of com-
partment G representing susceptible vectors, and compartment J representing in-
fected vectors. Disease dynamics of hosts are modeled by an SIS model.

dGi
dt

= ηi − βiGiIi/Ni −
n∑

j=1,j 6=i

ωjiGiIj/Nj − µiGi

dJi
dt

= βiGiIi/Ni +

n∑
j=1,j 6=i

ωjiGiIj/Nj − µiJi

dSi
dt

= ψi + γiIi − αiSiJi/Ni −
n∑

j=1,j 6=i

σjiSiJj/Ni − diSi

dIi
dt

= αiSiJi/Ni +

n∑
j=1,j 6=i

σjiSiJj/Ni − γiIi − diIi

(5)

The recruitment rate of vectors (resp. hosts) in node i is ηi (resp. ψi) for all
i = 1, · · · , n. The total number of hosts in node i is denoted by Ni. The rate of new
infections in vectors in node i produced by local hosts and hosts in other nodes are
βiGiIi/Ni and

∑n
j=1,j 6=i ωjiGiIj/Nj , respectively. The death rate of susceptible and

infected vectors in node i are µGi and µJi, respectively. The rate of host infection
in node i produced by local vectors and vectors in other nodes are αiSiJi/Ni and∑n
j=1,j 6=i σjiSiJj/Ni, respectively. Death rates of susceptible and infected hosts in

node i are diSi and diIi, respectively. The rate of recovery for hosts in node i is
γiIi.

Since Ji and Ii, i = 1, · · ·n are compartments related only to infected and asymp-
tomatically infected, system of ODEs (5) can be rewritten as

d

dt

[
J1 · · · Jn I1 · · · In

]T
= F − V ,

where F and V represent new infections and transfer between compartments as
(1), respectively. A unique solution at DFE, represented by (G0

i , 0, N
0
i , 0) exists,
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where G0
i = ηi

µi
and N0

i = ψi

di
. The Jacobian matrices F and V defined in (2) for

this model are

F =

[
0 A
B 0

]
, V =

[
Λ1 0
0 Λ2

]
,

where

A =


β̂1 ω̂21 · · · ω̂n1
ω̂12 β̂2 · · · ω̂n2

· · · · · ·
. . . · · ·

ω̂1n ω̂2n · · · β̂n

 , B =


α1 σ21 · · · σn1
σ12 α2 · · · σn2

· · · · · ·
. . . · · ·

σ1n α2 · · · αn

 , (6)

Λ1 = diag(µ1, · · · , µn), Λ2 = diag(d1 + γ1, · · · , dn + γn). (7)

Here

β̂i =
βiG

0
i

N0
i

and ω̂ij =
ωijG

0
j

N0
i
.

The notation diag(µ1, µ2, · · · , µn) represents the diagonal matrix with diagonal en-
tries µ1, · · · , µn. To calculate R0, we first prove the following lemma.

Lemma 3.1. Let A1, A2 be square matrices of the same size and A =

[
0 A1

A2 0

]
,

then ρ(A) =
√
ρ(A2A1).

Proof. For any λ 6= 0,

|λI −A| =
∣∣∣∣ λI −A1

−A2 λI

∣∣∣∣ =

∣∣∣∣ λI −A1

0 λI − A2A1

λ

∣∣∣∣ = |λ2I −A2A1|. (8)

Therefore, ρ(A) =
√
ρ(A2A1) if ρ(A2A1) 6= 0.

If ρ(A2A1) = 0, we assume that ρ(A) 6= 0. Then there exists a λ′ 6= 0 such
that |λ′I − A| = 0. By (8), |λ′2I − A2A1| = 0 for a nonzero λ′, contradicting the

assumption that ρ(A2A1) = 0. Therefore, ρ(A) =
√
ρ(A2A1).

A direct calculation gives FV −1 =

[
0 AΛ−12

BΛ−11 0

]
. By Lemma 3.1, we have the

following proposition:

Proposition 1. The basic reproduction number of the model (5) is

R0 =

√
ρ(BΛ−11 AΛ−12 ). (9)

3.2. The threshold for extinction probability. In this section, we compute E0

for corresponding CTMC of model (5). See Table 1 for state transitions and rates.
The offsrping pgf for Ji, given Ji(0) = 1, Ii(0) = 0, where i = 1, · · · , n, is

gi =
αiwiui +

∑n
j=1,j 6=i σijwiuj + µi

αi +
∑n
j=1,j 6=i σij + µi

;

and the offsrping pgf for Ii, given Ii(0) = 1, Ji(0) = 0, where i = 1, · · · , n, is

gi+n =
β̂iuiwi +

∑n
j=1,j 6=i ω̂ijuiwj + di + γi

β̂i +
∑n
j=1,j 6=i ω̂ij + di + γi

.

