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Abstract. We consider a linear diffusion equation on Ω := R2 \ ΩO, where

ΩO is a bounded domain. The time-dependent flux on the boundary Γ := ∂ΩO
is prescribed. The aim of the paper is to approximate the dynamics by the

solution of the diffusion equation on the whole of R2 with a measure-valued
point source in the origin and provide estimates for the quality of approxima-

tion. For all time t, we derive an L2([0, t];L2(Γ))-bound on the difference in

flux on the boundary. Moreover, we derive for all t > 0 an L2(Ω)-bound and an
L2([0, t];H1(Ω))-bound for the difference of the solutions to the two models.

1. Introduction. “What is the force on a test charge due to a single point charge
q which is at rest a distance r away?” is a common type of question in textbooks
about electromagnetism (e.g. [12], p. 59). In reality there is of course no such
thing as a point charge having no volume. This is just a simplification due to the
fact that the volume of the charged particle is very small compared to the other
typical length scales in the system. Throughout physics it is common practice to
replace objects of negligible size by point masses. For instance, grains or colloids
in a solution [18], crowd dynamics [13], electrostatics [17], defects in crystalline
structures [6, 24]. Of particular interest is the setting in which the exchange of
mass, energy etc. between the interior and the exterior of the object takes place at
its boundary. In this case the object is approximated not by a mere point mass, but
by a point source. Experimental evidence suggests that this example of ‘modelling
with measures’ is often a good approximation to the original (spatially extended)
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system. In this paper, we consider the problem of quantifying the accuracy of this
type of approximation, focussing on a simple scenario.

In R2, we consider an object of fixed shape and position and of finite size. Out-
side the object there is a concentration of mass that evolves by diffusion. On the
boundary of the object there is prescribed mass flux in normal direction. This flux
is a simplistic way of describing the result of processes that occur in the interior
of the object. We wish to approximate this object by a point source. To this aim
we replace the original diffusion equation on the exterior domain Ω by a diffusion
equation on the whole of R2 with a Dirac measure included at its right-hand side.
The exact formulation of the equations will be made clear in Section 2.

This is a first step towards modelling and analysing the mass distribution dy-
namics in realistic settings involving a large number of small objects moving around
in a bounded domain while exchanging mass. Our motivation comes from the in-
tracellular transport of chemical compounds in vesicles, like neurotransmitters in
neurons (cf. [22]) or the hypothetical vesicular transport mechanism for the plant
hormone auxin proposed in [2] as an alternative to the conventional auxin transport
paradigm (in analogy to neurotransmitters). Auxin is a crucial molecule regulating
growth and shape in plants. The vesicles are small membrane-bound balls covered
by specific transmembrane transporter proteins that take up auxin from the sur-
rounding cytoplasm. The vesicles are driven by molecular motors over a network of
intracellular filaments [16, 27], e.g. from one end of the cell to the other as in Polar
Auxin Transport (PAT). Experimental investigations of PAT in Chara species [5]
revealed that neither diffusion nor cytoplasmic streaming can be the driving mech-
anism of PAT in the long (3-8 cm) internodal Chara cells. See [5, 27] for further
discussion and an overview.

A substantial amount of mathematical modelling efforts on PAT have focussed
on pattern formation in plant cell tissues (see [3, 19, 23] and the references cited
therein). Upscaling to an effective macroscopic continuum description for transport
at tissue level was considered in [7]. All models are based however on the assumption
of diffusion as intracellular transport mechanism for auxin. Ultimately, we aim
at obtaining a convenient mathematical description of the vesicle-driven transport
dynamics within a cell, in particular in terms of an effective continuum model, which
is needed to replace diffusion in an upscaling argument similar to [7]. In view of (the
absence of) relevant mathematical literature, this perspective seems to be rather
unexplored.

Why do we insist on introducing measures to this problem? This modelling
strategy is especially useful once we wish to describe the interaction between multi-
ple moving objects (vesicles). We expect the mathematical description to be much
simpler in terms of discrete measures (i.e. the weighted sum of Dirac measures) and
the analysis and numerical approximation likewise (see, for instance, [29, 30] for
a related case). But before we can go to this advanced setting, we first need to
investigate the quality of the approximation for a simple reference scenario; this is
the main concern of this paper.

After the aforementioned overview of model equations in Section 2, we summarize
in Section 3 the main (boundedness) results of this paper, followed by some useful
preliminaries in Section 4. In Section 6 we show boundedness of the difference in the
flux of the full problem (including the finite-size object) and the flux of the reduced
problem (including the point source). This result is used in Section 7, where we
estimate the difference between the two problems’ solutions on the exterior domain.
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2. Two problems. Let ΩO ∈ R2 be an open and bounded domain, such that its
boundary Γ := ∂ΩO is C2 and has finite length. This set denotes the interior of an
object O with mass-exchange at its boundary. We assume 0 ∈ ΩO. Let Ω denote
the exterior of O. That is, Ω := R2\ΩO. See Figure 1a for a sketch of the geometry.

