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Abstract. In this paper, the dynamical behavior of a viral infection model

with general incidence rate and two time delays is studied. By using the

Lyapunov functional and LaSalle invariance principle, the global stabilities of
the infection-free equilibrium and the endemic equilibrium are obtained. We

obtain a threshold of the global stability for the uninfected equilibrium, which

means the disease will be under control eventually. These results can be applied
to a variety of viral infections of disease that would make it possible to devise

optimal treatment strategies. Numerical simulations with application to HIV

infection are given to verify the analytical results.

1. Introduction. In the past decades, mathematical models have been paid much
attention to investigate the viral infection of disease in vivo. A proper model can
not only provide important quantitative insights into the pathogenesis, but also
lead to design treatment strategies which would more effectively bring the infection
under control [9]. Due to the fact that actions and reactions take time to take
effect in real-life problems, many biological models considered time delays in the
variables being modeled [4, 6, 10, 12, 15, 16, 18, 19, 20, 21]. But many models were
constructed with only one time delay.

In modelling the viral infection of disease, the incidence rate plays a critical role
in describing the population dynamics of viral load in vivo. Based on different
practical backgrounds, some nonlinear incidence rates have been considered [1, 7, 8,
11, 13, 14, 22]. Gang Huang et al. [7] discussed a delayed model with Beddington-
DeAngelis functional response

x′ = s− dx− βxv

1 + ax+ bv
,

y′ =
βx(t− τ)v(t− τ)

1 + ax(t− τ) + bv(t− τ)
e−ατ − ay,

v′ = ky − uv.

(1)

Where uninfected cells x are assumed to be produced at the constant rate s, die
at the rate of dx and become infected at the rate of βxv

1+ax+bv . Infected cells y are

produced at the rate of βx(t−τ)v(t−τ)
1+ax(t−τ)+bv(t−τ)e

−ατ and die at the rate of ay, where τ

represents the time needed for infected cells to produce virions after viral entry.
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Free virions v are generated from infected cells at the rate of ky and decay at the
rate of uv.

It is easy to see that when a = 0, b > 0, model (1) is the delayed model with
saturation response which was discussed by Rui Xu [22]. When a > 0, b = 0,
model (1) is the delayed model with Holling type II functional response. When
a = 0, b = 0, model (1) is the delayed model with the bilinear incidence rate
(Holling type I functional response).

Recently, Hattaf et al. [5] proposed a nonlinear incidence rate with the form of
f(x, y, v)v. Tian and Liu [17] studied a generalization of the Hattaf’s model with
the form of f(x, y, v). The general incidence rate can help us gain the unification
results by the omission of unessential details. However, the effect of the time delay
on the dynamics of viral infection should be considered.

Motivated by the work above, we consider the following DDE model with two
time delays:  x′ = s− dx− f(x, y, v),

y′ = f(x(t− τ1), y(t− τ1), v(t− τ1))e−α1τ1 − ay,
v′ = ky(t− τ2)e−α2τ2 − uv.

(2)

Where τ1 represents the time necessary for infected cells to produce new virions. The
term e−α1τ1 accounts for cells that are infected at time t but die before becoming
productively infected τ1 time units later. τ2 represents the time for the newly
produced virions to become mature. The term e−α2τ2 accounts for the probability of
survival of immature virions. The incidence f(x, y, v) is assumed to be continuously
differentiable in R3

+ and satisfies the following hypotheses [17]:
(H1) f(0, y, v) = 0, for all y > 0 and v > 0; f(x, y, 0) = 0, for all x > 0 and y > 0.

(H2)
∂f

∂x
(x, y, v) > 0, for all x > 0, y > 0 and v > 0.

(H3)
∂f

∂y
(x, y, v) 6 0, for all x > 0, y > 0 and v > 0.

(H4)
∂f

∂v
(x, y, v) > 0, v

∂f

∂v
(x, y, v)− f(x, y, v) 6 0, for all x > 0, y > 0 and v > 0.

It is easy to show that the incidence rate f(x, y, v) generalizes many common

forms such as βxv, βxvx+y , βxv
1+αv , βxv

1+ax+bv and βxv
1+ax+bv+abxv .

In this paper, our primary goal is to study the effect of the two delays on the
dynamics of model (2) and give a mathematical analysis of its global stability.

