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Abstract. Based on an established mathematical model for the behavior of

large crowds, a new model is derived that is able to take into account the
statistical variation of individual maximum walking speeds. The same model is

shown to be valid also in traffic flow situations, where for instance the statistical

variation of preferred maximum speeds can be considered. The model involves
explicit bounds on the state variables, such that a special Riemann solver is

derived that is proved to respect the state constraints. Some care is devoted
to a valid construction of random initial data, necessary for the use of the

new model. The article also includes a numerical method that is shown to

respect the bounds on the state variables and illustrative numerical examples,
explaining the properties of the new model in comparison with established

models.

1. Introduction. Since many years, increasing attention is given to the modeling
and simulation of traffic flow and crowd dynamics - two phenomena that are closely
related from a modeling point of view. Starting in the 1950s, first continuum models
for traffic flow appeared, see [15, 17]. Subsequently, more refined models based on
fluid dynamical approaches appeared, but suffered from a severe drawback of infor-
mation reaching drivers from behind, see [9, 2, 12] for a discussion of this problem
and new approaches to overcome this inconsistency. More recent are approaches to
continuum modeling of crowd dynamics and pedestrian flows, see e.g. [13, 3, 5] and
the review article [4].

As already addressed in [9], vehicles (and pedestrians) are not uniform particles,
but have individual properties, such as different braking behavior or individual
maximum speeds. This fact is also addressed in a recent review article [4], where
the authors remind that more care should be devoted to the right choice of scales.
Especially, they point out some important points that should be taken into account
during the modeling approach. Among others, they state that

1. The systems are discrete with finite degrees of freedom, but models should
allow for the evaluation of macroscopic quantities.

2. The number of individuals in the system is not large enough to allow the use
of continuous distributions.

3. The interactions of individuals are not localized to the point where the indi-
vidual is at the moment, but are adjusted to the traffic conditions in front.
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While the property of item 3. is addressed by recent models for traffic and pedestrian
flows (see e.g. [13, 1, 3, 5, 11]), there are only few approaches that are able to take
into account at least part of the suggestions of items 1. and 2., see e.g. [8, 6] where
micro- and macroscale dynamics are combined.

In the following, we propose a new model, that can be seen as a hybrid system,
taking into account the macroscopic behavior of cars or pedestrians, but allowing for
some individual properties that are transported with the flow. In this presentation,
we limit the individual property on a variation of the maximum speed or the speed
law respectively. However, the model generally allows also for the inclusion of
other individual properties, while the additional costs amount only in the tracking
of the individual property, what can be numerically performed by suitable convex
combinations.

Although we focus on applications related to crowd dynamics and traffic flow,
the general idea of hybrid models, containing macroscopic dynamics and individual
properties, can be directly transfered to a wide class of models, especially related
to biological applications, where individual differences play important roles in the
behaviour and evolution of the systems. The reason to focus on the two aforemen-
tioned applications lies in the fact that the macroscopic equations are relatively
simple and well understood. This allows us to clearly see and state the important
new features of the hybrid model.

Due to the fact that we allow for individual properties, the question of valid
initial data arises. Therefore, we propose also a method to generate random initial
data for the new model, based on the underlying modeling context.

The model is based on the deterministic non-local crowd dynamics model, pro-
posed in [13, 5], given by

∂tρ+ div (ρv(ρ) (ν(x)− εI(∇η ∗ ρ))) = 0. (1)

For this conservation law, existence and uniqueness of weak entropy solutions to the
Cauchy problem in several space dimensions are provided in [5], see also section 4
for a short review of these results. The above model implies that all persons move
according to the same speed law v(ρ). The desired direction ν(x) is modified by
a nonlocal term I, involving a weighted average of the pedestrian density around
point x at time t. This modification has the effect that individuals approaching
a zone of higher density try to avoid this region by deviating from their shortest
paths.

In reality, the assumption of equal maximum speed is not true. Especially the
maximum speed maxρ v(ρ) of two persons differs by reasons of e.g. age, occupation
and target. Persons, on their way to work will for instance try to walk faster even
in high density traffic conditions than individuals walking their dogs or talking to
peers. To take into account the different maximum walking speeds, we propose a
modified version of (1), which we will call α-model in the following.

∂tρ+ div (ρV(ρ, α, x)) = 0 (2a)

∂tα+ V(ρ, α, x) ·∇α = 0 (2b)

V(ρ, α, x) = v(ρ, α) (ν(x)− εI(∇η ∗ ρ)) (2c)

0 ≤ ρ ≤ ρmax αmin ≤ α ≤ αmax (2d)

Hereby, α(t, x) denotes the maximal speed of the person located in position x at
time t. Once α(0, x) is chosen, it is transported with the flow by equation (2b) and
can therefore be seen as a characteristic value moving with the respective person
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along the path specified by the velocity field V(ρ, α, x). Since we do not have a
maximum principle for systems of conservation laws, we impose the boundedness
of density and maximal velocities in (2d). In Section 2.1, we show that (at least
in one space dimension) the bound on α is automatically fulfilled by the solution,
while the lower bound on ρ is necessary to avoid negative densities.

For the speed laws v(ρ) and v(ρ, α), we impose the following condition.

(v) v ∈ C2(R,R) is non-increasing and fulfills v(0) = vmax and v(ρmax) = 0
for fixed vmax ∈ R and ρmax ∈ R+.

(vα) v ∈ C2(R× R+,R) is non-increasing in the first variable and non-decrea-
sing in the second variable and fulfills v(0) = α and v(ρmax) = 0 for fixed
ρmax ∈ R+.

This assures that the velocity decreases with increasing density and that any move-
ment breaks down at maximum density. Examples for possible choices of the speed
law v(ρ, α) are for instance given by one of the following functions

v(ρ, α) = α

(
1− ρ

ρmax

)
, v(ρ, α) = min{vmax, α}

(
1− ρ

ρmax

)
, (3)

see also Figure 1.

Figure 1. Illustration of two possible choices of individual speed
laws. The left choice uses different slopes for different values of α,
while the right version uses the same slope, but is cut off at the
maximal speed α.