For given initial condition u0 : Ω → R+ and given flux φ : Γ × [0, T ] → R, we
consider the problem 

∂u

∂t
= d∆u, on Ω× R+;

u(0) = u0, on Ω;
d∇u · n = φ, on Γ× R+.

(1)

Here, d > 0 denotes the diffusion coefficient, which is fixed throughout this paper.
The vector n denotes the unit normal pointing outwards on Γ (so into ΩO), and φ
is the influx of u w.r.t. Ω. Positive φ corresponds to flux in the direction of −n.

Use v0 : ΩO → R+ to define û0 : R2 → R+, given by

û0 :=

{
u0, on Ω;
v0, on ΩO,

(2)

which is an extension of u0 to the whole of R2. The aim of the paper is to quantify
the quality of approximation of the solution of (1) (with an appropriate solution
concept, see Section 5 below) with the restriction to Ω of the mild solution of the
problem {

∂û

∂t
= d∆û+ φ̄δ0, on R2 × R+;

û(0) = û0, on R2,
(3)

(see also Section 5).

Remark 1. Typically, O is small (we are deliberately vague in what sense), but
even if that is not the case, the approach of this paper gives information about how
much the solutions of the two problems deviate on Ω. It is not our objective to
investigate the behaviour of (1) in the limit |O| → 0. O keeps physical proportions.

Remark 2. In (3), we have introduced a mapping φ̄ : R+ → R which represents the
magnitude of the mass source. A measure-valued source was treated, for instance,
in [30] (in the context of numerical approximation schemes) or in [4]; see also [21]
for more background on the solvability of such evolution equations.

Remark 3. Problem (3) is posed on the whole of R2. The boundary Γ has no
physical meaning in this problem; see Figure 1b. However, the flux on this imaginary
curve will be used in later estimates.

3. Summary of the main results. In Section 5 we shall use available results on
maximal regularity that establish the existence of a unique solution u to Problem (1)
in the sense of L2(Ω)-valued distributions, provided the initial condition u0 ∈ H1(Ω)
and the prescribed flux φ ∈ H1([0, T ], L2(Γ)) ∩ L2([0, T ], H1(Γ)). Mild solutions to
Problem (3) exist in a suitable Banach space containing the finite Borel measures
for any initial measure, provided φ̄ ∈ L1

loc(R+) (see Section 5). We show that for
more regular initial condition û0 ∈ H1(R2) and flux from the source φ̄ ∈ H1([0, T ]),
the restriction of the mild solution û to Ω is as regular as u on Ω (Theorem 5.2),
namely

u, û ∈ H1([0, T ], L2(Ω)) ∩ L2([0, T ], H2(Ω)).
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ΩO

u0

Ω n
φ

Γ

(a) Original domain

φ̄δ0

u0

v0

(b) Extended domain

Figure 1. (A): Typical example of the original domain Ω outside
the object O, on which u evolves according to (1) starting from ini-
tial condition u0. Also, φ and n, related to the boundary condition
on Γ, are indicated. (B): Domain for the reduced problem associ-
ated to (A). Γ is now an imaginary curve within the domain (to
be used later). The initial conditions u0 and v0 hold outside and
inside Γ, respectively. The point source of magnitude φ̄ is indicated
in the origin.

Consequently, the time-integrated deviation between the prescribed flux φ on Γ in
Problem (1) and the flux on Γ generated by the solution to Problem (3) with flux
φ̄ at 0, i.e.

c∗(t) :=

∫ t

0

‖φ(τ)− d∇û(τ) · n‖2L2(Γ) dτ (4)

is finite for all t ≥ 0. In Section 6 we derive an upper bound on c∗(t), see Theorem
6.3 in terms of the data for Problems (1) and (3).

Our main result is the following:

Theorem 3.1. Let T > 0 and let the data for Problems (1) and (3) satisfy u0 ∈
H1(Ω), φ ∈ H1([0, T ], L2(Γ)) ∩ L2([0, T ], H1(Γ)), φ̄ ∈ H1([0, T ]) and û0 ∈ H1(R2)
is such that ∇û0 ∈ Lp(R2) for some 2 < p < ∞. Then the unique solutions u and
û to (1) and (3) are such, that for all ε ∈ (0, 2d) there are c1, c2 > 0 such that

‖u(·, t)− û(·, t)‖2L2(Ω) ≤ c1 c
∗(t) eεt, and (5)∫ t

0

‖u− û‖2H1(Ω) ≤ c2 c
∗(t) eεt. (6)

for all 0 < t ≤ T . The constants depend on Ω, d and ε.

Remark 4. Note that the initial condition û0 needs to be more regular than ‘just’
H1(R2) as needed in the regularity result for û. The flux estimates in Section 6
require ∇û0 ∈ Lp(R2) with 2 < p < ∞. The Sobolev Embedding Theorem (cf.
[1], Thrm. 4.12, p. 85) yields that û0 ∈ H2(R2) is a sufficient condition to have
the stronger result that û0 ∈ H1(R2) ∩W 1,p(R2) for any 2 < p < ∞. In that case
necessarily u0 ∈ H2(Ω) too.
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An important characteristic of estimates (5) and (6) is that the upper bounds
are linear in c∗(t). This implies that, if we manage to enforce c∗(t) to be small,
then also the solutions u and û are close (in the sense described above) on Ω. At
this point, we manage only to get a rough bound on c∗(t), cf. Theorem 6.3, but we
conjecture that a more sophisticated estimate is possible; see Section 8.

