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Abstract. Symmetric evolutionary games, i.e., evolutionary games with sym-

metric fitness matrices, have important applications in population genetics,
where they can be used to model for example the selection and evolution of

the genotypes of a given population. In this paper, we review the theory for
obtaining optimal and stable strategies for symmetric evolutionary games, and

provide some new proofs and computational methods. In particular, we review

the relationship between the symmetric evolutionary game and the general-
ized knapsack problem, and discuss the first and second order necessary and

sufficient conditions that can be derived from this relationship for testing the

optimality and stability of the strategies. Some of the conditions are given
in different forms from those in previous work and can be verified more effi-

ciently. We also derive more efficient computational methods for the evaluation

of the conditions than conventional approaches. We demonstrate how these
conditions can be applied to justifying the strategies and their stabilities for a

special class of genetic selection games including some in the study of genetic

disorders.

1. Introduction. We consider an n-strategy evolutionary game defined by a sym-
metric fitness matrix A ∈ Rn×n. Let S = {x ∈ Rn : x ≥ 0,

∑
i xi = 1} be the

set of all mixed strategies. The problem is to find an optimal strategy x∗ ∈ S such
that

x∗TAx∗ ≥ xTAx∗ for all x ∈ S. (1)

We call this problem a symmetric evolutionary game or SEgame for short. The
problem has important applications in population genetics, where it can be used
to model and study the evolution of genotypes in a given population when their
corresponding phenotypes are under selection pressures.
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The modeling of genetic selection has a long history [6]. It may be traced back to
the earliest mathematical work in population genetics in early last century including
the Hardy-Weinberg’s Law by G. H. Hardy and W. Weinberg in 1908 [8, 20] and
the Fundamental Theorem of Natural Selection by R. A. Fisher in 1930 [7]. The
work has especially been revived in 1970s when J. Maynard Smith introduced the
game theory to biology and developed the evolutionary game theory for the study of
evolution of population of competing species [10]. In this theory, a genetic selection
problem can in particular be modeled as a SEgame [9].

The SEgame has a close relationship with the generalized knapsack problem or
GKproblem for short, which is to find an optimal solution x∗ ∈ Rn for the following
maximization problem:

maxx∈Rn xTAx/2 (2)

subject to
∑

i xi = 1, x ≥ 0.

The GKproblem has been studied extensively, with applications in solving maximum
clique problems [11], in convex quadratic programming [15], and especially in game
theoretic modeling [2].

In this paper, we review the theory for obtaining optimal and stable strategies
for symmetric evolutionary games, and provide some new proofs and computational
methods. In particular, we review the relationship between the symmetric evolu-
tionary game and the generalized knapsack problem, and discuss the first and second
order necessary and sufficient conditions that can be derived from this relationship
for testing the optimality and stability of the strategies. Some of the conditions
are given in different forms from those in previous work and can be verified more
efficiently. We also derive more efficient computational methods for the evaluation
of the conditions than conventional approaches. We demonstrate how these con-
ditions can be applied to justifying the strategies and their stabilities for a special
class of genetic selection games including some in the study of genetic disorders.

1.1. Further mathematical background. A two-player game is said to be sym-
metric if the players share the same fitness matrix and the same set of strategies.
Let A ∈ Rn×n be the fitness matrix and S = {x ∈ Rn : x ≥ 0,

∑
i xi = 1} the set

of all mixed strategies. Let x ∈ S be the strategy played by player I and y ∈ S by
player II. Then, the fitness for player I can be defined by a function π(x, y) = xTAy
and for player II by π(y, x) = yTAx. A pair of strategies (x∗, y∗) is said to be
optimal if x∗TAy∗ ≥ xTAy∗ for all x ∈ S and y∗TAx∗ ≥ yTAx∗ for all y ∈ S, where
x∗ and y∗ are said to be the best response to each other (see Fig. 1).

A special class of symmetric games is to find a strategy x∗ ∈ S which is the best
response to itself, i.e., player I and II play the same strategy x∗ and x∗TAx∗ ≥
xTAx∗ for all x ∈ S. This class of games is often used to model the evolution of
a population of competing species, with player I being a particular individual and
player II being a typical individual in the population. A strategy x for player I
means the species type the particular individual prefers to be. It could be a pure
species type, i.e., x = ei for some i or a mixed one with xi 6= 1 for any i, where ei
is the ith unit vector. Note that by a mixed species type x we mean the frequency
of the individual to play species i is xi. On the other hand, a strategy y for player
II means the typical species type of an individual in the population, which depends
on the species composition of the population. More specifically, if the portion for
species i in the population is yi, then the chance for a typical individual to be
species i is also yi. Therefore, y is also a population profile, and xTAy is basically
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Figure 1. Two-Player Game: A two-player, two-strategy sym-
metric game is demonstrated. The strategies for player I are
given in vector x = (x1, x2)T , and for player II in y = (y1, y2)T ,
x, y ∈ S = {x ∈ R2 : Σi xi = 1, xi ≥ 0, i = 1, 2}. The fitness
Ai,j of strategy pair (xi, yj) is given in the (i, j)-entry of a 2×2
fitness matrix A. A strategy pair (x∗, y∗) is said to be optimal if
x∗TAy∗ ≥ xTAy∗ for all x ∈ S and y∗TAx∗ ≥ yTAx∗ for all y ∈ S,
when the game is said to reach the Nash equilibrium.

the fitness for species x in population y. Such a game is called a population game,
or an evolutionary game, or a game against the field [16, 19]. The goal of the game
is to find an optimal strategy x∗ ∈ S so that in population x∗, an individual cannot
find a better strategy than x∗, i.e., x∗TAx∗ ≥ xTAx∗ for all x ∈ S, which is when
the population has reached the so-called Nash equilibrium. Biologically, this is when
the population has reached a state so that the optimal strategy for an individual
is a species type consistent with the typical species type of the population. If the
fitness matrix of a symmetric game itself is symmetric, the game is called a doubly
symmetric game [19]. An evolutionary game with a symmetric fitness matrix is a
doubly symmetric game, which is what we call a symmetric evolutionary game, i.e.,
a SEgame as given in (1).

1.2. Further biological background. SEgames can be used to model genetic
selection and in particular, allele selection. An allele is one of several possible forms
of a gene. Most of multi-cellular organisms are diploid, i.e., their chromosomes form
homologous pairs. Each pair of chromosomes has a pair of alleles at each genetic
locus. Thus, n different alleles may form n2 different allele pairs, as two alleles in
each pair may not be the same. Different allele pairs are considered to be different
genotypes, which may result in different phenotypes or in other words, different
genetic traits (see Fig. 2).

The fitness of all different allele pairs or in other words, all different genotypes
at a given genetic locus can then be given in a matrix with the rows corresponding
to the choices for the first allele and the columns to the choices for the second allele
in the allele pair. Again, n different alleles will give n different choices for both
the first and second alleles in the allele pair, and hence an n × n fitness matrix.
With such a fitness matrix, a genetic selection game can then be defined with the
choices of the first and second alleles in the allele pair at a given genetic locus as
the strategies for player I and II. Here, player I can be considered as an individual
with a specific choice of allele at the given locus. The choice could be one of the
possible alleles or a combination of them with each selected with some chance. The
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Figure 2. Genetic Selection: In diploid species, there are always
two alleles at each genetic locus. Each pair of alleles determines
a certain genotype, which in turn determines a certain phenotype.
For example, in Wendel’s classical experiment, the color of the
flowers depends on the pairing of the alleles at a specific genetic
locus, one for pink color and dominant, and another for white and
recessive. Let the dominant allele be denoted by A and the recessive
one by a. There can be four possible allele pairs, AA, Aa, aA,
and aa. Since A is dominant, AA, Aa, and aA will produce pink
flowers, while aa will produce white ones. These genotypic and
phenotypic outcomes can be summarized in a 2×2 allele-pairing
matrix as arranged in the figure.

former corresponds to a pure strategy, while the latter to a mixed one. In any
case, if there are n different alleles, the strategy for player I can be represented
by a vector x ∈ Rn, x ≥ 0,

∑
i xi = 1. On the other hand, player II can be

considered as a typical individual in the given population. This individual could
have only one of possible alleles at the given locus or a combination of them with
each selected with some chance. Similar to player I, if there are n different alleles,
the strategy for player II can be represented by a vector y ∈ Rn, y ≥ 0,

∑
i yi = 1.