Hence, the pgfs are

gi(w1, · · · , wn, u1, · · · , un)
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Description State transition a→ b Rate P (a, b)
Host birth (S, I,G, J)→ (S + 1, I, G, J) ψ
Death of S (S, I,G, J)→ (S − 1, I, G, J) dS

Host local infection (S, I,G, J)→ (S − 1, I + 1, G, J) αSJ/N
Host infection by Jj (S, I,G, J)→ (S − 1, I + 1, G, J) σjiSiJj/Ni

Host recovery (S, I,G, J)→ (S + 1, I − 1, G, J) γI
Death of I (S, I,G, J)→ (S, I − 1, G, J) dI

Vector birth (S, I,G, J)→ (S, I,G+ 1, J) η
Death of G (S, I,G, J)→ (S, I,G− 1, J) µG

Vector local infection (S, I,G, J)→ (S, I,G− 1, J + 1) βGI/N
Vector infection by Ij (S, I,G, J)→ (S, I,G− 1, J + 1) ωjiGiIj/Nj

Death of J (S, I,G, J)→ (S, I,G, J − 1) µJ
Table 1. State transitions and rates for corresponding continuous-
time Markov chain for deterministic model (5) omitting node index
i.

=


αiwiui+

∑n
j=1,j 6=i σijwiuj+µi

αi+
∑n

j=1,j 6=i σij+µi
, if 1 ≤ i ≤ n,

β̂kukwk+
∑n

j=1,j 6=k ω̂kjukwj+dk+γk

β̂k+
∑n

j=1,j 6=k ω̂kj+dk+γk
, if n+ 1 ≤ i ≤ 2n,

where j = 1, · · · , n, the index k = i− n for n+ 1 ≤ i ≤ 2n.
The expectation matrix M is:

M =

[
Λ3Λ4 AΛ5

BΛ4 Λ6Λ5

]
, (10)

where A,B are the same as those in (6), and

Λ3 = diag(α1 +
∑
i 6=1

σ1i, · · · , αn +
∑
i 6=n

σni), Λ4 = diag(
1

C1
, · · · , 1

Cn
),

Λ6 = diag(β̂1 +
∑
i 6=1

ω̂1i, · · · , β̂n +
∑
i6=n

ω̂ni), Λ5 = diag(
1

D1
, · · · , 1

Dn
),

Ci = αi +
∑
j 6=i

σij + µi, Di = β̂i +
∑
j 6=i

ω̂ij + di + γi, for i = 1, · · · , n.

Note that if both A and B are positive matrices, then the assumptions (B0) and
(B1) in [23] hold for this model.

Lemma 3.2. Let A1, A2 be nonnegative square matrices with the same size such
that ρ(A2A1) is an eigenvalue of A2A1 and Λ,Λ′ be nonnegative diagonal matrices

such that 0 ≤ k1I ≤
[
Λ 0
0 Λ′

]
≤ k2I for some real numbers k1, k2. Then the spectral

radius of B =

[
Λ A1

A2 Λ′

]
satisfies that√

ρ(A2A1) + k1 ≤ ρ(B) ≤
√
ρ(A2A1) + k2.

Proof. Since 0 ≤
[
k1I A1

A2 k1I

]
≤ B ≤

[
k2I A1

A2 k2I

]
, by Theorem 4 in [35],

ρ(

[
k1I A1

A2 k1I

]
) ≤ ρ(B) ≤ ρ(

[
k2I A1

A2 k2I

]
). (11)
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By hypothesis and (8), ρ(

[
0 A1

A2 0

]
) is an eigenvalue of

[
0 A1

A2 0

]
. Following

Lemma 3.1 and the fact that |λ′ + k| < λ+ k for any k > 0 if |λ′| < λ,

ρ(

[
k1I A1

A2 k1I

]
) = ρ(

[
0 A1

A2 0

]
) + k1 =

√
ρ(A2A1) + k1.

Similarly, ρ(

[
k2I A1

A2 k2I

]
) =

√
ρ(A2A1) + k2. Lemma follows (11).

Remark 1. If both A1 and A2 are positive matrices, then ρ(A2A1) is an eigenvalue
of A2A1 by Perron-Frobenius theorem.

By Lemma 3.2, we have the following proposition:

Proposition 2. The extinction threshold of model (5) satisfies that

min
1≤i≤n

(
αi +

∑n
j=1,j 6=i σij

Ci
,
β̂i +

∑n
j=1,j 6=i ω̂ij

Di
) +

√
ρ(BΛ4AΛ5) ≤ E0

≤ max
1≤i≤n

(
αi +

∑n
j=1,j 6=i σij

Ci
,
β̂i +

∑n
j=1,j 6=i ω̂ij

Di
) +

√
ρ(BΛ4AΛ5).