4. Preliminaries. We need a few fundamental results, before we can discuss the
properties of solutions (Section 5) and the details of our results (Section 6 and
further). We summarize these preliminaries in this section.

Lemma 4.1 (Properties of the convolution, [11] Propositions 8.8 and 8.9, p. 241).
Let p, q ≥ 1 be such that 1/p+ 1/q = 1. If f ∈ Lp(Rn) and g ∈ Lq(Rn), then

1. (f ∗ g)(x) exists for all x ∈ Rn;
2. f ∗ g is bounded and uniformly continuous;
3. ‖f ∗ g‖L∞(Rn) ≤ ‖f‖Lp(Rn) ‖g‖Lq(Rn).

If moreover p, q ∈ (1,∞), then

4. f ∗ g ∈ C0(Rn).

Let p, q, r ∈ [1,∞] satisfy 1/p+ 1/q = 1 + 1/r. If f ∈ Lp(Rn) and g ∈ Lq(Rn), then

5. f ∗ g ∈ Lr(Rn);
6. ‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn) ‖g‖Lq(Rn).

Proof. The proof can be found in [11], p. 241.

Statement 6 of Lemma 4.1 is called Young’s inequality. It also holds for the
convolution in time with upper bound t, which will appear in (18). This is shown
in the following corollary:

Corollary 4.2. Let T be fixed and let p, q, r ∈ [1,∞] satisfy 1/p + 1/q = 1 + 1/r.
If f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]), then

1. f ∗t g := t 7→
∫ t

0
f(t− s)g(s) ds ∈ Lr([0, T ]);

2. ‖f ∗t g‖Lr([0,T ]) ≤ ‖f‖Lp([0,T ]) ‖g‖Lq([0,T ]).

Proof. The statement of this corollary follows from extension to R of f and g by
zero outside [0, T ] and applying Lemma 4.1, Parts 5 and 6 (for n = 1).

The Green’s function of the diffusion operator on Rn is (for general dimension
n) given by

Gt(x) := (4πdt)−n/2e−|x|
2/4dt. (7)

Lemma 4.3 (Properties of the Green’s function on R2). Consider the Green’s
function (7) for dimension n = 2.

1. The gradient of the Green’s function satisfies

‖∇G·(x)‖L∞(0,∞) := sup
τ∈(0,∞)

‖∇Gτ (x)‖ =

 0, x = 0;
8e−2

π
|x|−3, x ∈ R2 \ {0}.

(8)

2. For all 1 ≤ p ≤ ∞ there is a constant c such that for all t ∈ R+

‖Gt(·)‖Lp(R2) ≤ c t
1
p−1. (9)

The constant depends on p and d.
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Proof. 1. For all x ∈ R2 and all τ ∈ R+

‖∇Gτ (x)‖ =
|x|

8πd2τ2
e−|x|

2/4dτ , (10)

where ‖ · ‖ denotes the Euclidean norm on R2. For x = 0 we have that
‖∇Gτ (0)‖ = 0 for all τ ∈ (0,∞), thus the corresponding part of (8) follows.

Next, we consider x 6= 0. Note that for all such x

lim
τ→0
‖∇Gτ (x)‖ = 0, (11)

lim
τ→∞

‖∇Gτ (x)‖ = 0. (12)

Since the right-hand side in (10) is nonnegative and differentiable for all τ ∈
R+, its maximum on R+ is attained where

∂

∂τ
‖∇Gτ (x)‖ =

|x|
4πd2τ3

(
|x|2

8dτ
− 1

)
e−|x|

2/4dτ = 0, (13)

i.e. at τ = |x|2/8d. Now the statement of the lemma follows:

‖∇G·(x)‖L∞(0,∞) = ‖∇Gτ (x)‖
∣∣∣
τ=|x|2/8d

=
8e−2

π
|x|−3. (14)

2. The proof is a direct consequence of the statement in [14] at the bottom of
p. 432.

5. Solution concepts and their regularity. For problem (1) we follow [8, 9]
by considering solutions in the sense of L2(Ω)-valued distributions on [0, T ]. Our
setting is a special case of the setting in [9]. However, [9] is one of the few works that
we are aware of that consider maximal regularity issues for problems in unbounded
domains. The seminal works by Solonnikov [31] and Lasiecka [20] cover bounded
domains Ω only.