This strategy y really is the same as the composition of alleles at the given locus
in the whole population. Therefore, it is also the allele profile of the population for
this particular genetic locus. Let the fitness matrix be given by A ∈ Rn×n. Let
S = {x ∈ Rn : x ≥ 0,

∑
i xi = 1}. The average fitness of an allele choice x ∈ S in

an allele population y ∈ S will be xTAy. We then want to find an optimal choice of
x∗ ∈ S such that x∗TAx∗ ≥ xTAx∗ for all x ∈ S, i.e., in allele population x∗, any
individual with allele choice x other than x∗ will not have a better average fitness
than allele choice x∗ [9]. Note that the fitness for allele pair (i, j) usually is the
same as that for (j, i). Therefore, the fitness matrix for genetic selection is typically
symmetric, and the corresponding game is then a SEgame.

2. GKproblems vs. SEgames. For an evolutionary game, it is well known that
a mixed strategy x∗ ∈ S is optimal for the game if and only if the fitness x∗TAx∗ =
(Ax∗)i for all i such that x∗i > 0 and x∗TAx∗ ≥ (Ax∗)i for all i such that x∗i = 0
[16, 19]. These conditions also apply to any symmetric evolutionary game, i.e., any
SEgame in (1), and can be stated formally as in the following theorem.

Theorem 2.1. Let A ∈ Rn×n be a symmetric fitness matrix and S = {x ∈ Rn :
x ≥ 0,

∑
i xi = 1} the set of all mixed strategies. Then, a strategy x∗ ∈ S is an
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optimal strategy for the SEgame in (1) if and only if there is a scalar λ∗ such that

x∗i ≥ 0, λ∗ − (Ax∗)i ≥ 0 (3)

x∗i (λ∗ − (Ax∗)i) = 0, i = 1, . . . , n. (4)

The proof of the above theorem can be found in many text books such as in
[16, 19]. Since it is helpful for the understanding of the nature of the optimal
strategies of the SEgame, we also provide one here for the self-containedness of the
paper:

Proof. If x∗ ∈ S satisfies the conditions in (3) and (4), by adding all equations in
(4), we then obtain λ∗ = x∗TAx∗. Let x ∈ S be an arbitrary strategy. Multiply the
second inequality in (3) by xi. Then, by adding all second inequalities in (3), we
obtain λ∗ − xTAx∗ ≥ 0, i.e., x∗TAx∗ ≥ xTAx∗, since λ∗ = x∗TAx∗. Therefore, x∗

is an optimal strategy for the SEgame in (1).
If x∗ ∈ S is an optimal strategy for the SEgame in (1), then x∗TAx∗ ≥ xTAx∗

for any x ∈ S and therefore, x∗TAx∗ ≥ eTi Ax∗ = (Ax∗)i for all i. Let λ∗ = x∗TAx∗.
Then, λ∗ − (Ax∗)i ≥ 0 for all i. Assume that x∗i (λ∗ − (Ax∗)i) > 0 for some i. By
adding all the left-hand sides of the equations in (4), we then obtain λ∗ > x∗TAx∗,
which contradicts to the fact that λ∗ = x∗TAx∗. Therefore, x∗i (λ∗ − (Ax∗)i) = 0
for all i.

As we have mentioned in Section 1, the symmetric evolutionary game, i.e., the
SEgame in (1) is closely related to the generalized knapsack problem, i.e., the
GKproblem in (2). A knapsack problem is originally referred to as a problem
for selecting a set of objects of different sizes and values into a given sack of fixed
size to maximize the total value of objects in the sack. The problem can be for-
mulated as a linear program, with a linear objective function

∑
i aixi for the total

value of the sack, where xi and ai are the size and unit value of object i, respec-
tively and with a linear constraint

∑
i xi ≤ s, xi ≥ 0, i = 1, . . . , n on the total

size of the objects that can be put into the sack, where n is the number of objects
and s the size of the sack. The GKproblem in (2) can therefore be considered
as a knapsack problem of n “objects” with the objective function generalized to
a symmetric quadratic form xTAx/2 and with the “sack” restricted in a simplex
S = {x ∈ Rn : x ≥ 0,

∑
i xi = 1}. If we interpret the “objects” to be the species

fractions in a given population and the matrix A to be the fitness matrix of the
species, the objective function for the GKproblem in (2) is exactly half of the av-
erage fitness of the population of the SEgame in (1). Therefore, the goal of the
GKproblem in (2) is basically to maximize the average fitness of the population of
the SEgame in (1).

Based on general optimization theory, an optimal solution to the GKproblem in
(2) must satisfy certain conditions. We first consider a general constrained opti-
mization problem

minx∈Rn f(x) (5)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

where f(x) is the objective function, ci(x) the constraint functions, E the set of
indices for equality constraints, and I the set of indices for inequality constraints.
Assume that f(x) and ci(x) are all continuously differentiable. Let x be a feasible
solution for the problem, i.e., ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I. Let E0(x) be
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the set of indices for the constraints active at x, i.e., E0(x) = E∪{i ∈ I : ci(x) = 0}
and C0(x) be the Jacobian of the constraints active at x, i.e., C0(x) = {∇ci(x) :
i ∈ E0(x)}T . We then have a set of first-order necessary conditions for an optimal
solution to the general constrained optimization problem in (5) as can be stated in
the following theorem. Here, we say that x∗ ∈ Rn is an optimal solution for the
general constrained optimization problem in (5), if x∗ is feasible, i.e., x∗ satisfies all
the constraints, and if f(x∗) ≤ f(x) for all x feasible in a small neighborhood U of
x∗.

Theorem 2.2 ([14]). Let x∗ ∈ Rn be an optimal solution to the general constrained
optimization problem in (5). Assume that the gradients of the constraints active at
x∗, i.e., the vectors in C0(x∗), are linearly independent. Then, there must be a set
of Lagrange multipliers λ∗ ∈ R|E| and µ∗ ∈ R|I| such that

∇xL(x∗, λ∗, µ∗) = 0, (6)

ci(x
∗) = 0, i ∈ E,

ci(x
∗) ≥ 0, i ∈ I,
µ∗i ≥ 0, i ∈ I,

µ∗i ci(x
∗) = 0, i ∈ I,

where L(x, λ, µ) is called the Lagrangian function of the problem in (5),

L(x, λ, µ) = f(x)−
∑
i∈E

λici(x)−
∑
i∈I

µici(x).

The conditions in (6) are called the KKT conditions of the general constrained
optimization problem in (5) named after W. Karush, H. Kuhn, and A. Tucker, who
first discovered and proved the conditions. As stated in Theorem 2.2, an optimal
solution x∗ of the general constrained optimization problem in (5) must satisfy the
KKT conditions, but a feasible solution x∗ that satisfies the KKT conditions, called
a KKT point, may not always be an optimal solution.