In a more general setting, we can write model (2) in the form

∂tρ+ div (ρV(ρ, α, x, t)) = 0 (4a)

∂tα+ V(ρ, α, x, t) · ∇α = 0 (4b)

0 ≤ ρ ≤ ρmax 0 < αmin ≤ α ≤ αmax (4c)

in a domain D ⊂ Rd. This setting also covers the case of traffic flow, where we
assign different values of maximal speed to different cars or drivers. In this case,
we can choose V(ρ, α, x, t) = v(ρ, α), for v(ρ, α) such that (vα) is fulfilled. Possible
choices of v(ρ, α) in the case of traffic flow include the examples given in (3). In
section 2, we show that the α-model for traffic flow is able to reproduce the sudden
appearance of zones of higher traffic density, even when we start with homogeneous
initial density (see [19, 20] for empirical studies of this phenomenon). These regions
of higher traffic density turn out to be the result of small differences in the maximal
speed of the cars.
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Note that in [1], also nonlocal choices for V(ρ, α, x, t) are proposed, similar to
the case of crowd dynamics. However, the local model is more common in traffic
simulations, so that we chose to focus on the local model for traffic flow and show
the behavior of the nonlocal case only for pedestrian movements.

The paper is organized as follows. In section 2, we discuss the one dimensional
Riemann problem for a local version of (4) and present a finite volume method for
its numerical treatment. We show that the numerical scheme respects the bounds
on ρ and α imposed by (4c) and present numerical examples explaining the effect
of the additional variable α. It can be seen from the results, that the inclusion
of α produces a much more realistic behavior of the solution than the standard
Lighthill-Witham-Richards (LWR) model (see [15]).

Section 3 is devoted to the generation of random initial data for ρ and α. Here es-
pecially the generation of random data for the initial density distribution is inspired
by the underlying modeling context, since we cannot define probability spaces on (a
subset of) infinite dimensional spaces like L1(D). The construction of random ini-
tial data will then be used to compare the α-model (2) and the standard model (1)
in an evacuation scenario in section 4.

2. Results on the α-model in one space dimension.

2.1. The Riemann solver for the one dimensional case. To allow a deeper
understanding of the structure of solutions to the α-model, we derive some results
on the one dimensional case first. To this end, consider the following system of
conservation laws in one space dimension.

∂tρ+ ∂x (ρv(ρ, α)) = 0 (5a)

∂tα+ v(ρ, α)∂xα = 0 (5b)

v(ρ, α) = α(1− ρ) (5c)

0 ≤ ρ ≤ 1 0 < αmin ≤ α ≤ αmax (5d)

Here and in the following we assume ρmax = 1, which can be obtained from 4 by
scaling. Denoting u := (ρ, α)T and f(u) := ρv(ρ, α), we see that the Jacobi matrix
of the above system

A =

(
v(ρ, α)− αρ ρ(1− ρ)

0 v(ρ, α)

)
admits two real eigenvalues

λ1(ρ, α) = v(ρ, α)− αρ and λ2(ρ, α) = v(ρ, α)

with corresponding eigenvectors

r1 =

(
1
0

)
and r2 =

(
1− ρ
α

)
.

From these eigenvalue-eigenvector pairs it is obvious that λ1(ρ, α) ≤ λ2(ρ, α) and
system (5) is strictly hyperbolic as long as ρ > 0, that is as long as no vacuum
occurs.

We proceed now by studying the wave structure of the solution to Riemann
problems, i.e. to (5) with initial conditions of the form

(ρ, α)(0, x) =

{
(ρ−, α−) x ≤ 0
(ρ+, α+) x > 0

. (6)
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From the eigenvalue-eigenvector pairs, we deduce

∇uλ1(u) · r1 = −2α ∇uλ2(u) · r2 = 0.

The first wave family is therefore genuinely nonlinear, while the second family is
linear degenerate, thus producing only contact discontinuities. Since system (5)
consists of one conservative and one non-conservative equation, we have to follow
arguments similar to those in [10] to give a meaning to the non-conservative product
v(ρ, α)∂xα. Since the second wave family is linearly degenerate, we deduce that
the velocity satisfies v(ρ̃, α̃) = v(ρ+, α+), where (ρ̃, α̃) is the middel state to be
determined. From a modeling point of view it is furthermore reasonable to assume
that α̃ = α−. This guarantees that the driver does not change his maximum desired
speed during interactions with other drivers and implies that the solution coincides
with the classical LWR solution if α+ = α−. Note that the choice of (ρ̃, α−) as
middel state allows to define a path Φ that satisfies the requirements of the results
in [10] and thus yields a well-posed definition of the non-conservative product.

The two possible wave structures of a solution to the Riemann problem (5), (6)
are illustrated in Figure 2.

Figure 2. Illustration of the two wave patterns that can arise in
the solution of Riemann problems of system (5). Left: Rarefaction
wave (solid) and contact discontinuity (dashed). Right: Shock wave
(solid) and contact discontinuity (dashed).

As stated above, denoting by s2 the speed of the contact discontinuity, it is easy
to see that the solution across such a contact discontinuity has to fulfill

s2 = v(ρ+, α+) = v(ρ̃, α−).

From v(ρ+, α+) = v(ρ̃, α−), we can therefore deduce

v(ρ+, α+) = α−(1− ρ̃)

and thus

ρ̃ = 1− v(ρ+, α+)

α−
= ρ− +

1

α−
(v(ρ−, α−)− v(ρ+, α+)) .

Obviously, we have ρ̃ > 0 as long as v(ρ+, α+) < α−. This implies especially that
the model allows the appearance of vacuum states also for initial data away from
vacuum. We will see below, that this is the case only for strong rarefaction waves.
In case of negative values of ρ̃, we have to modify the solution of the Riemann
problem to respect the lower bound on ρ imposed by the model in (2d), see Case
2b below.
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With this in mind, we can now give the exact solution to the Riemann problem,
depending on the relation of the initial velocities v(ρ−, α−) and v(ρ+, α+).