3.3. The relationship between R0 and E0. To obtain a theoretical relationship
between R0 in (9) and E0, we assume that

µi
Ci

= k1 and
di + γi
Di

= k2, ∀ i = 1, · · · , n (12)

for constant numbers k1, k2 ∈ [0, 1] throughout this section. The assumption can be
interpreted biologically as: the probability of natural death is identical for vectors
from each node, and the probability of natural death is identical for hosts from
each node. The assumption shall be removed for numerical simulations in the next
section.

Theorem 3.3. Under the assumption (12),

(1) If R0 ≤ 1−k2
1−
√
k1k2

≤ 1 or E0 ≤ 1−k2
1−
√
k1k2

≤ 1, then R0 ≤ E0;

(2) If R0 ≥ 1−k1
1−
√
k1k2

≥ 1 or E0 ≥ 1−k1
1−
√
k1k2

≥ 1, then R0 ≥ E0.

Proof. Under the assumption (12), Λ1Λ4 = k1I, Λ3Λ4 = (1 − k1)I, Λ2Λ5 = k2I
and Λ6Λ5 = (1− k2)I, where I is the identity matrix. Therefore, M in (10) can be
rewritten as follows,

M =

[
0 k2AΛ−12

k1BΛ−11 0

]
+

[
(1− k1)I 0

0 (1− k2)I

]
.

Without loss of generality, we assume that k1 < k2. By Lemma 3.2 and (9),

R0

√
k1k2 + 1− k2 ≤ E0 ≤ R0

√
k1k2 + 1− k1. (13)

Following (13),

R0(1−
√
k1k2)− (1− k1) ≤ R0 − E0 ≤ R0(1−

√
k1k2)− (1− k2),

1√
k1k2

(E0(1−
√
k1k2)− 1 + k1) ≤ R0 − E0 ≤ 1√

k1k2
(E0(1−

√
k1k2)− 1 + k2).

Theorem follows the above two inequalities.

Corollary 1. If the further assumption is made that k1 = k2 in addition to as-
sumption (12), then R0 ≤ 1 if and only if E0 ≤ 1. Moreover, |R0 − 1| ≥ |E0 − 1|.
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Proof. By Theorem 3.3 (1), if R0 ≤ 1, then R0 ≤ E0. Assuming that E0 > 1, by
Theorem 3.3 (2), R0 ≥ E0, which is a contradiction. Conversely, if E0 ≤ 1, then
R0 ≤ 1 following a similar argument. Hence, R0 ≤ 1 if and only if E0 ≤ 1. The
proof for |R0 − 1| ≥ |E0 − 1| directly follows Theorem 3.3.

4. SEI vector model and SEIR host metapopulation model. A determinis-
tic model in which vectors are divided into compartments S,E, and I, and hosts are
classified into compartments S,E, I, and R is presented. The basic reproduction
number for this model and the extinction threshold for corresponding CTMC model
are connected.

4.1. The basic reproduction number. The following model extends the model
in Section 3.1 by adding compartment Z for exposed vectors, and compartment E
for exposed hosts. Other terms have identical meanings as corresponding terms in
model (5). The rate at which exposed vectors and exposed hosts in node i transfer
to infected compartments are ϕiZi and εiEi, respectively.

dGi
dt

= ηi − βiGiIi/Ni −
n∑

j=1,j 6=i

ωjiGiIj/Nj − µiGi

dZi
dt

= βiGiIi/Ni +

n∑
j=1,j 6=i

ωjiGiIj/Nj − ϕiZi − µiZi

dJi
dt

= ϕiZi − µiJi

dSi
dt

= ψi − αiSiJi/Ni −
n∑

j=1,j 6=i

σjiSiJj/Ni − diSi

dEi
dt

= αiSiJi/Ni +

n∑
j=1,j 6=i

σjiSiJj/Ni − εiEi − diEi

dIi
dt

= εiEi − γiIi − diIi
dRi
dt

= γiIi − diRi

(14)

Compartments related to infected and asymptomatically infected are Zi, Ei, Ji
and Ii, i = 1, · · · , n. The unique solution at DFE is (G0

i , 0, 0, N
0
i , 0, 0, 0), where G0

i

and N0
i are the same as those in Section 3.1. The above system of ODEs including

these compartments can be rewritten as follows:

d

dt

[
Z1 · · · Zn E1 · · · En J1 · · · Jn I1 · · · In

]T
= F − V .