The rest of this paper is organized as follows. In Section 2, we introduce some
preliminary results of model (2). The existence and uniqueness of positive equilib-
rium of model (2) are also discussed. In Section 3, we study the global stability of
the infection-free equilibrium by using the Lyapunov functional and LaSalle invari-
ance principle. The stability of the endemic equilibrium is analyzed in Section 4. In
Section 5, numerical simulations are given to verify the analytical results. Finally,
concluding remarks are given in Section 6.

2. Preliminary results. In this section, for biological reasons, we will show the
positivity and boundedness of solutions of model (2) and the existence and unique-
ness of the positive equilibrium.

We denote the Banach space of continuous functions ϕ : [−τ, 0] → R3 by C
with norm ‖ϕ‖ = sup

−τ6θ60
|ϕ(θ)|, where τ = max(τ1, τ2). The nonnegative cone

of C is defined by C+ = C([−τ, 0],R3
+). The initial conditions of model (2) are
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(0, ϕ), ϕ ∈ C+ and ϕ(0) > 0. A solution of model (2) is denoted by (x(t), y(t), v(t)).
We will give the following basic results of model (2).

2.1. Positivity and boundedness of solutions. The proof of positive solution
is easy, we only show the boundedness of solutions as follows.

Theorem 2.1. There is an M > 0, such that, for any positive solution (x(t), y(t),
v(t)) of model (2), we have x(t) < M, y(t) < M, v(t) < M.

Proof. Consider the following function

N(t) = x(t) + y(t) +
a

2k
v(t) +

∫ t

t−τ1
f(x(θ), y(θ), v(θ))e−α1(t−θ)dθ

+
a

2

∫ t

t−τ2
y(θ)e−α2(t−θ)dθ.

Calculating the derivative of N along the solutions of model (2) gives

N ′(t) = s− d · x− a

2
· y − u · a

2k
v − α1 ·

∫ t

t−τ1
f(x(θ), y(θ), v(θ))e−α1(t−θ)dθ

−α2 ·
a

2

∫ t

t−τ2
y(θ)e−α2(t−θ)dθ

6 s−min{d, a
2
, u, α1, α2}N(t).

Denote h = min{d, a
2
, u, α1, α2}, it follows that

N ′(t) 6 s− hN(t).

Further

N(t) 6
s

h
+ (N(0)− s

h
)e−ht.

Hence, N(t) is bounded. Then we can conclude that x(t), y(t) and v(t) are eventu-
ally bounded. Thus, there exists an M > 0 such that x(t) < M, y(t) < M, v(t) < M .
This completes the proof.

Define

D = {(x, y, v) ∈ R3
+| 0 < x(t) 6

s

d
, 0 6 y(t), v(t) 6M}.

If x(0) 6 s
d , then from the first equation of model (2), we have x(t) 6 s

d when t > 0.
It is easy to see that D is a positively invariant region for model (2).

2.2. Existence and uniqueness of the positive equilibrium. Obviously, Q1 =

(
s

d
, 0, 0) is the infection-free equilibrium of model (2), which represents the extinc-

tion of the free virus.
Following the concept of next generation matrix given by Diekmann et al. [2]

and the reproduction number given by van den Driessche and Watmough in [3], we
can compute the basic reproduction number of model (2) as

R0 =
k

aueα1τ1+α2τ2

∂f( sd , 0, 0)

∂v
,

which describes the average number of secondary infections produced by a single
infected cell during the period of infection when all other cells are uninfected.
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As for the existence and uniqueness of the positive equilibrium, we have the
following theorem.

Theorem 2.2. If R0 > 1, then model (2) has a unique endemic equilibrium of the
form Q2 = (x∗, y∗, v∗) with 0 < x∗ < s

d , y
∗ > 0 and v∗ > 0.

Proof. At any equilibrium, we have: s− dx− f(x, y, v) = 0,
f(x, y, v)e−α1τ1 − ay = 0,
kye−α2τ2 − uv = 0.

(3)

By the first and the second equation of (3), we have

y =
1

aeα1τ1
(s− dx),

and

f(x, y, v) = aeα1τ1y.

From the third equation, we get

v =
ky

ueα2τ2
=

k(s− dx)

aueα1τ1+α2τ2
.

Obviously, if x >
s

d
, there is no positive equilibrium.