We now apply Theorem 2.2 to the GKproblem in (2). By changing the maxi-
mization problem to a standard minimization problem, we then have the objective
function for this problem f(x) = −xTAx/2. If we name the nonnegative con-
straints ci(x) = xi ≥ 0, i = 1, . . . , n to be the first to the nth constraints and
the equality constraint cn+1(x) = 1 −

∑
i xi = 0 to be the n+1th constraint,

we then have I = {1, . . . , n} and E = {n + 1}. Let x be a feasible solution for
the problem. Let E0(x) be the set of indices for the constraints active at x, i.e.,
E0(x) = {i ∈ I : ci(x) = 0}∪E and C0(x) be the Jacobian of the constraints active
at x, i.e., C0(x) = {∇ci(x) : i ∈ E0(x)}T . Then, E0(x) = {i ∈ I : xi = 0}∪{n+1}
and C0(x)T = {ei : i ∈ I, xi = 0} ∪ {−e}, where ei is the ith unit vector and
e =

∑
i ei. For any x ∈ S, there is at least one i ∈ I such that xi 6= 0 since x ≥ 0 and∑

i xi = 1. Therefore, E0 includes the index n+ 1 and a subset of indices {i ∈ I},
and C0(x) contains the vector −eT and a subset of vectors {eTi : i ∈ I}, which
are always linearly independent. We then have the following first-order necessary
conditions for the GKproblem in (2):

Theorem 2.3. Let A ∈ Rn×n be a symmetric fitness matrix and S = {x ∈ Rn :
x ≥ 0,

∑
i xi = 1} the set of all feasible solutions for the GKproblem in (2). If

x∗ ∈ S is an optimal solution for this problem, then there must be a scalar λ∗ such
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that

x∗i ≥ 0, λ∗ − (Ax∗)i ≥ 0, (7)

x∗i (λ∗ − (Ax∗)i) = 0, i = 1, . . . , n. (8)

Proof. The Lagrangian function for the GKproblem in (2) can be written in the
following form:

L(x, λ, µ) = −xTAx/2− λ(1−
∑
i

xi)− µTx.

where x ∈ Rn, λ ∈ R, µ ∈ Rn. Since for this problem the gradients of the active
constraints at any x ∈ S, i.e., the vectors in C0(x), are linearly independent, by
Theorem 2.2, if x∗ ∈ S is an optimal solution to the GKproblem in (2), then there
must be λ∗ ∈ R, µ∗ ∈ Rn such that

−Ax∗ + λ∗e− µ∗ = 0,∑
i

x∗i = 1,

x∗ ≥ 0,

µ∗ ≥ 0,

x∗Tµ∗ = 0.

By substituting µ∗ = λ∗e−Ax∗ in all the formulas, we then have

x∗ ≥ 0, λ∗e−Ax∗ ≥ 0,

x∗T (λ∗e−Ax∗) = 0,

which are equivalent to the conditions in (7) and (8).

Note that the conditions in (3) and (4) of Theorem 2.1 and in (7) and (8) of
Theorem 2.3 are the same. However, it does not imply that the SEgame in (1)
is equivalent to the GKproblem in (2), because the conditions are necessary and
sufficient for an optimal strategy for the SEgame in (1) but only necessary for an
optimal solution for the GKproblem in (2). Therefore, an optimal solution for the
GKproblem in (2) must be an optimal strategy for the SEgame in (1), while the
converse may not necessarily be true. We state this conclusion as a corollary from
Theorem 2.1 and 2.3 in the following.

Corollary 1. An optimal solution x∗ ∈ S for the GKproblem in (2) must be an
optimal strategy for the SEgame in (1), while an optimal strategy x∗ ∈ S for the
SEgame in (1) is only a KKT point for the GKproblem in (2), which is necessary
but not sufficient to be optimal for the GKproblem in (2).

In any case, the above two types of problems are closely related. The properties of
the optimal strategies for a SEgame can be investigated by examining the nature of
the optimal solutions to the corresponding GKproblem. For example, the existence
of the optimal strategy for a general game, which usually requires a more involved
theoretical proof [13], now becomes much easier to verify for a SEgame based on the
relationship between the SEgame and the GKproblem: There is always an optimal
solution for the GKproblem in (2), given the fact that the objective function of
the problem is a continuous function and the feasible set is a bounded and closed
simplex. Based on Corollary 1, an optimal solution for the GKproblem in (2) is an
optimal strategy for the SEgame in (1). Then, the next corollary follows:
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Corollary 2. There is always an optimal strategy or in other words, a Nash equi-
librium for a given SEgame in (1).

The fact that an optimal strategy for the SEgame in (1) maximizes the objective
function of the GKproblem in (2) has been recognized in [16, 19] and discussed in
great detail in [2]. However, they have focused on the equivalence between the two
types of problems when the strategy is evolutionarily stable, weak or strong. Here,
we have made a clear distinction between them and shown that the strategies for the
SEgame in (1) are not necessarily always be optimal solutions of the GKproblem in
(2). When not, they can be local minimizers or saddle points of the GKproblem in
(2). Though unstable, they can be interesting to analyze as well, as we will mention
again in our concluding remarks in Section 8. Besides, we have provided detailed
proofs for the necessary and sufficient conditions for both types of problems. Based
on these proofs, we have been able to obtain the Corollary 2 easily for the existence
of the equilibrium state of the SEgame in (1).

3. Second-order optimality conditions. We now focus on the GKproblem in
(2) and derive additional second-order necessary and sufficient conditions for its
optimal solutions, and extend them to the solutions for the SEgame in (1). These
conditions have been mentioned in several literature [16, 19] and especially analyzed
in great detail in [2]. Here we review the conditions, with some given in different
forms from those in [2]. They are in fact weaker conditions, but easier to verify,
which is important for the later development of our computational methods for
justifying the solutions and their stabilities for the GKproblems as well as the
SEgames. We will comment more on these differences in the end of this section.

Consider again the general constrained optimization problem in (5). Let x∗ be an
optimal solution to the problem. Let E0(x∗) be the set of indices for the constraints
active at x∗, i.e., E0(x∗) = E ∪ {i ∈ I : ci(x

∗) = 0} and C0(x∗) be the Jacobian of
the constraints active at x∗, i.e., C0(x∗) = {∇ci(x∗) : i ∈ E0(x∗)}T . We then have
the following second-order necessary conditions for x∗ to be an optimal solution to
the problem in (5).

Theorem 3.1 ([14]). Let x∗ ∈ Rn be an optimal solution to the general constrained
optimization problem in (5). Assume that C0(x∗) has full row rank m. Let Z0 ∈
Rn×(n−m) be the null space matrix of C0(x∗). Then,

yTZT
0 ∇2f(x∗)Z0y ≥ 0 for all y ∈ Rn−m, y 6= 0, (9)

i.e., the reduced Hessian of f(x) at x∗, ZT
0 ∇2f(x∗)Z0, must be positive semi-

definite.

Now consider a KKT point x∗ ∈ Rn for the general constrained optimization
problem in (5). Let E0(x∗) be the set of indices for the constraints strongly active
at x∗, i.e., E0(x∗) = E∪{i ∈ I : ci(x

∗) = 0 and µ∗i > 0} and C0(x∗) be the Jacobian
of the constraints strongly active at x∗, i.e., C0(x∗) = {∇ci(x∗) : i ∈ E0(x∗)}T ,
where µ∗i are the Lagrangian multipliers for the inequality constraints in the KKT
conditions. We then have the following second-order sufficient conditions for x∗ to
be a strict optimal solution to the problem in (5), i.e., f(x∗) < f(x) for all feasible
solution x 6= x∗ in some neighborhood U of x∗.

Theorem 3.2 ([14]). Let x∗ ∈ Rn be a KKT point for the general constrained
optimization problem in (5). Assume that C0(x∗) has full row rank m. Let Z0 ∈
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Rn×(n−m) be the null space matrix of C0(x∗). If

yTZ0T∇2f(x∗)Z0y > 0 for all y ∈ Rn−m, y 6= 0, (10)

i.e., the reduced Hessian of f(x) at x∗, Z0T∇2f(x∗)Z0, is positive definite, then x∗

must be a strict optimal solution to the problem in (5).

We now apply Theorem 3.1 and 3.2 to the GKproblem in (2). By changing
the maximization problem to a standard minimization problem, we then have the
objective function for the GKproblem in (2) to be f(x) = −xTAx/2. If we name
the nonnegative constraints ci(x) = xi ≥ 0, i = 1, . . . , n to be the first to the nth
constraints and the equality constraint cn+1(x) = 1 −

∑
i xi = 0 to be the n+1th

constraint, we then have I = {1, . . . , n} and E = {n + 1}. Let x∗ ∈ S be a KKT
point for the GKproblem in (2). Let E0(x∗) be the set of indices for the constraints
active at x∗, i.e., E0(x∗) = {i ∈ I : ci(x

∗) = 0} ∪ E and C0(x∗) be the Jacobian
of the constraints active at x∗, i.e., C0(x∗) = {∇ci(x∗) : i ∈ E0(x∗)}T . Then,
E0(x∗) = {i ∈ I : x∗i = 0} ∪ {n + 1} and C0(x∗)T = {ei : i ∈ I, x∗i = 0} ∪ {−e},
where ei is the ith unit vector and e =

∑
i ei. For any x∗ ∈ S, there is at least one

i ∈ I such that x∗i 6= 0 since x∗ ≥ 0 and
∑

i x
∗
i = 1. Therefore, E0 includes the

index n + 1 and a subset of indices {i ∈ I}, and C0(x∗) contains the vector −eT
and a subset of vectors {eTi : i ∈ I} as the rows, and is of full row rank. Note
also that the Hessian of the objective function ∇2f(x∗) = −A. We then have the
following second-order necessary conditions for x∗ to be an optimal solution to the
GKproblem in (2).