We reformulate Theorem 2.1 in [9] to obtain:

Theorem 5.1. If

• φ ∈ H1([0, T ];L2(Γ)) ∩ L2([0, T ];H1(Γ)), and
• u0 ∈ H1(Ω),

then Problem (1) has a unique solution

u ∈ H1([0, T ];L2(Ω)) ∩ L2([0, T ];H2(Ω)). (15)

Proof. The statement of this theorem is fully covered by Theorem 2.1 in [9]. We now
point out why we satisfy their conditions. Note that we use p = 2 and m = 1 in their
setting. First, R is a so-calledHT -space, meaning that the Hilbert transform defines
a bounded operator on Lp(R) for 1 < p < ∞ (cf. [28], VII). The conditions (E),
(LS), (SD) and (SB) from [9] are easily verified for Au := −d∆u and Bu := ∇u · n.
Regarding Condition (D) in [9], we note that in our case f ≡ 0 and moreover,
no compatibility condition (iv) is needed. In (iii), we use that B1

2,2(Ω) = H1(Ω);
see [1] p. 231. A sufficient condition for (ii) to hold, is the one on φ given in the
hypotheses of this theorem. We avoid the – in our setting unnecessary – use of
fractional Sobolev spaces.

Problem (3) has a measure-valued right-hand side. [4] provide regularity results
for weak solutions of non-linear parabolic problems with such measure-valued right-
hand side. These apply to bounded domains with Dirichlet boundary condition and
zero initial value.
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We consider mild solutions to (3) in the Banach space of finite Borel measures
on R2, completed for the dual bounded Lipschitz norm ‖ · ‖∗BL or Fortet-Mourier

norm: M(R2)BL (cf. [15] and references found there). First, the diffusion semigroup
(St)t≥0 on M(R2)BL is defined for measures µ ∈ M(R2) by convolution with the
Green’s function Gt defined by (7), i.e.

〈Stµ, ϕ〉 := 〈Gt ∗ µ, ϕ〉 =

∫
R2

∫
R2

Gt(x− y)ϕ(x) dµ(y) dx (16)

for ϕ ∈ Cb(R2). Thus, for positive µ, Stµ defines a positive linear functional on
Cc(R2), which is represented by a unique Radon measure according to the Riesz
Representation Theorem. It is a finite measure because

(Stµ)(R2) = 〈Stµ,1〉 = µ(R2) <∞.

Using the Jordan decomposition, we see that Stµ ∈ M(R2) for any µ ∈ M(R2).
One can check using (16) that St is a bounded operator on M(R2) for ‖ · ‖∗BL. By

continuity it extends to the completion M(R2)BL. Moreover, there exists C > 0
such that

‖Stν‖∗BL ≤ C‖ν‖∗BL

for all t ≥ 0 and ν ∈M(R2)BL. Strong continuity of (St)t≥0 onM(R2)BL can then
be obtained from strong continuity on the dense subspaceM(R2) that follows from
(16) and [10], Proposition I.5.3.

The mild solution to (3) is now defined by

µ̂(t) := S(t)µ0 +

∫ t

0

S(t− s)[φ̄(s)δ0] ds, (17)

for given initial measure µ0 ∈ M(R2) ([26], Ch.4, Def. 2.3, p.106). One can show
that µ̂ ∈ C(R+,M(R2)BL) whenever φ̄ ∈ L1

loc(R+).
If µ0 has density û0 with respect to Lebesgue measure dx on R2, then according

to (16) solution µ̂(t) can be identified with û(x, t)dx where the density function û
is given by

û(x, t) =

∫
R2

Gt(x− y)û0(y) dy +

∫ t

0

Gt−s(x)φ̄(s) ds

=: (Gt ∗x û0)(x) + (G·(x) ∗t φ̄)(t). (18)

for all (x, t) ∈ R2 × R+. Here the notation ∗x and ∗t emphasizes that one takes
convolution with respect to the space or time variable. Both have a regularising
effect on the solution, that yields the following result for the restriction of û(t) to
Ω, the domain on which we compare with solution u(t) to Problem (1):

Theorem 5.2. If û0 ∈ H1(R2) and φ̄ ∈ H1([0, T ]), then û (restricted to Ω) satisfies

û ∈ H1([0, T ];L2(Ω)) ∩ L2([0, T ];H2(Ω)). (19)

Moreover, ∂tû(t) = d∆û(t) in L2(Ω) for almost every t in [0, T ].

Proof. See Appendix.
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6. Flux estimates. In this section we present in Theorem 6.3 a bound on the
difference between the fluxes on Γ in (1) and (3). According to Theorem 5.1 and
Theorem 5.2, under the conditions for which these results hold, c∗(t) defined by (4)
is finite for every t ∈ [0, T ]. The difference between the solutions u and û on Ω will
be expressed in terms of c∗(t), among others, in Section 7.

Throughout this section, we shall assume the conditions of Theorems 5.1 and 5.2
on the data. Note that φ̄ ∈ H1([0, T ]) implies that∫ t

0

‖φ̄‖2L1(0,τ) dτ ≤ 1
2 t

2‖φ̄‖2L2([0,T ]) <∞ (20)

for all 0 ≤ t ≤ T .
Before getting at the main estimate for c∗(t), we derive auxiliary results in Lemma

6.1 and Lemma 6.2.

Lemma 6.1. Assume that û0 ≡ 0. Then, for all t > 0 we have∫ t

0

‖d∇û · n‖2L2(Γ) ≤ d
2CΓ

∫ t

0

‖φ̄‖2L1(0,τ) dτ <∞, (21)

where

CΓ :=

∫
Γ

‖∇G·(x)‖2L∞(0,∞) dσ > 0

is independent of t.