where F and V represent new infections and transfer between compartments as
(1), respectively. The Jacobian matrices F and V at DFE are

F =


0 0 0 A
0 0 B 0
0 0 0 0
0 0 0 0

 , V =


Λ7 0 0 0
0 Λ8 0 0
−Λ9 0 Λ1 0

0 −Λ10 0 Λ2

 ,
where Λ1 and Λ2 are given in (7); matrices A and B are in Equation (6); and

Λ7 = diag(ϕ1 + µ1, · · · , ϕn + µn), Λ8 = diag(ε1 + d1, · · · , εn + dn),
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Description State transition a→ b Rate
P (a, b)

Host birth (S,E, I,R,G,Z, J)→ (S + 1, E, I, R,G,Z, J) ψ
Death of S (S,E, I,R,G,Z, J)→ (S − 1, E, I, R,G,Z, J) dS
Death of E (S,E, I,R,G,Z, J)→ (S,E − 1, I, R,G,Z, J) dE
Death of I (S,E, I,R,G,Z, J)→ (S,E, I − 1, R,G,Z, J) dI
Death of R (S,E, I,R,G,Z, J)→ (S,E, I,R− 1, G, Z, J) dR
Host local in-
fection

(S,E, I,R,G,Z, J)→ (S−1, E+1, I, R,G,Z, J) αSJ/N

Host infection
by Jj

(S,E, I,R,G,Z, J)→ (S−1, E+1, I, R,G,Z, J) σjiSJj/N

Host recovery (S,E, I,R,G,Z, J)→ (S,E, I−1, R+1, G, Z, J) γI
Host Latent to
infectious

(S,E, I,R,G,Z, J)→ (S,E−1, I+1, R,G,Z, J) εE

Vector birth (S,E, I,R,G,Z, J)→ (S,E, I,R,G+ 1, Z, J) η
Death of G (S,E, I,R,G,Z, J)→ (S,E, I,R,G− 1, Z, J) µG
Death of Z (S,E, I,R,G,Z, J)→ S,E, I,R,G,Z − 1, J) µZ
Death of J (S,E, I,R,G,Z, J)→ (S,E, I,R,G,Z, J − 1) µJ
Vector local in-
fection

(S,E, I,R,G,Z, J)→ (S,E, I,R,G−1, Z+1, J) βGI/N

Vector in-
fection by
Ij

(S,E, I,R,G,Z, J)→ (S,E, I,R,G−1, Z+1, J) ωjiGIj/Nj

Vector Latent
to infectious

(S,E, I,R,G,Z, J)→ (S,E, I,R,G,Z−1, J+1) ϕZ

Table 2. State transitions and rates for corresponding continuous-
time Markov chain for deterministic model (14) omitting node in-
dex i.

Λ9 = diag(ϕ1, · · · , ϕn), Λ10 = diag(ε1, · · · , εn).

By a direct calculation,

FV −1 =


0 AΛ−12 Λ10Λ−18 0 AΛ−12

BΛ−11 Λ9Λ−17 0 BΛ−11 0
0 0 0 0
0 0 0 0

 .
Following Lemma 3.1,

Proposition 3. The basic reproduction number of the model (14) is

R0 =

√
ρ(BΛ−11 Λ9Λ−17 AΛ−12 Λ10Λ−18 ). (15)

4.2. The threshold for extinction probability. State transitions and rates for
corresponding CTMC of model (14) are listed in Table 2.

The offspring pgf for Zi, given Zi = 1,Ei = Ji = Ii = 0, where i = 1, · · ·n is

gi =
ϕiui + µi
ϕi + µi

;

and the offspring pgf for Ei, given Ei = 1,Zi = Ji = Ii = 0, is

gi+n =
εiui+n + di
εi + di

;
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and the offspring pgf for Ji, given Ji = 1,Zi = Ji = Ii = 0, is

gi+2n =
αiuiwi+n +

∑n
j=1,6=i σijuiwj+n + µi

αi +
∑n
j=1,6=i σij + µi

;

and the offspring pgf for Ii, given Ei = 1,Zi = Ji = Ii = 0, is

gi+3n =
β̂iui+nwi +

∑n
j=1,j 6=i ω̂ijui+nwj + di + γi

β̂i +
∑n
j=1,j 6=i ω̂ij + di + γi

.