Case 1. v(ρ−, α−) > v(ρ+, α+), ρ− > 0, ρ+ > 0. In this case, the solution consists
of a shock wave, connecting (ρ−, α−) and (ρ̃, α−) followed by a contact discontinuity
connecting (ρ̃, α−) and (ρ+, α+). Note that we obtain ρ− ≤ ρ̃ ≤ 1 for all choices of
(ρ+, α+) and (ρ−, α−) fulfilling the Case 1 condition on the velocity. To determine
the speed s1 of the shock wave, we note that α is constant across waves of the first
family. Therefore, we require that ρ fulfills the standard Rankine-Hugoniot jump
condition for the conservative equation (5a), yielding

s1 = α−
ρ̃(1− ρ̃)− ρ−(1− ρ−)

ρ̃− ρ−
such that the solution is given by

ρ(t, x) =


ρ− if x ≤ s1(ρ−, α−)t

ρ̃ if s1t < x ≤ v(ρ+, α+)t

ρ+ if v(ρ+, α+)t < x

,

α(t, x) =

{
α− if x ≤ v(ρ+, α+)t

α+ if v(ρ+, α+)t < x
.

Case 2a. v(ρ−, α−) ≤ v(ρ+, α+) ≤ α−, ρ− > 0, ρ+ > 0. In this case, the solution
consists of a rarefaction wave of the first wave family and a contact discontinuity
of the second wave family. Using the self similarity of solutions to the Riemann
problem, we can explicitly compute the rarefaction wave in the solution and obtain

ρ(t, x) =



ρ− if x ≤ λ1(ρ−, α−)t

ρ− −
1

2α−

(x
t
− λ1(ρ−, α−)

)
if λ1(ρ−, α−)t < x ≤ λ1(ρ̃, α−)t

ρ̃ if λ1(ρ̃, α−)t ≤ x ≤ v(ρ+, α+)t

ρ+ if v(ρ+, α+)t < x

,

α(t, x) =

{
α− if x ≤ v(ρ+, α+)t

α+ if v(ρ+, α+)t < x
.

Thus, the rarefaction wave connects the states (ρ−, α−) and (ρ̃, α−) and is fol-
lowed by the contact discontinuity connecting (ρ̃, α−) and (ρ+, α+). The condition
v(ρ+, α+) ≤ α− now assures that ρ̃ ≥ 0, and therefore ρ(t, x) ≥ 0 for all (t, x) and
ρ(t, x) = 0 only when λ1(ρ̃, α−) ≤ x ≤ v(ρ+, α+)t and v(ρ+, α+) = α+.

Case 2b. v(ρ−, α−) ≤ v(ρ+, α+), v(ρ+, α+) > α−, ρ− > 0, ρ+ > 0. In this case,
we also expect a rarefaction wave followed by a contact discontinuity connecting
the initial states (ρ−, α−) and (ρ+, α+). But contrary to Case 2a above, this case
yields ρ̃ < 0. This indicates that we have to modify the solution of the Riemann
problem to guarantee that ρ(t, x) remains non-negative in the whole computational
domain.

Note that system (5) is no longer hyperbolic as soon as vacuum states appear.
Especially, it is not clear any more if we have a unique solution involving vacuum
states. This gives some freedom in the choice of modification we can perform to
guarantee the lower bond on ρ. We therefore choose to cut off the rarefaction wave
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once ρ−− 1
α−

(
x
t − v(ρ−, α−)

)
= 0, i.e. we set the solution ρ(t, x) = 0 in the interval

α−t ≤ x ≤ v(ρ+, α+).

ρ(t, x) =



ρ− if x ≤ λ1(ρ−, α−)t

ρ− −
1

2α−

(x
t
− λ1(ρ−, α−)

)
if λ1(ρ−, α−)t < x < α−t

0 if α−t ≤ x ≤ v(ρ+, α+)

ρ+ if v(ρ+, α+)t < x

,

This procedure unfortunately introduces a new problem, since now the state to
the left of the contact discontinuity (0, α−) does not fulfill the jump condition
v(ρ+, α+) = α−(1 − ρ−) = α−. However, this is only a formal problem, since an
empty space does not contain any car, and therefore α is formally not defined there.
Therefore, we impose the additional condition that an empty space to the left (i.e.
behind the car) does not influence the driver’s behavior, see Case 3 below for more
details on solutions with vacuum states. This means that we simply define the
following structure of α

α(t, x) =

{
α− if x ≤ v(ρ+, α+)t

α+ if v(ρ+, α+)t < x
.

Formally, the solution to the Riemann problem in Case 2b is thus composed of
two waves: one rarefaction wave, connecting (ρ−, α−) and (0, α−), and a contact
discontinuity, connecting (0, α+) and (ρ+, α+). The latter does formally not fulfill
the jump condition required for contact discontinuities, but this condition does
not hold in vacuum situations. Instead we can interpret the jump from (0, α−)
to (ρ+, α+) as the result of the fusion of a wave of the first family and a contact
discontinuity, since their speeds coincide at vacuum states. The special structure of
this solver results from the positivity constraint in the model (5).

Case 3. ρ− > 0, ρ+ = 0. We consider now the case that a car faces an empty region.
In that case, we cannot uniquely1 assign any value of α to the empty region, since
α is a property attached to a car (no car - no individual properties). Furthermore,
since the system is not hyperbolic in the presence of vacuum, the solution of the
Riemann problem is no longer unique and we have to choose how the solution should
behave.

From a modeling point of view, it is natural to assume that the car starts to
accelerate until it reaches its maximal speed. To assure that this is possible, we
formally assign α+ := αmax, thus assuming that any car in the empty region would
travel as fast as possible. Comparing the resulting velocities, we obtain v(ρ−, α−) =
α−(1 − ρ−) < α− ≤ αmax = v(ρ+, α+). Analogously to Case 2b, the solution is
therefore given by a rarefaction wave connecting (ρ−, α−) and (0, α−) and a contact
discontinuity, connecting (0, α−) and (0, αmax).

ρ(t, x) =


ρ− if x ≤ λ1(ρ−, α−)t

ρ− −
1

2α−

(x
t
− λ1(ρ−, α−)

)
if λ1(ρ−, α−)t < x ≤ α−t

0 if α−t < x

,

1This non-uniqueness is different from the well-known non-uniqueness of solutions involving
non-conservative products, as it occurs even once a path is defined that guarantees the well-posed

definition of the non-conservative product.
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α(t, x) =

{
α− if x ≤ α−t
αmax if α−t < x

.