Proof. For û0 ≡ 0, the solution (18) of (3) is given by

û(x, t) =

∫ t

0

Gt−s(x)φ̄(s) ds. (22)

Note that for x ∈ Γ we have

|d∇û(x, τ) · n(x)| =
∣∣∣∣d∫ τ

0

∇Gτ−s(x)φ̄(s) ds · n(x)

∣∣∣∣
≤
∥∥∥∥d∫ τ

0

∇Gτ−s(x)φ̄(s) ds

∥∥∥∥
≤ d ‖∇G·(x)‖L∞(0,∞)

∫ τ

0

∣∣φ̄(s)
∣∣ ds

= d ‖∇G·(x)‖L∞(0,∞) ‖φ̄‖L1(0,τ). (23)

We emphasize here that the infinity norm ‖∇G·(x)‖L∞(0,∞) denotes the supremum
in the time domain for fixed x, cf. (8). This observation leads to the following
estimate∫ t

0

‖d∇û(x, τ) · n(x)‖2L2(Γ) dτ =

∫ t

0

∫
Γ

|d∇û(x, τ) · n(x)|2 dσ dτ

≤ d2

∫ t

0

∫
Γ

‖∇G·(x)‖2L∞(0,∞) ‖φ̄‖
2
L1(0,τ) dσ dτ, (24)

where (23) is used in the second step. Thus, we have∫ t

0

‖d∇û(x, τ) · n(x)‖2L2(Γ) dτ ≤ d
2

∫ t

0

‖φ̄‖2L1(0,τ)dτ

∫
Γ

‖∇G·(x)‖2L∞(0,∞) dσ. (25)

Since Γ has finite length and it is the boundary of a set of which 0 is an interior
point, it follows from (8) in Lemma 4.3 that the second integral on the right-hand
side of (25) is finite. This finishes the proof.
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In the next lemma we generalize this result to nonzero initial conditions.

Lemma 6.2. If û0 is such that ∇û0 ∈ Lp(R2) for some 2 < p ≤ ∞, then∫ t

0

‖d∇û · n‖2L2(Γ) ≤ d
2|Γ|Ct

2
q−1‖∇û0‖2Lp(R2) + 2d2CΓ

∫ t

0

‖φ̄‖2L1(0,τ) dτ <∞, (26)

for all t > 0, where q := p/(p − 1), C depends on d and q and CΓ is the constant
from Lemma 6.1.

Proof. In this case, the solution of (3) is given by (18). We start with the following
estimate∫ t

0

‖d∇û(x, τ) · n(x)‖2L2(Γ) dτ ≤ 2

∫ t

0

∫
Γ

∣∣∣∣d∇ ∫
R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣2 dσ dτ
+ 2

∫ t

0

∫
Γ

∣∣∣∣d∇ ∫ τ

0

Gτ−s(x)φ̄(s) ds · n(x)

∣∣∣∣2 dσ dτ. (27)

The second term on the right-hand side is covered by Lemma 6.1. Regarding the
first term, we remark that, due to properties of the convolution,∣∣∣∣d∇∫

R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣ =

∣∣∣∣d ∫
R2

Gτ (y)∇û0(x− y) dy · n(x)

∣∣∣∣ . (28)

We use Part 3 of Lemma 4.1 to estimate the right-hand side∣∣∣∣d ∫
R2

Gτ (y)∇û0(x− y) dy · n(x)

∣∣∣∣ ≤ d ∥∥∥∥∫
R2

Gτ (y)∇û0(· − y) dy

∥∥∥∥
L∞(R2)

≤ d ‖∇û0‖Lp(R2) ‖Gτ‖Lq(R2) , (29)

with q := p/(p− 1).
It follows from (28)–(29) and Part 2 of Lemma 4.3 that∫ t

0

∫
Γ

∣∣∣∣d∇∫
R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣2 dσ dτ
≤ d2 ‖∇û0‖2Lp(R2)

∫ t

0

∫
Γ

‖Gτ‖2Lq(R2) dσ dτ

≤ c2 d2 |Γ| ‖∇û0‖2Lp(R2)

∫ t

0

τ
2
q−2 dτ

=
q c2 d2 |Γ|

2− q
t
2
q−1 ‖∇û0‖2Lp(R2) , (30)

where c depends on q and d. We can perform the integration in time in the last
step of (30) since the hypothesis p > 2 implies q < 2. The desired result follows by
(27) and the calculations in the proof of Lemma 6.1:∫ t

0

‖d∇û(x, τ) · n(x)‖2L2(Γ) dτ ≤
2q c2 d2 |Γ|

2− q
t
2
q−1 ‖∇û0‖2Lp(R2)

+ 2d2

∫ t

0

‖φ̄‖2L1(0,τ)dτ

∫
Γ

‖∇G·(x)‖2L∞(0,∞) dσ, (31)

of which the right-hand side is finite for all finite t.