Hence, the pgfs are:

gi(w1, · · · , w2n, u1, · · · , u2n)

=



ϕiui+µi

ϕi+µi
, if 1 ≤ i ≤ n,

εkui+dk
εk+dk

, if n+ 1 ≤ i ≤ 2n,

αpupwp+n+
∑n

j=1, 6=p σpjupwj+n+µp

αp+
∑n

j=1, 6=p σpj+µp
, if 2n+ 1 ≤ i ≤ 3n,

β̂quq+nwq+
∑n

j=1,j 6=q ω̂qjuq+nwj+dq+γq

β̂q+
∑n

j=1,j 6=q ω̂qj+dq+γq
, if 3n+ 1 ≤ i ≤ 4n,

where the indexes k = i− n for n+ 1 ≤ i ≤ 2n, p = i− 2n for 2n+ 1 ≤ i ≤ 3n, and
q = i− 3n for 3n+ 1 ≤ i ≤ 4n.

The expectation matrix M is:

M =


0 0 0 AΛ5

0 0 BΛ4 0
Λ9Λ−17 0 I − Λ1Λ4 0

0 Λ10Λ−18 0 I − Λ2Λ5

 .
Similarly, the assumptions (B0) and (B1) in [23] hold for this model if both A and
B are positive matrices. By Lemma 3.2, as well as Remark 1, we have the following
proposition:

Proposition 4. The extinction threshold of the model (14) satisfies that

4

√
ρ(Λ10Λ−18 BΛ4Λ9Λ−17 AΛ5) ≤ E0

≤ 4

√
ρ(Λ10Λ−18 BΛ4Λ9Λ−17 AΛ5) + max1≤i≤n(

αi+
∑

j 6=i σij

Ci
,
β̂i+

∑
j 6=i ω̂ij

Di
).

4.3. The relationship between R0 and E0. In this section, we assume that (12)
holds and k1 < k2. Under the assumption (12), we shall give a relationship between
R0 and E0.

Lemma 4.1. Let A1, A2 be square matrices with the same size and B =

[
0 A1

A2 kI

]
with k ≥ 0. If ρ(A2A1) is an eigenvalue of A2A1, then

ρ(B) =
1

2
(k +

√
k2 + 4ρ(A2A1)).

Proof. If k = 0, lemma is reduced to Lemma 3.1. We now assume that k > 0. For
any λ 6= 0, we have

|λI −B| =
∣∣∣∣ λI −A1

−A2 (λ− k)I

∣∣∣∣ =

∣∣∣∣ λI −A1

0 (λ− k)I − A2A1

λ

∣∣∣∣
=|(λ2 − kλ)I −A2A1|.

(16)
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If λ = 0, then λ − k 6= 0. By similar calculation as we did in (16), we still have
|λI − B| = |(λ2 − kλ)I − A2A1|. From this identity, λ2 − kλ is an eigenvalue of
A2A1 if λ is an eigenvalue of B, i.e., given an eigenvalue µ of A2A1, the root of the
equation λ2 − kλ = µ is an eigenvalue of B. Therefore,

ρ(B) = max{|λ| | λ2 − kλ = µ for some eigenvalue µ of A2A1}

= max{1

2
|k ±

√
k2 + 4µ| for some eigenvalue µ of A2A1}.

Since ρ(A2A1) is one of eigenvalues of A2A1, 1
2 (k+

√
k2 + 4ρ(A2A1)) is an eigenvalue

of B. By the following inequality

|k ±
√
k2 + 4µ| ≤ k +

√
|k2 + 4µ| ≤ k +

√
k2 + 4|µ| ≤ k +

√
k2 + 4ρ(A2A1),

we have ρ(B) = 1
2 (k +

√
k2 + 4ρ(A2A1)).

By using Lemma 4.1, we have the following theorem.

Theorem 4.2. Under assumption (12),

(1) If
√
R0 ≤ 1−k2

2(1− 4√k1k2)
≤ 1 or E0 ≤ 1−k2

2(1− 4√k1k2)
≤ 1, then

√
R0 ≤ E0;

(2) If
√
R0 ≥ 1−k1

1− 4√k1k2
≥ 1 or E0 ≥ 1−k1

1− 4√k1k2
≥ 1, then

√
R0 ≥ E0.

Proof. Under assumption (12), we have[
0 A1

A2 (1− k2)I

]
≤M ≤

[
0 A1

A2 (1− k1)I

]
,

where A1 =

[
0 AΛ5

BΛ4 0

]
and A2 =

[
Λ9Λ−17 0

0 Λ10Λ−18

]
. By Theorem 4 in [35] and

Lemma 4.1, we have

1−k2+
√

(1−k2)2+4ρ(A2A1)

2 ≤ E0 ≤
1−k1+

√
(1−k1)2+4ρ(A2A1)

2 . (17)

By Lemma 3.1, (15) and the fact that ρ(AB) = ρ(BA) for any square matrices A
and B, we have

ρ(A2A1) =

√
ρ(Λ10Λ−18 BΛ4Λ9Λ−17 AΛ5) =

√
ρ(BΛ4Λ9Λ−17 AΛ5Λ10Λ−18 )

=

√
k1k2ρ(BΛ−11 Λ9Λ−17 AΛ−12 Λ10Λ−18 ) =

√
k1k2R0.