Theorem 3.3. Let x∗ ∈ S be an optimal solution to the GKproblem in (2). Let
the row rank of C0(x∗) be equal to m, and Z0 ∈ Rn×(n−m) the null space matrix of
C0(x∗). Then,

yTZT
0 AZ0y ≤ 0 for all y ∈ Rn−m, y 6= 0, (11)

i.e., the reduced Hessian of the objective function of the GKproblem in (2) at x∗,
ZT
0 AZ0, must be negative semi-definite.

Now consider a KKT point x∗ ∈ S. Let E0(x∗) be the set of indices for the
constraints strongly active at x∗, i.e., E0(x∗) = {i ∈ I : ci(x

∗) = 0 and µ∗i > 0}∪E
and C0(x∗) be the Jacobian of the constraints strongly active at x∗, i.e., C0(x∗) =
{∇ci(x∗) : i ∈ E0(x∗)}T , where µ∗i are the Lagrangian multipliers for the inequality
constraints in the KKT conditions for the GKproblem in (2), µ∗i = x∗TAx∗−(Ax∗)i
(see in the proof for Theorem 2.3). Then, E0(x∗) = {i ∈ I : x∗i = 0 and µ∗i >
0}∪{n+ 1} and C0(x∗)T = {ei : i ∈ I, x∗i = 0 and µ∗i > 0}∪{−e}, where ei is the
ith unit vector and e =

∑
i ei. Again, for any x∗ ∈ S, there is at least one i ∈ I such

that x∗i 6= 0 since x∗ ≥ 0 and
∑

i x
∗
i = 1. Therefore, E0 includes the index n + 1

and a subset of indices {i ∈ I}, and C0(x∗) contains the vector −eT and a subset
of vectors {eTi : i ∈ I} as rows, and is of full row rank. Note also that the Hessian
of the objective function ∇2f(x∗) = −A. We then have the following second-order
sufficient conditions for x∗ to be a strict optimal solution to the GKproblem in (2).

Theorem 3.4. Let x∗ ∈ S be a KKT point for the GKproblem in (2). Let the
row rank of C0(x∗) be equal to m. Let Z0 ∈ Rn×(n−m) be the null space matrix of
C0(x∗). Then x∗ must be a strict optimal solution to the GKproblem in (2) if

yTZ0TAZ0y < 0 for all y ∈ Rn−m, y 6= 0, (12)

i.e., the reduced Hessian of the objective function of the GKproblem in (2) at x∗,
Z0TAZ0, is negative definite.
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Note that the conditions in Theorem 3.3 and 3.4 are either necessary or sufficient
but not both. In fact, since the GKproblem in (2) is a quadratic program, it is
possible to establish a second-order necessary and sufficient condition for its optimal
solution. For this purpose, we go back to the general constrained optimization
problem (5) again. Let x ∈ Rn be any feasible solution for the problem. We define
the reduced tangent cone T (x) at x to be the set of vectors d ∈ Rn such that

∇ci(x)T d = 0, for all i ∈ E, (13)

∇ci(x)T d = 0, for all i ∈ I such that ci strongly active at x, (14)

∇ci(x)T d ≥ 0, for all i ∈ I such that ci weakly active at x. (15)

Then, based on general optimization theory, we know that if the general constrained
optimization problem in (5) is a quadratic program, a feasible solution x∗ ∈ Rn will
be a strict optimal solution to the problem if and only if dT∇2f(x∗)d > 0 for all
d ∈ T (x∗), d 6= 0 [3].

Let T0(x∗) = {d ∈ Rn : C0(x∗)d = 0} and T 0(x∗) = {d ∈ Rn : C0(x∗)d = 0},
where C0 and C0 are as defined in Theorem 3.1 and Theorem 3.2. Then, clearly,
T0(x∗) ⊆ T (x∗) ⊆ T 0(x∗). In particular, when all the active inequality constraints
are strongly active at x∗, C0(x∗) = C0(x∗) and T0(x∗) = T 0(x∗). It follows that if
the general constrained optimization problem in (5) is a quadratic program, then
x∗ will be a strict optimal solution to the problem if and only if dT∇2f(x∗)d > 0
for all d ∈ T (x∗) = T0(x∗) = T 0(x∗), d 6= 0.

We now consider the GKproblem in (2), which is a typical quadratic program
and ∇2f(x∗) = −A. Let Z0 and Z0 be the null space matrices of C0(x∗) and
C0(x∗), respectively. If all the active inequality constraints are strongly active at
x∗, C0(x∗) = C0(x∗), T0(x∗) = T 0(x∗), and Z0 = Z0. Let Z = Z0 = Z0. Then,
Z ∈ Rn×(n−m), and T (x∗) = T0(x∗) = T 0(x∗) = {d ∈ Rn : d = Zy : ∀y ∈ Rn−m},
where m is the row rank of C0(x∗) and C0(x∗). It follows that x∗ ∈ S is a strict
optimal solution to the problem if and only if yTZTAZy < 0 for all y ∈ Rn−m,
y 6= 0. More accurately, we have

Theorem 3.5. Let x∗ ∈ S be a KKT point for the GKproblem in (2). Assume that
the active inequalities in S are all strongly active at x∗. Then, x∗ ∈ S is a strict
optimal solution to the GKproblem in (2) if and only if

yTZTAZy < 0 for all y ∈ Rn−m, y 6= 0, (16)

i.e., the reduced Hessian of the objective function of the GKproblem in (2) at x∗,
ZTAZ, is negative definite.

The second-order optimality conditions presented in this section can be useful for
checking the optimality of the solutions for the GKproblems and hence the strategies
for the SEgames beyond the conditions given in Theorem 2.1 and 2.3. In order to
apply these conditions, all we need to do is to find the null space matrices Z0 or Z0

and the eigenvalues of the reduced Hessians ZT
0 AZ0 or Z0TAZ0 to see if they are

negative semi-definite or negative definite. For example, suppose that we have a
KKT point x∗ ∈ S for the GKproblem in (2) at which the only active constraint is
the equality constraint 1−

∑
i xi = 0. Then, C0(x∗) = C0(x∗) = {−eT }, for which

we can construct a null space matrix Z = Z0 = Z0 ∈ Rn×(n−1) such that Zi,j = 0
for all i and j, except for Zi,i = 1 and Zi+1,i = −1. Then the optimality of x∗ can
be tested by checking the eigenvalues of the reduced Hessian ZTAZ. If any of the
eigenvalues is positive, x∗ is not optimal, and if all the eigenvalues are negative, x∗
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must be optimal and even strictly optimal. Here, in both cases, x∗ remains to be
an optimal strategy for the corresponding SEgame in (1). However, the stability of
the solution may be different, as we will discuss in greater detail in next section.