Remark 5. A sufficient condition for ∇û0 ∈ Lp(R2) to hold, is û0 ∈W 1,p(R2). To
this aim, one may start from u0 ∈ W 1,p(Ω) to hold for the given initial data. The
remaining question is whether it is possible to find an extension v0 on ΩO as in (2)
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such that û0 ∈ W 1,p(R2). This, however is guaranteed by Theorem 5.22 on p. 151
of [1].

Remark 6. It is crucial that the gradient is applied to the initial condition in the
computations starting at (28) and further. Instead of (28)–(29), we could, along
the same lines, have estimated∣∣∣∣d∇∫

R2

Gτ (x− y)û0(y) dy · n(x)

∣∣∣∣ ≤ d ‖û0‖Lp(R2) ‖∇Gτ‖Lq(R2) , (32)

which requires only a condition on û0, not on its gradient, for the lemma. It follows
from [14] (p. 432, bottom) that for some constant C

‖∇Gτ‖Lq(R2) ≤ C τ
1
q−

3
2 . (33)

This is a problem however, since similar arguments as in (30) would lead to∫ t

0

‖∇Gτ‖2Lq(R2) dτ ≤ C
∫ t

0

τ
2
q−3 dτ, (34)

of which the right-hand side is not integrable for any 1 ≤ q ≤ ∞.

We now come to the summarizing result of this section.

Theorem 6.3. Assume that the hypotheses of Theorems 5.1 and 5.2 and Lemma
6.2 hold. Then, for all t > 0 the function c∗ defined by (4) satisfies

c∗(t) ≤ 2

∫ t

0

‖φ‖2L2(Γ) + 2d2|Γ|Ct
2
q−1‖∇û0‖2Lp(R2) + 2CΓ

∫ t

0

‖φ̄‖2L1(0,τ) dτ. (35)

Proof. The statement of this theorem is a direct consequence of the observation∫ t

0

‖φ− d∇û · n‖2L2(Γ) ≤ 2

∫ t

0

‖φ‖2L2(Γ) + 2

∫ t

0

‖d∇û · n‖2L2(Γ) . (36)

The first term is finite due to the assumption that φ ∈ L2([0, T ];L2(Γ)) for all
T ∈ R+ (see Section 2). The second term was estimated in Lemma 6.2.

Remark 7. Estimate (35) is unsatisfactory for t close to zero. However, it shows
for large t that on the long run the difference between the fluxes on Γ is dominated
by the prescribed fluxes φ at Γ and φ̄ at the point source at 0, rather than the initial
condition, which is clear intuitively. In Section 8 we provide a further discussion of
the behaviour of c∗(t).

7. Estimates in the exterior – Proof of Theorem 3.1. We can now prove our
main result, an estimate for the difference between the solutions u of (1) and û of
(3) (using the solution concept explained in Section 5):

Proof. (Theorem 3.1). Let ψ ∈ C∞c (Ω) and h ∈ C∞c ([0, T ]) be test functions. Put
(ψ⊗h)(x, t) := ψ(x)h(t). Then according to Theorem 5.1 and Theorem 5.2 one has

〈∂tu− ∂tû, ψ ⊗ h〉 = d 〈∆u−∆û, ψ ⊗ h〉

=

∫ T

0

{∫
Γ

(φ(t)− d∇û(t) · n)ψ

}
h(t)dt (37)

− d
∫ T

0

{∫
Ω

(∇u−∇û) · ∇ψ
}
h(t)dt.
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Because of the regularity of the solutions u and û identity (37) extends to functions
f ∈ L1([0, T ], H1(Ω)) by continuity:

〈∂tu− ∂tû, f〉 =

∫ T

0

∫
Γ

(φ(t)− d∇û(t) · n) f(x, t) dσ(x) dt

− d
∫ T

0

∫
Ω

(∇u−∇û) · ∇f(x, t) dx dt. (38)

Now take f(x, t) := (u(x, t)− û(x, t))h(t) with h ∈ C∞c ([0, T ]) arbitrary. Then the
regularity of u and û and (38) imply that

1

2

d

dt
‖u− û‖2L2(Ω) + d‖∇u−∇û‖2L2(Ω) =

∫
Γ

(u− û)(φ− d∇û · n) . (39)

Add d‖u− û‖2L2(Ω) to both sides and integrate in time from 0 to arbitrary t:

1

2
‖u− û‖2L2(Ω) +d

∫ t

0

‖u− û‖2H1(Ω) =

∫ t

0

∫
Γ

(u− û)(φ−d∇û ·n) +d

∫ t

0

‖u− û‖2L2(Ω) ,

(40)
where we have used that u and û are initially equal on Ω. Apply the Cauchy-Schwarz
inequality and use the result of Theorem 6.3 to obtain∫ t

0

∫
Γ

(u− û)(φ− d∇û · n) ≤
(∫ t

0

‖u− û‖2L2(Γ)

) 1
2
(∫ t

0

‖φ− d∇û · n‖2L2(Γ)

) 1
2

=
√
c∗(t)

(∫ t

0

‖u− û‖2L2(Γ)

) 1
2

. (41)

Since H1(Ω) ↪→ L2(Γ), according to the Boundary Trace Imbedding Theorem
(cf. [1], Theorem 5.36, p. 164) there is a constant c̄ = c̄(Ω) > 0 such that