By (17), we have
√
R0

4
√
k1k2 + 1−k2

2 ≤ E0 ≤
√
R0

4
√
k1k2 + 1− k1.

Hence,
√
R0(1− 4

√
k1k2)− (1− k1) ≤

√
R0 − E0 ≤

√
R0(1− 4

√
k1k2)− 1−k2

2 ,

1
4√k1k2

(E0(1− 4
√
k1k2)− 1 + k1) ≤

√
R0 − E0 ≤ 1

4√k1k2
(E0(1− 4

√
k1k2)− 1−k2

2 ).

Theorem follows from these two inequalities.

Unlike Corollary 1, we can not obtain a similar result directly from Theorem 4.2.
Fortunately, we still have a similar result.

Proposition 5. If a further assumption is made that k1 = k2 besides assumption
(12), then R0 ≤ 1 if and only if E0 ≤ 1. Furthermore, if R0 > 1, then

√
R0 − 1 ≥

E0 − 1 ≥ 0.



NETWORK-LEVEL REPRODUCTION NUMBER AND EXTINCTION THRESHOLD 577

Parameter Description Range Dimension Source
α Contact rate: mosquitoes

to humans
0.010− 0.27 1/day [8]

β Contact rate: humans to
mosquitoes

0.072− 0.64 1/day [8]

µ Per capita death rate for
mosquitoes

0.020− 0.27 1/day [8]

d Per capita death rate for
humans

0.000027 −
0.00014

1/day [8]

γ Per capita recovery rate
for humans

0.0014− 0.0017 1/day [8]

η Mosquito recruitment
rate

1− 5 1/day Assume

ψ Human recruitment rate 1− 60 1/day Assume
Table 3. Parameters of the malaria metapopulation model.

Proof. If k1 = k2 = k, by (17), we have E0 =
1−k+

√
(1−k)2+4kR0

2 .
If R0 < 1, we have

E0 <
1−k+

√
(1−k)2+4k

2 =
1−k+

√
(1+k)2

2 = 1.

Similarly, if R0 ≥ 1, then E0 ≥ 1. This proves the first part.
For the second part, if R0 > 1, we have

E0 − 1 =
−(1+k)+

√
(1+k)2+4k(R0−1)

2 ≤
√
k(R0 − 1) ≤

√
R0 − 1.

This finishes the proof.

5. Numerical results. We show numerically general relations between R0 and E0

for two models on heterogeneous networks with different weights between different
links. Trends of parameters varying with extinction array are summarized.

5.1. Numerical results on relations between R0 and E0. Model (5) is applied
to study thresholds for malaria transmission through numerical simulations. Five
thousand realizations with parameters uniformly distributed within ranges listed in
Table 3 on a four-node network give rise to R0 ranging from 0.7668 to 63.8111 and
E0 from 0.8965 to 1.9140. The ranges of R0 and E0 vary with the number of nodes
of a network and the assumed ranges of vector (host) recruitment rates with ranges
of other parameters fixed. The values of R0 are sorted from small to large values in
Figure 1(a) and 1(b), and E0 are ranked from small values to large values in Figure
1(c) and 1(d). The largest value of E0 is 0.9980 when all values of R0 are smaller
than 1 and R0 ≤ E0, as shown in Figure 1(a). The smallest value of E0 is 1.003
when all values of R0 are greater than 1 and R0 ≥ E0, as shown in Figure 1(b).
The largest value of R0 is 0.9947 when all values of E0 are smaller than 1, as shown
in Figure 1(c). The smallest value of R0 is 1.006 when all values of E0 are greater
than 1, as shown in Figure 1(d). The value of E0 is not monotonically increasing
with the increase of R0, as shown Figure 1(a) and 1(b). Similarly, R0 fluctuates as
E0 increases, as shown in Figure 1(c) and 1(d).

Model (14) is applied to numerical examine the relationship between R0 and E0

for Rift Valley fever. See Table 4 for descriptions and ranges of parameters. Five
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Figure 1. Relationships between R0 and E0 for malaria model.

thousand realizations produce R0 ranging between 0.2289 and 54.5086 and E0 from
0.6757 to 1.9763. The values of R0 are ordered from small to large magnitudes in
Figure 2(a) and 2(b), and the values of E0 are ordered from small to large values in
Figure 2(c) and 2(d). The largest value of E0 is 1 when all values of R0 are smaller
than 1, and

√
R0 ≤ E0, as shown in Figure 2(a). The smallest value of E0 is 1.005

when all values of R0 are greater than 1, and
√
R0 ≥ E0, as shown in Figure 2(b).