Note that the second order necessary and sufficient conditions for the optimal
solutions of the GKproblem in (2) have been discussed in great detail in [2], where,
related to our discussion, there are two necessary and sufficient conditions: (1) A
feasible solution x∗ ∈ S for the GKproblem in (2) is a strict optimal solution if
and only if dTAd < 0 for all d ∈ T (x∗), d 6= 0, where T (x∗) is the reduced tangent
cone of the problem at x∗. (2) If all active inequalities for the GKproblem in (2)
are strongly active at x∗, then x∗ is a strict optimal solution if and only if ZTAZ
is negative definite, when T (x∗) becomes a linear space defined by matrix Z. In
our analysis, corresponding to (1), we have a necessary condition in Theorem 3.3
and sufficient condition in Theorem 3.4 separately. They are not equivalent to, but
are in fact weaker than the condition in (1). The reason for doing so is that the
condition in (1) is hard to test. It is equivalent to solving a matrix co-positivity
problem, which is NP-hard in general [12]. On the other hand, the condition in
Theorem 3.3 is equivalent to dTAd < 0 for all d ∈ T0(x∗), which is a smaller cone
than T (x∗), and is actually a linear space defined by Z0. Therefore, the condition
is equivalent to ZT

0 AZ0 negative definite, which can be verified in polynomial time
[18]. Likewise, the condition in Theorem 3.4 is equivalent to dTAd < 0 for all
d ∈ T 0(x∗), which is a larger cone than T (x∗), and is actually a linear space
defined by Z0. Therefore, the condition is equivalent to Z0TAZ0 negative definite,
which can again be verified in polynomial time. In our analysis, corresponding
to (2), we have an equivalent necessary and sufficient condition in Theorem 3.5.
They are equivalent because if all active constraints for the GKproblem in (2) are
strongly active at x∗, T (x∗) = T0(x∗) = T 0(x∗) and Z = Z0 = Z0. It follows that
dTAd < 0, for all d ∈ T (x∗), d 6= 0 is equivalent to ZTAZ negative definite. This
condition is polynomial time verifiable. We do not need to modify it. The second
order optimality conditions in Theorem 3.3, 3.4, and 3.5 are the basis for the later
development of our second order stability conditions in Section 5 and computational
methods in Section 6.

4. Evolutionarily stable states. An important concept in evolutionary game
theory is the evolutionary stability of an optimal strategy. It characterizes the
ability of a population to resist small changes or invasions when at equilibrium. Let
x∗ ∈ S be an optimal strategy. Then, the population is at equilibrium state x∗. Let
x ∈ S be another arbitrary strategy. Mix x∗ and x′ 6= x∗ so that the population
changes to a new state, εx+(1−ε)x∗, for some small fraction ε > 0. Then, x∗ is said
to be evolutionarily stable if it remains as a better response to the new “invaded”
population state. More accurately, we have the following definition.

Definition 4.1 ([16, 19]). An optimal strategy x∗ ∈ S for an evolutionary game
defined by a fitness matrix A is evolutionarily stable if there is a small number
ε′ ∈ (0, 1) such that for any x ∈ S, x 6= x∗,

x∗TA(εx+ (1− ε)x∗) > xTA(εx+ (1− ε)x∗), 0 < ε ≤ ε′. (17)

Usually, it is not easy to prove the evolutionary stability of the optimal strategies
for an evolutionary game based on its definition. A more straightforward condition
is to consider the strategies y in a small neighborhood U of the optimal strategy x∗
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and check if no y 6= x∗ prevails x∗ such that yTAy ≥ x∗TAy. It turns out that this
condition is necessary and also sufficient:

Theorem 4.2 ([16, 19]). An optimal strategy x∗ ∈ S for an evolutionary game is
evolutionarily stable if and only if there is a small neighborhood U of x∗ such that

yTAy < x∗TAy for all y ∈ U ∩ S, y 6= x∗. (18)

Note that a SEgame is an evolutionary game. Therefore, the condition in (18)
also applies to a SEgame. For a SEgame, x∗TAy = yTAx∗ since A is symmetric.
Then, yTAy < x∗TAx∗ for all y ∈ U ∩ S, y 6= x∗ since yTAx∗ ≤ x∗TAx∗ for all
y ∈ S. This implies that if x∗ is an evolutionary stable strategy for a SEgame, it
must be a strict local maximizer of the corresponding GKproblem. It turns out
that the converse is also true. We state this property in the following theorem, and
also provide a slightly different proof from those given in [16, 19].

Theorem 4.3 ([16, 19]). An optimal strategy x∗ ∈ S for a SEgame in (1) is
evolutionarily stable if and only if it is a strict local maximizer of the corresponding
GKproblem in (2).

Proof. Let x∗ ∈ S be an evolutionarily stable strategy for the SEgame in (1). Then,
the necessary condition follows directly from Theorem 4.2, as we have discussed
above.

To prove the sufficiency, we assume that x∗ is a strict local maximizer of the
GKproblem in (2). Then, there must be a neighborhood U = {y ∈ Rn : ‖y−x∗‖ <
ε′ < 2} of x∗ such that for any y ∈ U ∩ S, y 6= x∗, yTAy < x∗TAx∗. Let
x ∈ S be any mixed strategy. Let y = εx + (1 − ε)x∗, 0 < ε < 1. Note that
‖x − x∗‖ ≤ ‖x‖ + ‖x∗‖ < 2, and ‖y − x∗‖ = ε‖x − x∗‖ < 2ε. Then, for all
ε < ε′/2 < 1, y ∈ U and yTAy < x∗TAx∗. Note also that

yTAy = (εx+ (1− ε)x∗)TA(εx+ (1− ε)x∗)
= (x∗ + ε(x− x∗))TA(x∗ + ε(x− x∗))
= x∗TAx∗ + 2ε(x− x∗)TA(x∗ + ε(x− x∗)/2).

It follows that

(x− x∗)TA(x∗ + ε(x− x∗)/2) < 0 for all ε < ε′/2 < 1.

Replace ε/2 by ε and ε′/4 by ε′. Then,

(x− x∗)TA(x∗ + ε(x− x∗)) < 0 for all ε < ε′ < 1, i.e.,

xTA(x∗ + ε(x− x∗)) < x∗TA(x∗ + ε(x− x∗)) for all ε < ε′ < 1.

Since the above inequality holds for all x ∈ S, by Definition 4.1, x∗ must be an
evolutionarily stable strategy for the SEgame in (1).

5. Second-order stability conditions. By combining Theorem 4.3 with the
second-order optimality conditions for the optimal solutions to the GKproblem in
(2) derived in Section 3, we can easily obtain a set of second-order stability condi-
tions for the optimal strategies for the SEgame in (1): Let x∗ ∈ S be an optimal
strategy for the SEgame in (1). Let C0(x∗) be a matrix with {eTi : x∗i = 0} and
{−eT } being the rows, where ei is the ith unit vector and e =

∑
i ei.

Theorem 5.1. Let x∗ ∈ S be an evolutionarily stable strategy for the SEgame in
(1). Let the row rank of C0(x∗) be equal to m. Let Z0 ∈ Rn×(n−m) be the null space
matrix of C0(x∗). Then, ZT

0 AZ0 must be negative semi-definite.
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Proof. If x∗ ∈ S is an evolutionarily stable strategy for the SEgame in (1), then
by Theorem 4.3, it must be a strict local maximizer of the GKproblem in (2). It
follows from Theorem 3.3 that ZT

0 AZ0 must be negative semi-definite.

Now, let x∗ ∈ S be an optimal strategy for the SEgame in (1). Let C0(x∗) be a
matrix with {eTi : x∗i = 0 and µ∗i > 0} and {−eT } being the rows, where ei is the
ith unit vector, e =

∑
i ei, and µ∗i = x∗TAx∗ − (Ax∗)i.

Theorem 5.2. Let x∗ ∈ S be an optimal strategy for the SEgame in (1). Let the
row rank of C0(x∗) be equal to m. Let Z0 ∈ Rn×(n−m) be the null space matrix of
C0(x∗). If Z0TAZ0 is negative definite, then x∗ must be an evolutionarily stable
strategy.

Proof. If x∗ ∈ S is an optimal strategy for the SEgame in (1), then by Corollary 1,
it must be a KKT point for the GKproblem in (2). Therefore, if Z0TAZ0 is negative
definite, x∗ must be a strict local maximizer of the GKproblem in (2) by Theorem 3.4
and an evolutionarily stable strategy for the SEgame in (1) by Theorem 4.3.

Finally, let x∗ ∈ S be an optimal strategy for the SEgame in (1). If µ∗i > 0 for
all i such that x∗i = 0, i.e., all the active inequalities in S are strongly active at x∗,
then C0(x∗) = C0(x∗), and Z0 = Z0. Let Z = Z0 = Z0.