Now, we consider the following function F (x) defined on the interval [0, sd ]:

F (x) = f(x, y, v)− aeα1τ1y,

where y =
1

aeα1τ1
(s− dx) and v =

k(s− dx)

aueα1τ1+α2τ2
.

Then,

F ′(x) =

(
∂f

∂x
+
∂f

∂y
(− d

aeα1τ1
) +

∂f

∂v
(− kd

aueα1τ1+α2τ2
)

)
− aeα1τ1(− d

aeα1τ1
)

=
∂f

∂x
− d

aeα1τ1

∂f

∂y
+

(
d− kd

aueα1τ1+α2τ2

∂f

∂v

)
.

Clearly, F (0) = 0 − aeα1τ1
1

aeα1τ1
s = −s < 0, F (

s

d
) = f(

s

d
, 0, 0) = 0. Notice that

f(x, y, 0) = 0, so
∂f

∂x
(
s

d
, 0, 0) = 0 and

∂f

∂y
(
s

d
, 0, 0) = 0. Therefore,

F ′(
s

d
) =

∂f

∂x
(
s

d
, 0, 0)− d

aeα1τ1

∂f

∂y
(
s

d
, 0, 0) +

(
d− kd

aueα1τ1+α2τ2

∂f

∂v
(
s

d
, 0, 0)

)
= d(1−R0).

Hence, we get F ′(
s

d
) < 0 when R0 > 1. Therefore, there exists at least one positive

equilibrium Q2 = (x∗, y∗, v∗) with 0 < x∗ < s
d , y
∗ > 0 and v∗ > 0.

Next, we will proof the uniqueness of the positive equilibrium. Observe the third

term of F ′(x∗). Since f(x∗, y∗, v∗) = aeα1τ1y∗ and v∗ =
ky∗

ueα2τ2
=
kf(x∗, y∗, v∗)

aueα1τ1+α2τ2
at



GLOBAL STABILITY OF A MULTIPLE DELAYED VIRAL INFECTION MODEL 529

any positive equilibrium, we have

d− kd

aueα1τ1+α2τ2

∂f

∂v
(x∗, y∗, v∗)

= d− d v∗

f(x∗, y∗, v∗)

∂f

∂v
(x∗, y∗, v∗)

=
d

f(x∗, y∗, v∗)

(
f(x∗, y∗, v∗)− v∗ ∂f

∂v
(x∗, y∗, v∗)

)
.

Since f(x, y, v) − v ∂f
∂v

(x, y, v) > 0, we get F ′(x∗) > 0 at any positive equilibrium.

Suppose there are at least two positive equilibria of F (x) = 0 in (0,
s

d
), then there

must be F ′(x∗) < 0 at some equilibrium, which is a contradiction. Therefore, if
R0 > 1, there exists a unique endemic equilibrium Q2 = (x∗, y∗, v∗) with 0 < x∗ <
s
d , y
∗ > 0 and v∗ > 0. This completes the proof.

3. Global stability of the infection-free equilibrium Q1. In this section, we
will study the global stability of the infection-free equilibrium Q1. We have the
following theorem.

Theorem 3.1. If R0 < 1, then the infection-free equilibrium Q1 is globally asymp-
totically stable.

Proof. Consider the following Lyapunov functional

V = eα1τ1y +
a

k
eα1τ1+α2τ2v +

∫ t

t−τ1
f(x(θ), y(θ), v(θ))dθ + aeα1τ1

∫ t

t−τ2
y(θ)dθ.

Calculating the derivative of V along the solutions of model (2) gives

V ′(t) = f(x(t− τ1), y(t− τ1), v(t− τ1))− aeα1τ1y

+
a

k

(
keα1τ1y(t− τ2)− ueα1τ1+α2τ2v

)
+ f(x, y, v)

−f(x(t− τ1), y(t− τ1), v(t− τ1)) + aeα1τ1 (y − y(t− τ2))

= f(x, y, v)− au

k
eα1τ1+α2τ2v.