‖u− û‖L2(Γ) ≤ c̄ ‖u− û‖H1(Ω), (42)

which can be used to further estimate (41):∫ t

0

∫
Γ

(u− û)(φ− d∇û · n) ≤
√
c∗(t) c̄

(∫ t

0

‖u− û‖2H1(Ω)

) 1
2

. (43)

For arbitrary ε > 0, Young’s inequality yields the following estimate on the right-
hand side:√

c∗(t) c̄

(∫ t

0

‖u− û‖2H1(Ω)

) 1
2

≤ 1

2ε
c∗(t)c̄2 +

ε

2

∫ t

0

‖u− û‖2H1(Ω) . (44)

Take ε ∈ (0, 2d). Then (40)–(44) together yield

‖u− û‖2L2(Ω) + (2d− ε)
∫ t

0

‖u− û‖2H1(Ω) ≤
1

ε
c∗(t)c̄2 + 2d

∫ t

0

‖u− û‖2L2(Ω) , (45)

or

‖u− û‖2L2(Ω) + (2d− ε)
∫ t

0

‖∇u−∇û‖2L2(Ω)︸ ︷︷ ︸
≥0

≤ 1

ε
c∗(t)c̄2 + ε

∫ t

0

‖u− û‖2L2(Ω) . (46)

It follows that

‖u− û‖2L2(Ω) ≤
1

ε
c∗(t)c̄2 + ε

∫ t

0

‖u− û‖2L2(Ω) , (47)
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and due to a version of Gronwall’s lemma1

‖u− û‖2L2(Ω) ≤
1

ε
c∗(t)c̄2 eεt, (48)

where we use that c∗(·) is (by definition) non-decreasing. Note that ε is arbitrary
but fixed, thus 1/ε <∞. We obtain (5) by defining c1 := c̄2/ε.

From (45) it also follows that∫ t

0

‖u− û‖2H1(Ω) ≤
1

ε(2d− ε)
c∗(t)c̄2 +

2d

2d− ε

∫ t

0

‖u− û‖2L2(Ω) . (49)

The upper bound (48) now implies∫ t

0

‖u− û‖2H1(Ω) ≤
1

ε(2d− ε)
c∗(t)c̄2 +

2d

ε2(2d− ε)
c∗(t)c̄2 (eεt − 1)

≤ 2d

ε2(2d− ε)
c∗(t)c̄2 eεt, (50)

where we use that ε < 2d in the second step. The second statement of the theorem
now follows by defining c2 := 2dc̄2/(ε2(2d− ε)).

Remark 8. In principle, (50) can be optimized in ε for every t separately, to get
an optimal ε = ε(t). After substitution of this ε(t), (6) becomes independent of ε.
However, its t-dependence obviously becomes more complicated. Further details on
this aspect are omitted here.

Remark 9. The fact that the estimates in Theorem 3.1 are linear in c∗ relates
nicely to our Conjecture 1; see Section 8 below. If indeed c∗ is small or even goes

to zero, then the same holds for ‖u(·, t)− û(·, t)‖2L2(Ω) and
∫ t

0
‖u− û‖2H1(Ω) .

8. Conjecture. The estimate (36) is a very crude way to find an upper bound
on c∗(t). In the following (deliberately vague) conjecture, we express under which
conditions we expect c∗(t) to be smaller than the upper bound of Theorem 6.3
suggests.

Conjecture 1. The upper bound c∗ can be much smaller than Theorem 6.3 suggests.
Ideally it goes to zero.

Conjecture 1 is based on the following considerations:

• Once the geometry and φ on Γ are given, there still is a lot of freedom in dealing
with the reduced problem (3). We can choose φ̄ and v0. Our conjecture is
that a smart choice of φ̄ and v0 can produce a flux on Γ that mimics well φ
and gives more than merely a bounded difference.

• Initially, during a small time interval, the initial condition should induce a
sufficiently close flux. To this aim an appropriate v0 has to be provided.

• At a certain moment, mass originating from the source starts reaching the
boundary. From then onwards, the mimicking flux should be – with some
delay – mainly due to φ̄.

• Let |ΩO| denote a typical length scale of the object O (e.g. its diameter). The
quantity |ΩO|2/d is a typical timescale for points to travel the distance from
source to boundary. This is also the timescale at which the transition between
the above two bullet points takes place.

1A specific form of Theorem 1 on p. 356 of [25].
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• The shape of object O is important. An intuitive guess is that a small object
O can be better approximated. As the point source emits mass at the same
rate in all directions, we expect a better approximation also to be possible if
Γ is radially symmetric with respect to the origin, and φ is constant on Γ (in
space, not necessarily in time). A generalization of the latter condition would
be to have φ defined on a more general Γ, but to have an extension to a ball
B(0, R) such that Γ ⊂ B(0, R) ⊂ R2, and this extension is radially symmetric
around the origin on B(0, R).

The above statement was written under the assumption that in general the (normal
component of the) flux is directed outward on Γ. For a mass sink, mutatis mutandis
the same considerations hold.
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We thank Jan de Graaf, Georg Prokert, Patrick van Meurs, Upanshu Sharma
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their thoughts with us.