Theorem 5.3. Let x∗ ∈ S be an optimal strategy for the SEgame in (1). Assume
that the active inequalities in S are all strongly active at x∗. Then, x∗ ∈ S is an
evolutionarily stable strategy for the SEgame in (1) if and only if ZTAZ is negative
definite.

Proof. If x∗ ∈ S is an optimal strategy for the SEgame in (1), then by Corollary 1,
it must be a KKT point for the GKproblem in (2). Therefore, x∗ is a strict lo-
cal maximizer of the GKproblem in (2) if and only if ZTAZ is negative definite
by Theorem 3.5 and an evolutionarily stable strategy for the SEgame in (1) by
Theorem 4.3.

Although Theorem 5.1, 5.2, and 5.3 are simple extensions from Theorem 3.3, 3.4,
and 3.5, they have great implications in practice, for they can be used to check the
evolutionary stability of the optimal strategies for the SEgame in (1) directly. For
example, if the fitness matrix A is positive definite, the reduced Hessian ZT

0 AZ0

will never be negative semi-definite unless the dimension of the null space of C0(x∗)
is zero or in other words, unless the row rank of C0(x∗) is n. Then, x∗i = 0 for all
but one i, and the optimal and stable strategies of the SEgame in (1) can only be
pure strategies. On the other hand, if the fitness matrix A is negative definite, the
reduced Hessian Z0TAZ0 will always be negative definite unless the dimension of
the null space of C0(x∗) is zero, and then, all optimal and non-pure strategies for
the SEgame in (1) will be evolutionarily stable. Even when C0(x∗) is only of rank
one, i.e.,

∑
i x
∗
i = 1 but x∗i > 0 for all i, x∗ is still evolutionarily stable.

Note that an optimal strategy for the SEgame in (1) must be a KKT point of
the GKproblem in (2), but it may not be a local maximizer of the GKproblem in
(2). It could be a local minimizer or saddle point for the GKproblem in (2). Even if
it is a local maximizer of the GKproblem in (2), it may not be evolutionary stable
unless it is a strict local maximizer of the GKproblem in (2). In other words, as a
KKT point for the GKproblem in (2), an optimal strategy for the SEgame in (1)
could be a local maximizer, local minimizer, or saddle point of the GKproblem in
(2) while evolutionarily unstable.
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Since the second-order stability conditions in Theorem 5.1 and 5.2 are derived
from Theorem 3.3 and 3.4, they are in different but weaker forms from those given
in [2] as well. As we have mentioned in the end of Section 3, the advantage of
introducing these forms is that they can be checked more efficiently in polynomial
time than that given in [2]. The latter is equivalent to a matrix co-positivity problem
and can be NP-hard to compute. The condition in Theorem 5.3 is equivalent to the
one given in [2] since it can be verified in polynomial time as those in Theorem 5.1
and 5.2.

6. Computational methods. As we have discussed in previous sections, in order
to test the second-order optimality or stability conditions, all we need to do is to
form a reduced Hessian for the objective function of the GKproblem in (2) and see if
it is negative semidefinite or negative definite. The Hessian of the objective function
of the GKproblem in (2) is basically the fitness matrix A, while the reduced Hessian
is ZT

0 AZ0 or Z0TAZ0, where Z0 and Z0 are the null space matrices of C0(x∗) and
C0(x∗), respectively, for x∗ ∈ S to be tested, C0(x∗) = {eTi : x∗i = 0} ∪ {−eT } and
C0(x∗) = {eTi : x∗i = 0 and µ∗i > 0} ∪ {−eT }.

There are three major steps to complete a second-order optimality or stability
test: (1) Compute the null space matrices Z0 or Z0. (2) Form the reduced Hessians
ZT
0 AZ0 or Z0TAZ0. (3) Compute the eigenvalues of the reduced Hessians. In step

(1), it can be computationally expensive to find the null space matrix for a given
matrix using a general approach, say the QR factorization, which typically requires
O((n−m)n2) floating-point calculations [18] if Z0 or Z0 is a n× (n−m) matrix. In
step (2), each of the reduced Hessians involves two matrix-matrix multiplications,
which also requires O(2(n−m)n2) floating-point calculations. However, because of
the special structures of C0(x∗) and C0(x∗), the calculations in step (1) and step
(2) can actually be carried out in a very simple way, without much computational
cost:

First of all, the matrices C0(x∗) and C0(x∗) do not need any computation. They
can be constructed straightforwardly as follows: First, form an (n+ 1)× n matrix
with the ith row equal to eTi and the last row equal to −eT , where ei is the ith unit
vector and e =

∑
i ei. Then, for C0(x∗), remove row i such that x∗i > 0; for C0(x∗),

in addition to row i such that x∗i > 0, remove row i such that x∗i = 0 and µ∗i = 0.
We demonstrate the structure of C0(x∗) and C0(x∗) in the following matrix form:

C0(x∗) =


· · ·
· · ·

0 · · · 1 · · · 0
· · ·
· · ·

−1 · · · −1 · · · −1


⇐ eTi such that x∗i = 0

C0(x∗) =


· · ·
· · ·

0 · · · 1 · · · 0
· · ·
· · ·

−1 · · · −1 · · · −1


⇐ eTi such that x∗i = 0 and µ∗i > 0

Next, given the simple structure of C0(x∗) and C0(x∗), we in fact do not have to
compute the null space matrices Z0 and Z0, either. They can also be constructed
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easily: First, form an n × n identity matrix with row k replaced by −eT for some
k such that x∗k > 0. Then, remove the kth column; in addition, for Z0, also remove
column j such that x∗j = 0; for Z0, only remove column j such that x∗j = 0 and

µ∗j > 0. The following are the matrix forms of Z0 and Z0:

Z0 =


1 0 · · · 0 0

· · ·
−1 · · · −1 · · · −1

· · ·
0 0 · · · 0 1

 ⇐ row k such that x∗k > 0 for some k

(Remove column k. In addition, also remove column j such that x∗j = 0.)

Z0 =


1 0 · · · 0 0

· · ·
−1 · · · −1 · · · −1

· · ·
0 0 · · · 0 1

 ⇐ row k such that x∗k > 0 for some k

(Remove column k. In addition, remove only column j such that x∗j = 0 and
µ∗j > 0.)

It is easy to see that Z0 or Z0 are of full column rank n − m, where m is the
row rank of C0(x∗) or C0(x∗). It is also easy to verify that C0(x∗)Z0 = 0 and
C0(x∗)Z0 = 0, and therefore, Z0 and Z0 can indeed be used as null space matrices
of C0(x∗) and C0(x∗), respectively. Yet, the construction of Z0 and Z0 does not
have computational cost at all.

Finally, with Z0 and Z0 as given above, the computation of the reduced Hes-
sians ZT

0 AZ0 or Z0TAZ0 does not require full matrix-matrix multiplications. Let
H = ZTAZ with Z = Z0 or Z0. We show how H can be calculated with less compu-
tational cost: Let B = AZ. Then, H = ZTAZ = ZTB. Let Bj and Zj be column j
of B and Z, respectively. Assume that Zj = ei−ek for some i. Then, Bj = AZj can
be obtained by subtracting column k from column i of A with n floating-point cal-
culations. Since B has only n−m columns, the computation of B requires n(n−m)
floating-point calculations. Let Hi and ZiT be row i of H and ZT . Also assume
that ZiT = eTj − eTk for some j. Then, Hi = ZiTB can be obtained by subtracting
row k from row j of B with n − m floating-point calculations. Since H has only
n−m rows, the computation of H requires (n−m)2 floating-point calculations. By
putting the calculations for B and H together, we then obtain the computation for
the whole reduced Hessian ZTAZ to be (n−m)(2n−m) floating-point calculations,
which is much less costly than full matrix-matrix multiplications.