Notice that
∂f

∂x
(x, y, v) > 0,

∂f

∂y
(x, y, v) 6 0. Meanwhile, f(x, y, v)−v ∂f

∂v
(x, y, v)

> 0, which indicates
f(x, y, v)

v
is decreasing for v. Similar with the proof in [17],

we have

V ′(t) 6 f(x0, 0, v)− au

k
eα1τ1+α2τ2v

=

(
f(x0, 0, v)

v
− au

k
eα1τ1+α2τ2

)
v

6

(
lim
v→0+

f(x0, 0, v)

v
− au

k
eα1τ1+α2τ2

)
v

=

(
∂f(x0, 0, 0)

∂v
− au

k
eα1τ1+α2τ2

)
v

=
au

k
eα1τ1+α2τ2(R0 − 1)v.
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Since R0 < 1, then V ′(t) 6 0 and V ′(t) = 0 if and only if v = 0. For each point
in E, the largest invariant subset of {(x, y, v)|V ′(t) = 0}, we have v′(t) = 0, and
y = 0. Since E is invariant, from the first equation of model (2), it is easy to prove
that all solutions approach the infection-free equilibrium Q1. This completes the
proof.

Remark 1. Notice the fact that the reproduction number R0 is a decreasing func-

tion for the time delays τ1 and τ2. R0 =
k

aueα1τ1+α2τ2

∂f( sd , 0, 0)

∂v
6

k

au

∂f( sd , 0, 0)

∂v
=

R∗. The delay independent R∗ is the basic reproduction number of the nondelayed
model in [17]. Hence, ignoring the two time delays in real-life problems will overes-
timate the threshold R0.

4. Stability of the endemic equilibrium Q2. In this section, we will study
the stability of the endemic equilibrium Q2 = (x∗, y∗, v∗). It is often difficult to
handle the global stability of the endemic equilibrium for a delayed differential model
mathematically. In the following, we will consider the incidence rate f(x, y, v) with

the form of f(x, v), which covers many common forms such as βxv, βxv
1+αv ,

βxv
1+ax+bv

and βxv
1+ax+bv+abxv .

To simplify the presentation, we will use the following notation: zτi = z(t − τi)
for any z ∈ {x, y, v} and i = 1, 2. We have the following theorem.

Theorem 4.1. If R0 > 1, then the endemic equilibrium Q2 is globally asymptoti-
cally stable.

Proof. Consider the following Lyapunov functional

V = x− x∗ −
∫ x

x∗

f(x∗, v∗)

f(θ, v∗)
dθ + eα1τ1y∗H(

y

y∗
) +

a

k
eα1τ1+α2τ2v∗H(

v

v∗
)

+

∫ t

t−τ1
f(x∗, v∗)H(

f(x(θ), v(θ))

f(x∗, v∗)
)dθ + aeα1τ1

∫ t

t−τ2
y∗H(

y(θ)

y∗
)dθ,

where H(x) = x− 1− lnx.
Calculating the derivative of V along the solutions of model (2) gives

V ′(t) =

(
1− f(x∗, v∗)

f(x, v∗)

)
x′ + eα1τ1(1− y∗

y
)y′ +

a

k
eα1τ1+α2τ2(1− v∗

v
)v′

+f(x, v)− f(xτ1 , vτ1)− f(x∗, v∗) ln
f(x, v)

f(xτ1 , vτ1)

+aeα1τ1

(
y − yτ2 − y∗ ln

y

yτ2

)
= d(x∗ − x)

(
1− f(x∗, v∗)

f(x, v∗)

)
+ f(x∗, v∗)− f(x, v)− f(x∗, v∗)

f(x∗, v∗)

f(x, v∗)

+f(x, v)
f(x∗, v∗)

f(x, v∗)
+ f(xτ1 , vτ1)− aeα1τ1y − y∗

y
f(xτ1 , vτ1) + aeα1τ1y∗

+aeα1τ1yτ2 −
au

k
eα1τ1+α2τ2v − aeα1τ1

v∗

v
yτ2 +

auv∗

k
eα1τ1+α2τ2 + f(x, v)

−f(xτ1 , vτ1)− f(x∗, v∗) ln
f(x, v)

f(xτ1 , vτ1)
+ aeα1τ1

(
y − yτ2 − y∗ ln

y

yτ2

)
.
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Notice that f(x∗, v∗) = aeα1τ1y∗ = au
k e

α1τ1+α2τ2v∗ and y∗ = u
k e
α2τ2v∗, we get

V ′(t) = d(x∗ − x)

(
1− f(x∗, v∗)

f(x, v∗)