Case 4. ρ− = 0, ρ+ > 0. In this case, an empty space occurs behind the car.
From a modeling point of view it is natural to assume that the car is not affected
by events from behind, especially not from empty space behind. In the present
case, this means that the impose that the solution to the α-model coincides with
the solution of the standard LWR model. Therefore, we proceed as in Case 2b and
define the solution by

ρ(t, x) =

{
0 if x ≤ v(ρ+, α+)t

ρ+ if b(ρ+, α+)t < x
,

α(t, x) =

{
αmax if x ≤ v(ρ+, α+)t

α+ if v(ρ+, α+)t < x
.

Case 5. ρ− = 0, ρ+ = 0. Again, we impose that the solution must coincide with
the solution of the standard LWR model (5a) with v(ρ) = v(ρ, ᾱ) = ᾱ(1 − ρ) for
some arbitrary fixed ᾱ > 0. The solution thus remains trivial, i.e.

ρ(t, x) = 0 and α(t, x) = ᾱ.

Note that the above procedure assures that the bounds on ρ and α in (5d) are
respected. However, the Riemann solver constructed above seems to be not con-
tinuously depending on the initial data as soon as vacuum appears. Therefore, the
standard results on existence, uniqueness and continuous dependence of solutions to
the Cauchy problem do not apply to the present case, making further investigations
in this direction necessary.

2.2. A finite volume method for the one-dimensional case. To solve (5)
numerically, we propose a finite volume method, based on the above described
Riemann solver. Thus, we choose an (equidistant) space grid {xi}∞i=−∞ and a

corresponding time grid {tn}Nn=0with grid constants h = xi−xi−1 and k = ti− ti−1

and approximate the initial data u(0, x) := (ρ(0, x), α(0, x))T by the integral mean
of each grid cell [xi−1/2, xi+1/2]:

u0
i =

1

h

∫ xi+1/2

xi−1/2

u(0, x) dx. (7)

Using this approximation, the numerical scheme can be written as

ρn+1
i = ρni −

k

h

(
f(uni+1/2)− f(uni−1/2)

)
αn+1
i = αni −

k

h
v(ρni , α

n
i )(αni − αni−1),

where ui+1/2 is the solution of the Riemann problem with initial data ui on x < 0
and ui+1 on x ≥ 0 at x = 0. This value is uniquely defined by the above Riemann
solver and thus un+1

i is uniquely defined for all i ∈ Z and n ∈ {0, . . . , N}. To obtain
a stable method we impose the following relation between the space discretization
h and the time step size k, known as CFL-condition.

k ≤ 1

‖∂αf‖∞ + αmax
h (8)
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2.2.1. L∞ bounds on ρni and αni .

Lemma 2.1. Let the CFL condition (8) hold. Furthermore, let ρ(0, x) be given such
that 0 ≤ ρ(0, x) ≤ 1 a.e. in [0, T ]× R and α(0, x) such that αmin ≤ α(0, x) ≤ αmax

a.e. in [0, T ]× R. Then, for all i ∈ Z and all n ∈ {0, . . . , N}, the algorithm fulfills

0 ≤ ρni ≤ 1

αmin ≤ αni ≤ αmax.

Proof. Since ρ(0, x) fulfills the constraint (5d), ρ0
i fulfills the same bounds by con-

struction, see (7). The same holds true for α0
i

We start with the estimate on αni . Due to the construction of the Riemann solver,
we have αi+1/2 = αni for all five cases of the above Riemann solver. According to
the algorithm, we have therefore

αn+1
i = αni −

k

h
vni (αni − αni−1) = (1− k

h
vi)α

n
i +

k

h
vni α

n
i−1.

The CFL condition assures that (1− k
hvi) is positive and thus we conclude αmin ≤

αni ≤ αmax.
To show that the discrete solution fulfills the constraint 0 ≤ ρni ≤ 1 at time

tn > 0, observe that ρni+1/2 = ρni or ρni+1/2 = ρ̃ni ρ
n
i+1/2 = 1

2 or ρni+1/2 = 0 are the

only possibilities admitted by the Riemann solver defined in Section 2.1. Therefore,
we consider four cases, depending on the values of ρni+1/2 and ρni−1/2, the remaining

cases being entirely similar:

Case 1. ρni+1/2 = ρni and ρni−1/2 = ρni−1. Using the abbreviation vni := v(ρni , α
n
i ),

we have

ρn+1
i = ρni −

k

h
(f(ρi)− f(ρi−1))

= ρni −
k

h

(
ρiv

n
i − ρi−1v

n
i−1

)
= (1− k

h
vni )ρi +

k

h
vni−1ρi−1

> 0,

since the CFL condition (8) assures 0 ≤ k
hv

n
i ≤ 1 for all i ∈ Z and n ∈ {0, . . . , N}.

Therefore, we can estimate

ρn+1
i = (1− k

h
vni )ρi +

k

h
vni−1ρi−1

≤
(

1− k

h
(vni − vni−1)

)
‖ρn‖∞. (9)

If vni ≥ vni−1, we obtain (1− k
h (vni − vni−1)) < 1 and (9) yields

ρn+1
i ≤ ‖ρn‖∞ ≤ 1.

However, if vni < vni−1, we cannot conclude the boundedness of ρn+1
i from (9).

From the Riemann solver, we know that the case vi < vi−1 implies a shock wave
connecting ρni−1 and ρ̃ni−1, such that ṽni−1 := v(ρ̃ni−1, α

n
i−1) = vni . Since ρni−1/2 =

ρni−1, we can also conclude that the shock speed sni−1 is positive and by construction
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sni−1 < vi. Therefore, we rewrite (9)

ρn+1
i = ρni −

k

h
(f(ρi)− f(ρi−1))

= ρni −
k

h
(f(ρi)− f(ρ̃i−1) + f(ρ̃i−1)− f(ρi−1))

= ρni −
k

h

(
ρni v

n
i − ρ̃ni−1v

n
i + sni−1

(
ρ̃ni−1 − ρni−1

))
= (1− k

h
vi)ρ

n
i +

k

h
(vni − sni−1)ρ̃ni−1 +

k

h
sni−1ρ

n
i−1.

The CFL condition (8) and sni−1 < vni assure now that all coefficients are positive.
This together with the bound ρni−1 ≤ ρ̃ni−1 ≤ 1 yields

ρn+1
i ≤

(
1− k

h
vi +

k

h
(vni − sni−1) +

k

h
sni−1

)
= 1.