7. Games for genetic selection. A genetic selection problem and in particular,
the problem for allele selection at single or multiple genetic loci can be formulated
as a symmetric evolutionary game. Recall that the fitness of different allele pairs or
in other words, different genotypes at a given genetic locus can be given in a matrix
with the rows corresponding to the choices for the first allele and the columns to the
choices for the second allele in the allele pairs. If there are n different alleles, there
will be n different choices for both the first and second alleles, and the fitness matrix
will be an n×n matrix. With such a fitness matrix, the allele selection game can be
defined with the choices of the first and second alleles as the strategies for player I
and player II of the game, where player I can be considered as a specific individual
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and player II as a typical individual in the given population. If there are n different
alleles, the strategy for player I can be represented by a vector x ∈ Rn, x ≥ 0,∑

i xi = 1, and the strategy for player II by a vector y ∈ Rn, y ≥ 0,
∑

i yi = 1. Let
the fitness matrix be given by A ∈ Rn×n. Let S = {x ∈ Rn : x ≥ 0,

∑
i xi = 1}.

The average fitness of an allele choice x ∈ S in an allele population y ∈ S will be
xTAy. We then want to find an optimal choice of x∗ ∈ S such that

x∗TAx∗ ≥ xTAx∗ for all x ∈ S, (19)

i.e., in allele population x∗, any individual with allele choice x other than x∗ will
not have a better average fitness than allele choice x∗. Note that the fitness for
allele pair (i, j) usually is the same as that for (j, i). Therefore, the fitness matrix
for allele selection is typically symmetric, and the game in (19) is then a SEgame.

As we have discussed in previous sections, the selection game in (19) can be
studied with a generalized knapsack problem:

maxx∈Rn xTAx/2 (20)

subject to
∑

i xi = 1, x ≥ 0.

By Corollary 1, an optimal strategy of the selection game in (19) is equivalent to a
KKT point of the GKproblem in (20), and by Theorem 4.3, if it is evolutionarily
stable, it must correspond to a strict local maximizer of the GKproblem in (20), and
vice versa. In addition, the optimality and stability conditions derived in previous
sections all apply to the selection game in (19). We demonstrate the applications
of these conditions with several example selection games including some from the
study of genetic disorders.

We first consider a genetic locus with two alleles, one dominant and another
recessive. Many genetic traits are due to the genotypic differences in a specific
locus of two alleles. For example, in the well-known Mendel’s experiment, the color
of the flowers depends on the pair of alleles at certain genetic locus, one for pink
color and dominant, and another for white and recessive. Let the dominant allele
be denoted by A and recessive one by a. There can be four possible allele pairs,
AA, Aa, aA, and aa. Since A is dominant, AA, Aa, and aA will produce pink
flowers, while aa will produce white ones (see Fig. 2). According to the Hardy-
Weinberg Law, if pink flowers and white flowers have the same selection chance, the
distributions of the genotypes AA, Aa, aA, and aa and the alleles A and a in the
population will not change over generations. Otherwise, different genotypes may
have different fitness, and some may be selected while others eliminated [5].

Indeed, some alleles, either dominant or recessive, may cause genetic disorders.
When they are dominant, both homozygote and heterozygote pairs containing the
dominant allele will cause the disorders. When they are recessive, only the ho-
mozygote pairs of two recessive alleles will cause the problem. In either case, the
genotypes that cause the genetic disorders will have lower fitness than those that
do not. For example, cystic fibrosis is a disease caused by a recessive allele. The
normal allele or the dominant one codes for a membrane protein that supports the
transportation of ions for cells. It functions normally even when in the heterozygote
form with one abnormal allele. However, if both alleles are the recessive ones, there
will not be normal membrane protein expressions, giving rise to the cystic fibrosis
disease. A further example is the Huntington’s disease, a degenerative disease of
the nerve system, caused by a lethal dominant allele. Both homozygote and het-
erozygote pairs of alleles containing the dominant allele will be harmful. Only the
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homozygote pairs of the recessive alleles will be normal. Fortunately, this harmful
allele is rare in human population [5].

We now use a 2 × 2 matrix A to represent the fitness of the four possible pairs
of alleles, with A1,1 for AA, A1,2 for Aa, A2,1 for aA, and A2,2 for aa. We assume
that the fitness values for Aa and aA are the same. Therefore, A1,2 = A2,1, and
A is a symmetric matrix. Let x = (x1, x2)T be the strategy for choosing between
allele A and a. We then have a SEgame for this allele selection problem, to find an
optimal strategy x∗ ∈ S such that

x∗TAx∗ ≥ xTAx∗ for all x ∈ S, (21)

where S = {x ∈ R2 : x ≥ 0,
∑

i xi = 1}. We have also a corresponding GKproblem:

maxx∈R2 xTAx/2 (22)

subject to
∑

i xi = 1, x ≥ 0.

We analyze the solutions and their stabilities of this game for the following three
cases:

Case 1. A1,1 = A1,2 = A2,1 > A2,2: Here, the fitness of the homozygote pair
AA is the same as that of the heterozygote pairs Aa and aA, but the fitness of
the homozygote pair aa is lower than all other cases. This is a case such as that
for the cystic fibrosis disease, when the recessive gene causes illness. In this case,
the SEgame in (21) has a single solution x∗ = (1, 0)T , and x∗TAx∗ = A1,1. This
implies that the population will eventually reach an equilibrium state with only the
dominant gene A left. Let x ∈ S be any other possible strategy. It is easy to verify
that

xTAx = A1,1x
2
1 +A1,2x1x2 +A2,1x1x2 +A2,2x

2
2 < A1,1 = x∗TAx∗,

for all x 6= x∗, i.e, x2 > 0. Therefore, x∗ is a strict local maximizer of the GKproblem
in (22), and by Theorem 4.3, it is an evolutionarily stable state.

Case 2. A1,1 = A1,2 = A2,1 < A2,2: Here, the fitness of the homozygote pair
AA is equal to that of the heterozygote pairs Aa and aA, but lower than that of
the homozygote pair aa. This is a case such as that for the Huntington’s disease,
when the dominant gene causes illness. In this case, the SEgame in (21) has two
solutions: x∗ = (1, 0)T with x∗TAx∗ = A1,1 and x∗ = (0, 1)T with x∗TAx∗ = A2,2.
The first solution implies that the population may eventually reach an equilibrium
state with only the dominant gene A left. The second solution implies that the
population may eventually reach an equilibrium state with only the recessive gene
a left. Let x ∈ S be any other possible strategy. For the first solution x∗ = (1, 0)T ,
It is easy to verify that

xTAx = A1,1x
2
1 +A1,2x1x2 +A2,1x1x2 +A2,2x

2
2 > A1,1 = x∗TAx∗,

for all x 6= x∗, i.e, x2 > 0. Therefore, x∗ is not even a local maximizer of the
GKproblem in (22), and by Theorem 4.3, it is not evolutionarily stable. For the
second solution x∗ = (0, 1)T , It is easy to verify that

xTAx = A1,1x
2
1 +A1,2x1x2 +A2,1x1x2 +A2,2x

2
2 < A2,2 = x∗TAx∗,

for all x 6= x∗, i.e, x1 > 0. Therefore, x∗ is a strict local maximizer of the GKproblem
in (22), and by Theorem 4.3, it is an evolutionarily stable state.

Case 3. A1,2 = A2,1 > A1,1 > A2,2: Here, the fitness of the homozygote pairs
AA and aa are lower than that of the heterozygote pairs Aa and aA. Such a case
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could happen for example in the study of malaria infection, where A represents the
wild-type gene, while a represents the mutated gene. Individuals with AA types
are susceptible to malaria infection, while those with Aa and aA types appear to
be able to resist the infection. However, when aa types are formed, the individuals
will develop a serious disease called the sickle cell disease. In any case, the SEgame
in (21) has a single solution x∗ = (x∗1, x

∗
2), x∗1 > 0, x∗2 > 0, and

x∗1 = (A1,2 −A2,2)/(A1,2 +A2,1 −A1,1 −A2,2)

x∗2 = (A1,1 −A1,2)/(A1,2 +A2,1 −A1,1 −A2,2)

Since both x∗1 > 0 and x∗2 > 0, it is easy to construct a null space matrix Z =
(1,−1)T , and see that ZTAZ = A1,1 + A2,2 − A1,2 − A2,1 < 0. Therefore, by
Theorem 3.5, x∗ must be a strict local maximizer of the GKproblem in (22), and
by Theorem 4.3 or 5.3, it is an evolutionarily stable state.