The largest value of R0 is 0.9998 when all values of E0 are smaller than 1, and√
R0 ≥ E0, as shown in Figure 2(c). The smallest value of R0 is 1.008 when all

values of E0 are greater than 1, and
√
R0 ≥ E0, as shown in Figure 2(d). When R0

increases, E0 does not always increase, as shown in Figure 2(a) and 2(b). Similarly,
R0 fluctuates as E0 increases, as shown in Figure 2(c) and 2(d).

5.2. Trends of extinction array with varying parameters. Consistent trends
of w∗ are observed by numerical simulations for homogeneous populations and a
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Parameter Description Range Dimension Source
α Contact rate:

mosquito to
livestock

0.0021 −
0.2762

1/day [7, 13, 15, 20, 25, 31,
32]

β Contact rate:
livestock to
mosquitoes

0− 0.32 1/day [7, 13, 15, 20, 25, 30]

1/µ Longevity of
mosquitoes

3− 60 1/day [4, 21, 25]

1/d Longevity of live-
stock

360− 3600 1/day [26]

1/γ Recover rate in
livestock

2− 5 1/day [11]

1/ϕ Incubation period
in mosquitoes

4− 8 days [31]

1/ε Incubation period
in livestock

2− 6 days [24]

η Mosquito recruit-
ment rate

1− 500 1/day Assume

ψ Livestock recruit-
ment rate

1− 10 1/day Assume

Table 4. Parameters of the Rift Valley fever metapopulation model.

two-node network for Model (14). Table 5 lists three different values for each pa-
rameter and corresponding extinction array for homogeneous populations as an
example. Table 6 shows trends of extinction array by varying one parameter at a
time, keeping other parameters fixed and E0 > 1 for homogeneous populations and
a two-node network. If at least one entry of extinction array increases and others
remain constant, then we say that the array increases. The extinction array w∗

decreases with the increase of contact rates from local vectors and vectors in other
nodes to local hosts, contact rates from local hosts and hosts in other nodes to local
vectors, death rates of hosts, recruitment rates of vectors, and incubation rates of
vectors and hosts, whereas, w∗ increases with the increase of vector death rates,
host recovery rates, and host recruitment rates.

6. Discussions. The basic reproduction number, R0, for deterministic vector-host
models and thresholds for extinction probabilities, E0 for corresponding CTMC
models are analytically and numerically connected. For model (5), our analysis show
that R0 ≤ 1, if and only if E0 ≤ 1, and |R0−1| ≥ |E0−1| under certain assumptions.
Numerical simulations for a malaria model on heterogeneous networks with different
number of nodes show that Corollary 1 holds without any assumptions. For model
(14), analytical results show that R0 < 1 if and only if E0 < 1, and

√
R0 − 1 ≥

E0− 1 ≥ 0 by the same assumption in (12). Extensive numerical simulation results
for a Rift Valley fever model on networks with various number of nodes show that
Proposition 5 holds without any assumptions.

Conjecture 1. Theorems 3.3, 4.2, Corollary 1, and Proposition 5 hold without
assumption (12), i.e., R0 ≤ 1 if and only if E0 ≤ 1 for both models (5) and (14),
besides, |R0 − 1| ≥ |E0 − 1| for model (5), and |

√
R0 − 1| ≥ |E0 − 1| for model (14)

without assumption (12).
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Figure 2. Relationships between R0 and E0 for Rift Valley fever model.

The first part, R0 ≤ 1 if and only if E0 ≤ 1 was proven by Allen and van den
Driessche under the assumption (16) in [2], i.e., (F−V )T = W (M−I), where F and
V are Jacobian matrices defined in (2), M is a mean matrix of offspring distribution
defined in Section 2.2, I is the identity matrix, and W is a positive diagonal matrix
with each entry wi representing the rate parameter at which lifespan of group i are
exponentially distributed for i = 1, · · ·n [23]. This assumption holds for model (5)
and model (14) if M is symmetric.