)
+ 3f(x∗, v∗)− f(x∗, v∗)

f(x∗, v∗)

f(x, v∗)

+f(x, v)
f(x∗, v∗)

f(x, v∗)
− f(x∗, v∗)

y∗

f(x∗, v∗)y
f(xτ1 , vτ1)− au

k
eα1τ1+α2τ2v

−aeα1τ1
v∗

v
yτ2 − f(x∗, v∗) ln

f(x, v)

f(xτ1 , vτ1)
− aeα1τ1y∗ ln

y

yτ2

= d(x∗ − x)

(
1− f(x∗, v∗)

f(x, v∗)

)
− f(x∗, v∗)

(
f(x∗, v∗)

f(x, v∗)
− 1− ln

f(x∗, v∗)

f(x, v∗)

)
−f(x∗, v∗)

(
y∗f(xτ1 , vτ1)

f(x∗, v∗)y
− 1− ln

y∗f(xτ1 , vτ1)

f(x∗, v∗)y

)
−f(x∗, v∗)

(
kyτ2

ueα2τ2v
− 1− ln

kyτ2
ueα2τ2v

)
−f(x∗, v∗)

(
vf(x, v∗)

v∗f(x, v)
− 1− ln

vf(x, v∗)

v∗f(x, v)

)
+

f(x∗, v∗)v

f(x, v∗)f(x, v)
(f(x, v∗)− f(x, v))

(
f(x, v∗)

v∗
− f(x, v)

v

)
.

Since
∂f

∂x
> 0, it is easy to prove

d(x∗ − x)

(
1− f(x∗, v∗)

f(x, v∗)

)
6 0.

Notice that
∂f

∂v
> 0, which indicates f is increasing with respect to v. Meanwhile,

f − v ∂f
∂v

> 0, which indicates
f

v
is decreasing with respect to v. Therefore,

(f(x, v∗)− f(x, v))

(
f(x, v∗)

v∗
− f(x, v)

v

)
6 0.

Hence, V ′(t) 6 0 and V ′(t) = 0 if and only if x = x∗, y = y∗ and v = v∗. By
the Lyapunov - Lasalle Theorem, solutions in D approach the largest positively
invariant subset of the set E where V ′(t) = 0. All solutions in the set D approach
the endemic equilibrium Q2. This completes the proof.

5. Numerical simulations. In this section, we will give numerical simulations of
model (2). Let f(x, y, v) = βxv

1+αv .

In paper [16], Song et al. studied a HIV infection model with one time delay.
Clinical experiments give us biologically reasonable ranges for parameter values in
model (2). For example, since the infected CD4+ T cells live less than 1-2 days,
we can choose the death rate of infected T cells, a, to be values between 0.5 and
1.0 [16]. To illustrate our theoretical analysis results, we choose the parameter
values of model (2) as those in paper [16] with s = 5 mm−3 day−1, d = 0.01
day−1, α = 1 × 10−6 mm3, α1 = 1.2 day−1, α2 = 3.4 day−1, a = 0.5 day−1,
k = 1200 day−1 , u = 5 day−1. We will regard β as a parameter to study the
stability of equilibria of model (2).
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Figure 1. The infection-free equilibrium Q1 = (500, 0, 0) is glob-
ally asymptotically stable, when β = 2 × 10−4, τ1 = 1, τ2 = 1.2.
The basic reproduction number R0 = 0.244 < 1.

Note that the basic reproduction number is given by R0 =
βsk

adueα1τ1+α2τ2
. If β is

small enough such that R0 < 1, then the virus eventually dies out. Let β = 2×10−4.
We will study the effects of the two delays on the dynamics of model (2). Firstly,
we choose τ1 = 1, τ2 = 1.2, then the basic reproduction number R0 = 0.244 < 1.
The initial conditions are chosen as (x(0), y(0), v(0)) = (350, 20, 60), (200, 15, 10)
and (25, 12, 98) respectively. As can be seen from Figure 1, numerical simulations
confirm that the infection-free equilibrium Q1 is globally stable if R0 < 1. Secondly,
we choose τ1 = 0.8, τ2 = 1.8 and do not change the other parameter values. We
can calculate R0 = 0.04 < 1. In Figure 2, numerical simulations show that the
infection-free equilibrium Q1 is also globally stable if R0 < 1. Figure 1 and Figure
2 demonstrate our theoretical analysis that the infection-free equilibrium Q1 is
globally asymptotically stable if R0 < 1 and the virus is cleared. The two delays
have no direct effects on the stability of the viral dynamics if R0 < 1.