Case 2. ρni+1/2 = ρni and ρni−1/2 = ρ̃ni−1. From ṽni−1 = vni , we obtain directly

ρn+1
i = ρni −

k

h

(
f(ρni )− f(ρ̃ni−1)

)
= ρni −

k

h

(
ρni v

n
i − ρ̃ni−1v

n
i

)
= (1− k

h
vni )ρni +

k

h
vni ρ̃

n
i−1.

As in Case 1, CFL condition and bounds on ρni and ρ̃ni−1 assure 0 ≤ ρn+1
i ≤ 1.

Case 3. ρni+1/2 = ρ̃ni and ρni−1/2 = ρ̃ni−1. First, observe that we have

vni − sni = αni (1− ρni )− αi
ρ̃ni (1 + ρ̃ni )− ρni (1− ρni )

ρ̃ni − ρni

= αni
(1− ρni )(ρ̃ni − ρni )− ρ̃ni (1 + ρ̃ni ) + ρni (1− ρni )

ρ̃ni − ρni
= αni ρ̃

n
i

(10)

and thus 0 ≤ vni − sni ≤ αni ≤ αmax. This yields

ρn+1
i = ρni −

k

h

(
f(ρ̃ni )− f(ρ̃ni−1)

)
= ρni −

k

h

(
f(ρ̃ni )− f(ρni ) + f(ρni )− f(ρ̃ni−1)

)
= ρni −

k

h

(
sni (ρ̃ni − ρni ) + vni (ρni − ρ̃ni−1)

)
= (1− k

h
(vni − sni ))ρni +

k

h
sni ρ̃

n
i +

k

h
vni ρ̃

n
i−1.

Using (10), the CFL condition and the boundedness of ρ̃ni , we obtain 0 ≤ ρn+1
i ≤ 1.

Case 4. ρni+1/2 = ρ̃ni and ρni−1/2 = ρni−1. Here, we have

ρn+1
i = ρni −

k

h

(
f(ρ̃ni )− f(ρni−1)

)
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= ρni −
k

h

(
f(ρ̃ni )− f(ρni ) + f(ρni )− f(ρni−1)

)
= ρni −

k

h
(sni (ρ̃ni − ρni ) + ρni v

n
i − ρni−1v

n
i−1)

= (1− k

h
(vni − sni ))ρni −

k

h
sni ρ̃

n
i +

k

h
vni−1ρ

n
i−1. (11)

Since ρni+1/2 = ρ̃ni , we can conclude sni < 0. Again, using the CFL condition,

equation (11) yields ρn+1
i ≥ 0. Furthermore, if vi ≥ vi−1, we also obtain the upper

bound ρn+1
i ≤ 1.

Now, assume vi < vi−1. Since ρni−1/2 = ρni , we can conclude sni−1 > 0. Further-

more, vni > sni−1 by construction. Thus,

ρn+1
i = ρni −

k

h

(
f(ρ̃ni )− f(ρni−1)

)
= ρni −

k

h

(
f(ρ̃ni )− f(ρni ) + f(ρni )− f(ρ̃ni−1) + f(ρ̃ni−1)− f(ρni−1)

)
= ρni −

k

h

(
sni (ρ̃ni − ρni ) + vni (ρni − ρ̃ni−1) + sni−1(ρ̃ni−1 − ρni−1)

)
= (1− k

h
(vni − sni ))ρni −

k

h
sni ρ̃

n
i +

k

h
(vni − sni−1)ρ̃ni−1 +

k

h
sni−1ρ

n
i−1

≤ 1.

The cases where ρi+1/2 = 1
2 and/or ρi−1/2 = 1

2 and the cases involving vacuum
states follow in a similar way.

2.3. Effect of α on the solution. We show now the effect of α on the solution of
model (5). Clearly, when α is homogeneous in space, the solution of (5) reduces to
the solution of the classical LWR model. Thus, the initial condition (ρ, α0)T (0, x) :=
(ρ̄, ᾱ)T yields (ρ, α0)T (t, x) := (ρ̄, ᾱ)T constant in space and time. Now, we modify
the initial condition and allow a space varying α(0, x) and use the velocity function
v(ρ, α) given in (3) left with ρmax = 1. The reference domain is formed by a strip of
road of one kilometer length. Initially, α(0, x) is assumed to be piecewise constant
on the intervals [0.04(k − 1), 0.04k], k = 1, . . . , 25, uniformly distributed in the
interval [25 m/s, 30 m/s]. The inflow condition at the left boundary is chosen in a
similar manner, such that α remains piecewise constant on strips of size 0.04 km.
At the right boundary, we assume free outflow boundary conditions. Figure 3 shows
the evolution of ρ and v(ρ, α) in time and space. One can observe that the evolution
of ρ is not homogeneous, but shows regions of higher and lower density after short
times. This effect coincides well with the observation of congestions that seem to
appear out of nowhere in real traffic flow situations. In the model this is due to
different velocities assigned to the same density according to the choice of α.

A similar but more pronounced behavior can be observed for higher initial den-
sities, as shown in Figure 4.

Focusing on the trajectory of a car starting at time t = 0 at point x = 0,
we observe that the driver sees a varying density and has to adjust his velocity
accordingly, as shown in Figure 5. This behavior again matches the observations
that can be experienced in real traffic flow situations, see e.g. [19, 20].

Finally, we focus on the variable α. By construction of the model and the scheme,
α should stick to a specific car. Therefore it must be only transported by the flow
and should not undergo any variation along a specific trajectory. Figure 6 shows
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Figure 3. Evolution of ρ and v(ρ, α) [km/h] for a homogeneous
initial density ρ(0, x) = 0.2. One can observe that regions of lower
velocity (e.g. starting around x = 0.5) lead to an increasing density
left of that region. This coincides with the observation of conges-
tions that seem to appear from nowhere in real traffic flow situa-
tions.

Figure 4. Evolution of ρ and v(ρ, α) [km/h] for a homogeneous
initial density ρ(0, x) = 0.5. Again, regions of lower velocity cause
high density regions to the left. Here the regions of varying density
and velocity are nearly stationary in space and time.

that the numerical scheme fulfills this property, since α(t, x(t)) is almost constant
along the trajectory (t, x(t)) starting from (0, 0). The small variations of α along the
trajectory are due to the numerical diffusion introduced by the first order scheme.