Consistent trends in the extinction array w∗ while changing one parameter thr-
ough numerical simulations is helpful in deducing trends of extinction probability
and possible interventions for vector-borne diseases. According to Equation (4), the
probability of disease extinction is monotonically increasing (decreasing) with the
increase (decrease) of the extinction array when the initial number of infection is
fixed. The following biological interpretations of disease extinction or persistence are
in terms of fixed initial number of infections. If contact rates from vectors to hosts
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Changing parameter (w∗1 , w
∗
2 , u
∗
1, u
∗
2)

α = 0.0601 (0.9965, 0.9978, 0.9961, 0.9978)
α = 0.0766 (0.8648, 0.9212, 0.8467, 0.9212)
α = 0.0781 (0.8546, 0.9158, 0.8352, 0.9158)
β = 0.0639 (0.9158, 0.9824, 0.9046, 0.9824)
β = 0.1026 (0.6623, 0.8967, 0.6173, 0.8966)
β = 0.1426 (0.5448, 0.8224, 0.4841, 0.8223)
µ = 1/60 (0.1955, 0.4961, 0.1419, 0.4956)
µ = 1/59 (0.1996, 0.5016, 0.1453, 0.5110)
µ = 1/56 (0.2127, 0.5188, 0.1565, 0.5182)
d = 1/3477 (0.4621, 0.7398, 0.3904, 0.7395)
d = 1/3370 (0.4554, 0.7312, 0.3828, 0.7310)
d = 1/3311 (0.4518, 0.7265, 0.3787, 0.7262)
γ = 1/5 (0.4247, 0.6877, 0.3480, 0.6874)
γ = 1/4 (0.4698, 0.7491, 0.3992, 0.7488)
γ = 1/3 (0.5451, 0.8226, 0.4845, 0.8224)
ε = 1/6 (0.4700, 0.7493, 0.3994, 0.7489)
ε = 1/4 (0.4698, 0.7491, 0.3992, 0.7488)
ε = 1/2 (0.4697, 0.7489, 0.3990, 0.7488)
ϕ = 1/8 (0.5494, 0.7784, 0.4293, 0.7782)
ϕ = 1/7 (0.5312, 0.7715, 0.4218, 0.7712)
ϕ = 1/6 (0.5119, 0.7643, 0.4142, 0.7641)
η = 19 (0.5412, 0.8195, 0.4801, 0.8193)
η = 76 (0.5264, 0.8069, 0.4632, 0.8066)
η = 482 (0.2907, 0.3169, 0.1961, 0.3162)
ψ = 1 (0.4698, 0.7491, 0.3992, 0.7488)
ψ = 2 (0.6859, 0.9123, 0.6553, 0.9122)
ψ = 3 (0.9219, 0.9838, 0.9115, 0.9838)

Table 5. The extinction array changes with one parameter within
the range at a time for homogeneous populations, while keeping
other parameters fixed and E0 > 1 for model (14). Fixed param-
eters are: α = 0.2, β = 0.19, µ = 1/30, d = 1/3600, γ = 1/4,
ε = 1/2, ϕ = 1/4, η = 100, ψ = 1 in this example. Same trends
are obtained with various sets of fixed parameters.

Increasing parameter (w∗1 , · · · , w∗n, u∗1, · · · , u∗n)
αi, βi, di, εi, ϕi, ηi, σij , ωij (i, j = 1, · · · , n, i 6= j) decreases

µi, γi, ψi (i = 1, · · · , n) increases
Table 6. Summary of trends for extinction array changing with
one parameter at a time, while keeping other parameters fixed and
E0 > 1 for model (14) for homogeneous populations and a two-node
network throughout various simulations.

(α, σ), or those from hosts to vectors (β, ω) increase, the probability for the disease
to persist is higher. If death rates of hosts (d) increase, the number of vectors is
relatively dominant. Consequently, the disease is more likely to persist. Similarly,
growing vector recruitment rates (η) increase probability for disease persistence.
The higher incubation rates in vectors (ϕ) or in hosts (ε) lead to faster vector or
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host infections, such that the disease is prone to persist. On the contrary, increasing
death rates of vectors (µ) may reduce rates of host infection, and, ultimately, may
increase the likelihood of disease extinction. Increasing recovery rates of hosts (γ)
may reduce the number of infections, such that probability of disease extinction
increases. Increasing recruitment rate of hosts (ψ) may reduce vector infection
rates and increase probability of disease extinction.

The findings show that extinction probability of vector-borne diseases may in-
crease by properly controlling vector and host population size, and promptly detect-
ing and applying treatment for hosts. Analytical and numerical results shed light
on deriving relationships between R0 and E0, as well as connections between vary-
ing parameters and increasing extinction probabilities for many other vector-borne
diseases transmitted among heterogeneous works. In summary, the resulting math-
ematical derivations and numerical simulations facilitate understanding thresholds
for the spread of vector-borne diseases, as well as provide novel insights into disease
prevention, mitigation and control strategies.
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