With the increase of β, the endemic equilibrium occurs if R0 > 1. According
to Theorem 4.1, the endemic equilibrium Q2 is globally asymptotically stable. To
verify the above analytic results about Q2, we choose β = 2× 10−3. We will study
the effects of the two delays on the dynamics of model (2). Firstly, we choose
τ1 = 1, τ2 = 1.2, then the basic reproduction number R0 = 2.44 > 1. Figure
3 shows that the endemic equilibrium Q2 is globally stable if R0 > 1. Secondly,
we choose τ1 = 0.8, τ2 = 1.5 in Figure 4, then R0 = 1.12 > 1 and Q2 is also
globally stable. Figure 3 and Figure 4 demonstrate that the endmic equilibrium Q2

is globally asymptotically stable if R0 > 1 and the virus persists in the host.
Moreover, we can obtain an interesting phenomenon if we increase the time delays

with τ1 = 1.5, τ2 = 1.5 and do not change the other parameter values of Figure 4.
As shown in Figure 5, the infection-free equilibrium Q1 becomes stable again. The
reason lies in that the basic reproduction number R0 = 0.4837 < 1. Figure 5
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Figure 2. The infection-free equilibrium Q1 = (500, 0, 0) is glob-
ally asymptotically stable, when β = 2 × 10−4, τ1 = 0.8, τ2 = 1.8.
The basic reproduction number R0 = 0.04 < 1.
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Figure 3. The endemic equilibrium Q2 = (204.55, 1.78, 7.23) is
globally asymptotically stable, when β = 2×10−3, τ1 = 1, τ2 = 1.2.
The basic reproduction number R0 = 2.44 > 1.
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Figure 4. The endemic equilibrium Q2 = (446.29, 0.41, 0.60) is
globally asymptotically stable, when β = 2 × 10−3, τ1 = 0.8, τ2 =
1.5. The basic reproduction number R0 = 1.12 > 1.
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Figure 5. The infection-free equilibrium Q1 = (500, 0, 0) becomes
stable again, when β = 2 × 10−3, τ1 = 1.5, τ2 = 1.5. The basic
reproduction number R0 = 0.4837 < 1.
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demonstrates our theoretical result again that the infection-free equilibrium Q1 is
globally asymptotically stable if R0 < 1 and the virus is cleared eventually.

6. Conclusions. Due to the fact that actions and reactions often take time to
take effect in real-life problems, many papers propose viral models with one time
delay. To cover a variety of incidence functions and time delays in many models, we
establish a viral infection model with general incidence rate and two kinds of delays
in this paper. The boundedness of solutions and the existence and uniqueness of
endemic equilibrium for the general model (2) have been proved. By using the
Lyapunov functional and LaSalle invariance principle, we obtain the conditions of
global stabilities of the infection-free equilibrium and the endemic equilibrium of
model (2).

It is easy to see that when τ2 = 0, f(x, y, v) = βxv
1+ax+bv , model (2) is the delayed

model with Beddington-DeAngelis functional response which was discussed by Gang
Huang et al.[7]. In paper [17], Tian and Liu studied a generalization of the Hattaf’s
model [5] with the form of f(x, y, v). The general incidence rate can help us gain
the unification results by the omission of unessential details. However, the effect
of the time delays on the dynamics of viral infection was not been considered in
paper [5, 17]. The basic reproduction number of the nondelayed model in [17] is

R∗ =
k

au

∂f( sd , 0, 0)

∂v
. Notice the fact that the reproduction number of model (2)

R0 =
k

aueα1τ1+α2τ2

∂f( sd , 0, 0)

∂v
6 R∗. Hence, ignoring the two time delays in real-life

problems will overestimate the threshold of the basic reproduction number.
Moreover, the basic reproduction number R0 is a decreasing function for the

two time delays τ1 and τ2. When the time delays are long enough, the endemic
equilibrium disappears and the virus is cleared in the host. For example, if the time
delays τ1 = τ2 > 1.35 day−1 in Figure 5, then R0 < 1. This can help to develop
drug treatment strategies which would more effectively bring the infection under
control.
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