To show the effect of the variable α on the outflow rate at the end of the street,
we perform a Monte Carlo simulation with a sample size of 300, where the values
of α on the intervals [0.04(k − 1), 0.04k], k = 1, . . . , 25 are distributed uniformly
in [20 m/2, 40 m/s]. Figure 7 shows the distribution of the number of cars that
exit the street in 10min. Using a constant value of α = 30 m/s on the whole
space-domain, 164 cars leave the street in 10 min, while the expected value using
uniformly distributed values of α is given by 161 cars.

3. Generation of random initial data. In the case of traffic flow on roads or
pedestrian movement, the exact position and often also the exact amount of cars or
people in the domain under consideration cannot be known in advance. To compute
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Figure 5. Evolution of ρ(t, x(t)) (left), v(ρ(t, x(t)), α(t, x(t)))
(right, dashed blue) and α(t, x(t)) (right, solid red) for a homo-
geneous initial density ρ(0, x) = 0.5 and x(0) = 0. One can ob-
serve that the driver encounters regions of higher and lower traffic
density and has to adjust his velocity accordingly.

Figure 6. Evolution of α in space and time. The black line in-
dicates the trajectory of a car starting at time t = 0 in position
x = 0. One can observe that α remains almost constant along this
trajectory as expected, due to the numerical viscosity of the
scheme.
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Figure 7. Statistical distribution of the number of cars that exit
the street in a time interval of 10 min, using a homogeneous initial
densoty of ρ0(x) = 0.5.
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some characteristic values like expected travel times or variations by Monte-Carlo
type methods, we have to generate independent samples of admissible initial data.

Mathematically, this means that, given a domain D ⊂ Rd and assuming we know
the number M of objects in D, we have to choose the initial distribution randomly
from the set

M(M) :=

{
ρ ∈ L1(D) ∩BV(D)

∣∣∣∣ 0 ≤ ρ ≤ 1 a.e. in D and

∫
D
ρdx = M

}
.

In this formulation, ρ is given as number of objects per space unit (length or area).
The generation of random initial data from this set is however mathematically
difficult, as we are not able to define a valid probability measure on an infinite
dimensional space (or a subset of it) and thus cannot give a meaning to notions
such as expected value or variance. Therefore, we choose to generate initial data,
following the underlying engineering context.

Assume that every object (car or person) occupies a space given by the ball
Br,q(pi) ⊂ R of radius r in the q-Norm, centered around a midpoint pi ∈ Rd. We
define the matrix p ∈ Rd×M , (p)ji = (pi)j consisting of the midpoints of M objects.
Then, the function

ρ0(p , x) =

M∑
i=1

χBr,q(pi)(x), (12)

indicates the space in D that is occupied by M given objects located in the open
balls Br,q(pi) around the midpoints given in p. Hereby, χI is the characteristic
function, taking the value 1 on I and 0 outside I. To ensure that no two objects
are in the same place, we require Br,q(pi) ∩ Br,q(pj) = ∅ for all i, j ∈ {1, . . . ,M}
with i 6= j. Thus, ρ0 is given by an indicator function in the domain D and fulfills
the property

∫
D ρ0(x) dx = M |Br,q(0)|. The above construction clearly guarantees

ρ0 ∈ L1 ∩BV and the normation of ρ0 on the interval [0, 1].

Figure 8. Two realizations of ρ0(p , x) with q =∞ and r = 1√
550

.

Left: M = 50. Right: M = 250.

Due to the construction, we can interpret p as one elementary event from the
set of all elementary events

Ω :=
{
A ∈ Rd×M |M ∈ N, M |Br,q(0)| ≤ |D| and |ak − al|q ≥ 2r

}
, (13a)

where ak := (ai,k)di=1 is the k − th column of A.
In case M is fixed, we define instead

ΩM :=
{
A ∈ Rd×M | |ak − al|q ≥ 2r

}
. (13b)
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Clearly, Ω and ΩM are finite dimensional. Denoting by F the corresponding σ
algebra of all possible events, we can define the measurable spaces (Ω,F) and
(ΩM ,FM ). Then, ρ0(p) can be interpreted as L1(D)-valued random variable on
(Ω,F) or (ΩM ,FM ). Assuming that all events in Ω are equally likely, ρ0 is uni-
formly distributed.

Denoting by (Ω,F ,P) ((ΩM ,FM ,PM ) respectively) the associated (complete)
probability space, the expected value of ρ0, defined through

E[ρ0](x) =

∫
Ω

ρ0(p , x)P(dp)

is given by

E[ρ0](x) =
M

|D|
on (ΩM ,FM ,PM )

E[ρ0](x) =
M∗ + 1

2|D|
on (Ω,F ,P)

where M∗ :=
⌊
|D|

|Br,q(0)|

⌋
is the maximum number of objects that fit into the domain

D. Furthermore, ρ0 is L1-integrable and we have

E
[
‖ρ0‖L1(D)

]
= M |Br,q(0)| on (ΩM ,FM ,PM )

E
[
‖ρ0‖L1(D)

]
= |Br,q(0)|

∫
Ω

M(p)P(dp) = |Br,q(0)|E[M ] on (Ω,F ,P),

where

E
[
‖ρ0‖L1(D)

]
=

∫
Ω

‖ρ0(p , .)‖L1(D) P(dp).

We use the framework provided by [16] and interpret ρ0 : (Ω,F) → (L1(D),
B(L1(D))) as L1(D)-valued random variable, where B(I) denotes the Borel set
of I. In the case, when M is fixed, we can analogously view ρ0 : (ΩM ,FM ) →
(L1(D),B(L1(D))) as L1(D)-valued random variable.

Define now the Bochner norms

‖ρ‖Lk(Ω;L1(D)) :=

(∫
Ω

‖ρ0‖kL1(D) P(dp)

) 1
k

for 1 ≤ k <∞

‖ρ‖L∞(Ω;L1(D)) := ess sup
p∈Ω
‖ρ0(p , .)‖L1(D)

and the associated Bochner spaces

Lk(Ω; L1(D)) :=
{
ρ : (Ω,F)→

(
L1(D),B(L1(D))

) ∣∣ ‖ρ‖Lk(Ω,L1(D)) <∞
}
.