Next, we consider a more complicated case related to genetic mutations for
malaria infections. In Africa and Southeast Asia, where human population has
been exposed to serious malaria infection, certain genetic mutations have survived
for a gene that codes the hemoglobin proteins of blood cells. These mutations resist
malaria infection, but may cause other serious illness as well when in homozygote
forms such as the sickle cell disease. Here we consider three well-studied allele forms
of this gene, the wild type, S-mutation, and C-mutation, denoted by W , S, and
C alleles. The normal genotype would be WW , but subnormal ones include WS,
WC, and SC, which may have malaria resistance functions. Other forms, SS and
CC, may cause other illness. These functions can be described with a 3× 3 fitness
matrix A, with rows corresponding to the choices of W , S, and C for the first allele,
and the columns to the choices of W , S, and C for the second allele, when forming
the allele pairs or in other words, the genotypes. Based on an estimate given in
[17], this fitness matrix can be defined as follows:

W S C
W 0.89 1.00 0.89
S 1.00 0.20 0.70
C 0.89 0.70 1.31

From this matrix, we see that the genotype WS has good fitness, while CC is the
best. The genotype WW is not very good because it is susceptible to malaria infec-
tion, while SS is the worse because it causes the sickle cell disease. We may wonder
how the alleles will eventually distribute in the population under such selection
pressures. We have solved a SEgame with this fitness matrix and obtained three so-
lutions: x(1) = (0, 0, 1)T , x(2) = (0.879, 0.121, 0)T , and x(3) = (0.832, 0.098, 0.070)T .
The first solution suggests that the population may end up with all C alleles since
the genotype CC seems have the best fitness. The second solution suggests a large
portion of W alleles, with a small percentage of S alleles, which increases the resis-
tance to malaria infection, yet does not have a large chance for SS combinations.
The third solution means that the three alleles may co-exist.

We have also solved a corresponding GKproblem with the above matrix A, using
a Matlab code. It turned out that we have only found two local maximizers for
the GKproblem corresponding to x(1) and x(2). At least, computationally, we have
not found x(3) as a local maximizer, which suggests that x(1) and x(2) may be
evolutionarily stable, while x(3) may not. Indeed, at solution x(3), the only active
constraint for the GKproblem is

∑
i xi = 1. The null space matrix Z for the
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Jacobian of this equation can be constructed as

Z =

 1 0
0 1
−1 −1

 .

We then have the reduced Hessian of the GKproblem to be

ZTAZ =

(
0.42 0.72
0.72 0.11

)
,

and the eigenvalues of this reduced Hessian are −0.4715 and 1.0015. By Theo-
rem 3.5, x(3) is not a local maximizer of the GKproblem and hence by Theorem 4.3
or 5.3, it is not evolutionarily stable.

Based on the above analysis, we would predict that x(3) for the co-existing of
three alleles in the population will never happen because it is unstable. The solution
x(1) corresponds to a global maximizer of the GKproblem. Based on our simulation
(not shown), it also has a large attraction region in the sense that most solutions
would converge to x(1) unless the initial value for C allele is very small, say less than
5%. In current population, C allele is indeed rare and therefore, the population does
not have much chance to evolve to this state. The population have typically a large
percentage of W alleles, a small percentage of S alleles, and some rare C alleles,
and therefore, we would predict that x(2) will be the most likely and stable state of
the population in the end.

8. Concluding remarks. In this paper, we have reviewed the theory for obtain-
ing optimal and stable strategies for SEgames, and provided some new proofs and
computational methods. In particular, we have reviewed the relationship between
the SEgame and the GKproblem, and discussed the first and second order neces-
sary and sufficient conditions that can be derived from this relationship for testing
the optimality and stability of the strategies. Some of the conditions are given in
different forms from those in previous work and can be verified more efficiently. We
have also derived more efficient computational methods for the evaluation of the
conditions than conventional approaches. We have demonstrated how these condi-
tions can be applied to justifying the strategies and their stabilities for a special
class of genetic selection games including some in the study of genetic disorders.
Further studies can be pursued in the following possible directions though:

First, novel methods can be developed for solving special types of SEgames and
especially for obtaining the evolutionarily stable strategies for the games by solv-
ing some special classes of GKproblems. For example, if the fitness matrix for a
SEgame is negative definite, then the corresponding GKproblem is a strictly convex
quadratic program and can be solved efficiently using some special algorithms [4].
Further, the solution is guaranteed to be a strict local maximizer for the GKproblem
and hence an evolutionarily stable strategy for the SEgame. A more complicated
case is when the fitness matrix is positive definite. Then, only pure strategies may
be evolutionarily stable. A special algorithm can then be developed to only find the
solutions for the GKproblem that correspond to the pure strategies of the SEgame.

Second, in Theorem 3.5 and 5.3, we have stated two optimality and stability
conditions. They are necessary and sufficient, but require all active constraints to
be strongly active at x∗, when C0(x∗) = C0(x∗), T0(x∗) = T 0(x∗), and Z0 = Z0.
However, in practice, this assumption may not hold. A more general necessary and
sufficient condition, without the above assumption, is to require dTAd < 0 for all
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d ∈ T (x∗), d 6= 0, where T (x∗) is the reduced tangent cone at x∗, as given in [2].
As we have mentioned in previous sections, this condition is not easy to test. It is
equivalent to testing the copositivity of a matrix, which is difficult in general [1, 12].
But still, an efficient algorithm may be developed for SEgames and GKproblems
for small sizes of problems or problems with special structures.

Third, it is not so hard to verify that the GKproblem is NP-hard in general,
because the maximum clique problem can be formulated as a GKproblem [11, 15].
However, how to extend this result to the SEgame is not so clear, because the
SEgame is not exactly equivalent to the GKproblem. Several related questions are
asked: is any maximal clique a local maximizer of the GKproblem for the maximum
clique problem? If not, what condition is needed? If yes, is it a strict local max-
imizer? Is the maximum clique a global maximizer? Is it an evolutionarily stable
strategy for the corresponding SEgame? We are interested in all these questions
and are trying to find their answers.

Fourth, though not equivalent, the correspondence between the SEgame and
GKproblem is interesting. A similar relationship may be found between a class of
nonlinear games and nonlinear optimization problems. Indeed, we can define an n-
strategy two-player game by a fitness function xTπ(y) with π(y) being a nonlinear
function. The game then becomes a nonlinear game. If π(y) is a gradient field,
i.e., there is a function f(y) such that ∇f(y) = π(y), then, an optimal strategy
x∗ ∈ S such that x∗Tπ(x∗) ≥ xTπ(x∗) for all x ∈ S corresponds to an optimal
solution x∗ ∈ S such that f(x∗) ≥ f(x) for all x in a small neighborhood of x∗,
x ∈ S. Then, it would be interesting to see what additional relationships between
the SEgame and GKproblem can be extended to their nonlinear cases.

Finally, we have demonstrated the applications of SEgames to allele selection
at single genetic loci. They can be extended to alleles at multiple genetic loci, if
there is no mutation or recombination. In this case, an individual can be identified
by a sequence of alleles at the multiple loci. In other words, a selection strategy
will be a choice of a specific sequence of alleles. This would certainly increase the
strategy space substantially. For example, if there are two loci G1 and G2, with two
possible alleles A and a for G1 and two other possible ones B and b for G2, then
there will be four possible sequences of alleles for the two loci: AB, Ab, aB, ab, each
corresponding to one pure strategy. In general, if there are m loci Gi, i = 1, . . . ,m,
with mi possible alleles for Gi, then there will be n =

∏
i=1:mmi possible sequences

of alleles. The number of pure strategies and hence the dimension of the game
will be n, which can be a large number. In any case, in practice, mutation and
recombination often are not negligible, and therefore, our model must incorporate
such effects. The topics could include other so-called linkage disequilibrium factors,
but they are all beyond the scope of this paper [17]. We will pursue these issues in
our future efforts.
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