Lemma 3.1. Let ρ0 be defined as in (12) and Ω, ΩM be given as in (13a), (13b).
Then, ρ0 fulfills the kth moment condition

‖ρ0‖Lk(Ω,L1(D)) <∞ and ‖ρ0‖Lk(ΩM ,L1(D)) <∞. (14)

for all k ∈ N.

Proof. Indeed, it is easy to see that we have for k ∈ N

‖ρ0‖kLk(ΩM ,L1(D)) =

∫
ΩM

‖ρ0(p , .)‖kL1(D) P(dp)

=

∫
ΩM

(M |Br,q(0)|)k P(dp)

= (M |Br,q(0)|)k <∞.
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Furthermore,

‖ρ0‖kLk(Ω,L1(D)) =

∫
Ω

‖ρ0(p , .)‖kL1(D) P(dp)

=

∫
Ω

(M(p)|Br,q(0)|)k P(dp)

= (|Br,q(0)|)k
∫

Ω

(M(p))k P(dp)

= (|Br,q(0)|)k E[Mk].

M(p) is a random variable with values in a finite set, since M ∈ {1, . . . ,M∗}, such

that E[Mk] ≤
∑M∗

m=1m
k is finite for all k ∈ N.

To use the α-model (4), we need to specify a value of α ∈ [αmin, αmax] for each
object pi. This can be easily obtained by a small modification of Ω and ΩM .

Ω :=

{
A ∈ R(d+1)×M

∣∣∣∣ M ∈ N, M |Br,q(0)| ≤ |D|, (aik)di=1 ∈ D
|(aik)di=1 − (ail)

d
i=1|q ≥ 2r and ad+1,k ∈ [αmin, αmax]

}
,

where ak := (aik)di=1 is the k−th column of A without the last line, that corresponds
to the initial value of α assigned to object k.

In case M is fixed, we get instead

Ω :=

{
A ∈ R(d+1)×M

∣∣∣∣(aik)di=1 ∈ D, |(aik)di=1 − (ail)
d
i=1|q ≥ 2r

and ad+1,k ∈ [αmin, αmax]

}
.

Analogously to ρ0 above, we can now define α0 as piecewise constant function.
In principle, α can be chosen arbitrarily in all regions of the initial data, where
ρ0(x) = 0, as it does not affect the solution by construction of the Riemann solver.
Recall that α± is not used in the Riemann solver, when the data contains vacuum
states. However, for computational reasons it is useful to choose α in one of the
following ways, according to the application:

• The choice of α = αmax in all regions where ho0 = 0 is numerically advanta-
geous, since it avoids some case distinctions.

• However, if the expected value of α is needed (e.g. for comparison with a
deterministic model), the choice α = E[α] in all regions where ρ0 = 0 conserves
the numerical expected value of α.

4. Application to crowd dynamics. In this section, we compare the model (1)
with the α-model (2), augmented by the additional equation for α. To start, we re-
view some results on existence and continuous dependence of solutions for model (1),
that can be found in [5].

Definition 4.1. Let T > 0 and ρmax > 0 be fixed and choose ρ0 ∈ L1(Rd; [0, ρmax]).
A function ρ ∈ C0([0, T ]; L1(Rd;R)) is a weak solution to the Cauchy problem

∂tρ+ div (ρv(ρ) (ν(x)− εI(∇η ∗ ρ))) = 0

ρ(0, x) = ρ0(x)

if it is a solution to

∂tρ+ div (ρv(ρ)w(t, x)) = 0

ρ(0, x) = ρ0(x)

in the sense of Kružkov (see [14]) with w(t, x) = ν(x)− εI(∇η ∗ ρ).
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Before we recall the existence result, we have to impose additional assumptions
of the vector field ν and the non local term I.

(ν) ν ∈ (C2 ∩W1,∞)(Rd;Rd) fulfills divν ∈ (W1,1 ∩W1,∞)(Rd;R).
(I) I ∈ C0

(
L1(Rd; [0, ρmax]); C2(Rd;Rd)

)
and there exists and increasing fun-

ction CI ∈ L∞loc(R+,R+) and a constant KI such that I fulfills the follo-
wing estimates for all r, r1, r2 ∈ L1(Rd, [0, ρmax]):
(a) ‖I(r)‖W1,∞ ≤ CI(‖r‖L1)
(b) ‖divI(r)‖L1 ≤ CI(‖r‖L1)
(c) ‖∇divI(r)‖L1 ≤ CI(‖r‖L1)
(d) ‖I(r1)− I(r2)‖L∞ ≤ KI‖r1 − r2‖L1

(e) ‖I(r1)− I(r2)‖L1 + ‖div(I(r1)− I(r2))‖L1 ≤ KI‖r1 − r2‖L1

With these assumptions, the authors of [5] proof existence, uniqueness and con-
tinuous dependence of the solution from the initial data and obtain the following
result.

Theorem 4.2. Let (v), (ν) and (I) hold and choose ρ0 ∈ (L1∩BV)(Rd; [0, ρmax]).
Then, there exists a unique entropy solution ρ ∈ C0

(
R+; L1(Rd; [0, ρmax])

)
to (1).

Moreover, ρ(t) = F (t)ρ0 satisfies

‖F (t)ρ0‖L1 = ‖ρ0‖L1 for a. e. t ∈ R+. (15)

For ρ0,1, ρ0,2 ∈ (L1 ∩BV)(Rd; [0, ρmax]), the two solutions of (1) satisfy

‖F (t)ρ0,1 − F (t)ρ0,2‖L1 ≤ C(t)‖ρ0,1 − ρ0,2‖L1

where F denotes the solution operator in time.

Note that the result in [5] also includes a total variation bound for ρ(t) and
continuous dependence of the solution on ν, the speed law v and the non local term
I. In the simulation below, we use

I(∇η ∗ ρ) =
∇η ∗ ρ√

1− ‖∇η ∗ ρ‖2
,

which was proved to fulfill the assumptions (I) in [5].
Concerning the numerical solution of (1), a Lax-Friedrichs type method was pro-

posed in [1] in one space dimension and it seems possible to extend the convergence
result therein to the two dimensional case, using the dimensional splitting approach
proposed in [7]. Therefore, we use this approach as numerical scheme for model (1).

To compare the results of (1) and (2), we use random initial data generated
by the method proposed in section 3. Recently, Mishra and Schwab proposed a
theoretical framework [16] to deal with conservation laws with random initial data.
Therein, the authors proof the measurability of the mapping p 7→ S(t)ρ0(.,p) under
standard assumptions on the solution S(t)ρ0 of a single conservation law in d space
dimensions. We adapt the result [16, Theorem 3.3] to the present setting and obtain

Theorem 4.3. Let (v), (ν) and (I) hold and choose ρ0 : Ω→ (L1 ∩BV)(Rd; [0,
ρmax]) such that ρ0 fulfills the k-th moment condition (14) for some k ∈ N. Then,
there exists a unique random entropy solution ρ : Ω 3 p → C0

(
[0, T ]; L1(Rd; [0,

ρmax])) given by ρ(., t,p) = F (t)ρ0(.,p). Moreover, for every k ≥ m ≥ 1 and almost
every 0 ≤ t ≤ T , we have P-almost surely

‖ρ‖Lm(Ω;C0([0,T ];L1(Rd))) = ‖ρ0‖Lm(Ω;L1(Rd)). (16)



410 VERONIKA SCHLEPER

Hereby, ‖ρ‖mLm(Ω;C0([0,T ];L1(Rd))) :=
∫

Ω
(max0≤t≤T ‖F (t)ρ0(.,p)‖L1)

m
dP(p). The

proof of this result is entirely analogous to the proof in [16], using the equality (15).
An analogous result holds for ΩM instead of Ω. Note that the method to generate
random initial conditions proposed in Section 3 guarantees that ρ0 fulfills the k-
th moment condition, as shown in Lemma 3.1. Thus, the k-th moment of the
solution is well-defined, especially the expected value of ‖ρ‖L1(Rd) at any given time

T > 0. Since the relation (16) holds only on the whole domain Rd, we use a standard
Monte Carlo method to approximate the expected value of ‖ρ(T )‖L1 in the bounded
domain D, which is given by E[ρ(T )] = ‖ρ(T )‖L1(Ω;L1(D;[0,ρmax])).

Turning now to the α-model (2), we cannot rely on a thorough theoretical back-
ground, as no results are available for systems of conservation laws in more than
one space dimension. This implies also that we do not have any formal knowledge
if the expected value of ‖ρ(T )‖L1(Rd) is well defined for model (2).

For the numerical simulation of the α-model (2), we use a dimensional splitting
(see [7]) based on the algorithm proposed in Section 2.2, now modified to take into
account the convolution term as time and space dependent contribution to the flux.

For the numerical comparison, we use the following setting. The domain D is
given by a room of size of 20 m× 20 m, initially filled with 600 persons distributed
randomly, using the method described in Section 3. The basic directional field ν
is given by the normed solution of the eikonal equation, with boundary conditions
corresponding to a door at x = 20 m, y ∈ [6 m, 12 m], see Figure 9 as well as [18] for
a description of the numerical algorithm used to compute the vector field.
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Figure 9. Directional field ν for the simulation of the evacuation scenario.

We assume that the maximal density ρmax is given by 5.5 people per square
meter, where each person occupies a square space of size 1

ρmax
. This yields an

absolute maximum of 1100 persons that fit into the room, when no empty space
is left between the individuals. Thus, the initial distribution of 600 persons in the
room corresponds to a rather crowded scenario.

The velocity functions are chosen as

v(ρ) = vmax(1− ρ

ρmax
), vmax =

5

3.6

m

s

v(ρ, α) = α(1− ρ

ρmax
), α ∈

[
3

3.6

m

s
,

7

3.6

m

s

]
,



MOTION WITH RANDOM INDIVIDUAL PROPERTIES 411

288 289 290 291 292 293 294 295 296 297 298
0

20

40

60

80

100

120

Figure 10. Statistical distribution of the number of people re-
maining inside the room for a given deterministic initial condition
ρ0(x) and uniformly distributed α0.

what corresponds to a mean velocity of 5km
h or 3.11 mph and a spread between 3km

h

and 7km
h or 1.87 mph and 4.35 mph. For each position pi the associated individual

maximum speed αi is given by a uniformly distributed random variable with values
in [3, 7];

Concerning the non local term I, we use a gaussian kernel, given by

η(x, y) =
σ

2π
e−

σ
2 (x2+y2)

with σ = 500. The scaling for I is chosen as ε = 0.1.
The numerical simulation is performed on a regular grid of 40×40 cells up to time

T = 30s. In a first test case, we use the same initial data ρ0 for all 500 samples of
the Monte Carlo simulation, with varying α0, uniformly distributed in the interval
[3, 7] to illustrate the effect of the additional equation on the solution. Figure 10
shows the distribution of the number of people remainig in the room after 30s.
The expected value of the number of people remainig inside computed through
this Monte Carlo-simulation is given by ≈ 293.14, while the deterministic model
with vmax = 5 yields ≈ 293.13 persons remaining inside. As a second example, we
estimate the expected value of ‖ρ(T )‖L1(D), using a sample size of 500. Figure 11
shows the distribution of the number of people remaining inside the room after 30 s
for both models. From this result one can clearly see that less persons left the room,
when the simulation is performed with the α-model (2). Furthermore, the variance
of the distribution resulting from (2) is higher than the variance of the distribution
resulting from the original model (1). In Figure 12, we show the evolution of the
expected value with increasing sample size. This emphasizes that the expected
amount of people evacuated from the room is lower for the α-model (2).

5. Conclusion. We presented a new model that can be applied to traffic flow
and crowd dynamics problems and takes into account the statistical variability of
maximal speeds of different persons or cars/drivers respectively. The proposed
numerical method for the solution of this new model was shown to respect the
bounds on density and velocity. Numerical experiments in one space dimension
showed that the model is capable to produce regions of higher and lower density even
when starting from homogeneous initial densities. This behavior is in accordance
with observations in real traffic flow situations. A comparison of the behavior of
the new model and an established model showed that the new model leads to lower
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Figure 11. Statistical distribution of the number of people re-
maining inside the room after 30 s. Left: Model (1). Right: The
new α-model (2).
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Figure 12. Evolution of the expected values of the number of
people remaining in the room after 30 s for increasing sample size.
Blue: Model (1). Red: The new α-model (2).

evacuation speeds due to the presence of varying maximal velocities, even though
the expected value of the maximal velocity in regions of positive density was equal
to the one used for the established model.
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