Appendix – Proof of Theorem 5.2.

Proof. Note that for û0 ∈ H1(R2), the function û1 := G ∗x û0 is a solution of{
∂u

∂t
= d∆u, on R2 × R+;

u(0) = û0, on R2,
(51)

which is unique and satisfies

û1 ∈ H1([0, T ];L2(R2)) ∩ L2([0, T ];H2(R2)) (52)

due to [9], Theorem 2.1, where the domain is taken to be R2.
Define û2 := G ∗t φ̄. Then û2 satisfies

‖û2‖L2(Ω) =

(∫
Ω

∣∣∣∣∫ t

0

Gt−s(x) φ̄(s) ds

∣∣∣∣2 dx
)1/2

≤
∫ t

0

(∫
Ω

∣∣Gt−s(x) φ̄(s)
∣∣2 dx)1/2

ds

≤
∫ t

0

‖Gt−s‖L2(R2)|φ̄(s)| ds

≤
∫ t

0

c (t− s)−1/2|φ̄(s)| ds. (53)

In the second step we used Minkowski’s inequality for integrals (see [32], p. 271),
whereas the last inequality follows from Part 2 of Lemma 4.3. Since t 7→ c t−1/2 ∈
L1([0, T ]) and by assumption φ̄ ∈ L2([0, T ]), Corollary 4.2 applied to (53) yields

‖û2‖L2(Ω) ∈ L2([0, T ]). (54)

Because G·(x) and ∂tG·(x) are in L1
loc(R+) for x 6= 0 and ∂tφ̄ ∈ L2(R+), one has in

the sense of distributions

∂t
(
G·(x) ∗ φ̄

)
=
(
∂tG·(x)

)
∗ φ̄ = G·(x) ∗

(
∂tφ̄
)
. (55)
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Thus we can repeat the argument leading to (54), replacing φ̄ by ∂tφ̄, and obtain

‖∂tû2‖L2(Ω) ∈ L2([0, T ]). (56)

We conclude from (54) and (56) that

û2 ∈ H1([0, T ];L2(Ω)). (57)

It follows from (7), with n = 2 that

∂xi
Gt(x) =

xi
8πd2t2

e−|x|
2/4dt, and (58)

∂xi
∂xj

Gt(x) =
1

8πd2t2
e−|x|

2/4dt
[
δij −

xixj
2dt

]
, (59)

where δij denotes the Kronecker delta. The gradient is bounded in the following
way:

|∇Gt(x)|2 ≤ sup
t>0
|∇Gt(x)|2

= sup
t>0

|x|2

64π2d4t4
e−|x|

2/2dt

=
1

|x|6
sup
u>0

u4

4π2
e−u, (60)

for all t > 0 and for all x ∈ Ω, where we substituted u := |x|2/2dt to obtain the

constant c1 := supu>0

u4

4π2
e−u, which is independent of |x|, t, d. Thus

|∇Gt(x)|2 ≤ c1
|x|6

. (61)

For a matrix M ∈ Rn×n, as matrix norm we use the Frobenius norm and denote it
by ‖ · ‖F :

‖M‖F :=

√∑
i,j

|Mij |2. (62)

In a similar way as for ∇G, we estimate the Hessian matrix

‖D2Gt(x)‖2F ≤ sup
t>0

 2∑
i=1

2∑
j=1

1

64π2d4t4
e−|x|

2/2dt
[
δij −

xixj
2dt

]2
= sup

t>0

1

64π2d4t4
e−|x|

2/2dt

(
2− |x|

2

dt
+
|x|4

4d2t2

)
=

1

|x|8
sup
u>0

u4

4π2
e−u

(
2− 2u+ u2

)
=

c2
|x|8

, (63)

for all t > 0 and for all x ∈ Ω. Now we show that ∂xi
Gt and ∂xi

∂xj
Gt are in L2(Ω),

both with uniform upper bound in t:

‖∂xi
Gt‖2L2(Ω) =

∫
Ω

|∂xi
Gt(x)|2 dx

≤
∫

Ω

|∇Gt(x)|2 dx
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(61)

≤
∫

Ω

c1
|x|6

dx =: C1 <∞, (64)

where we use that 0 is an interior point of ΩO = R2 \ Ω. Also

‖∂xi
∂xj

Gt‖2L2(Ω) =

∫
Ω

|∂xi
∂xj

Gt(x)|2 dx

≤
∫

Ω

‖D2Gt(x)‖2F dx

(63)

≤
∫

Ω

c2
|x|8

dx =: C2 <∞. (65)

For brevity, we now use the index notation for derivatives and, for |α| ∈ {1, 2}. Like
in (53), using Minkowski’s integral inequality, we obtain that

‖∂αx û2‖L2(Ω) ≤
∫ t

0

‖∂αxGt−s‖L2(Ω)|φ̄(s)| ds. (66)

Due to (64)–(65), for each |α| ∈ {1, 2} and for each τ > 0

‖∂αxGτ‖L2(Ω) ∈ L∞([0, T ]) ⊂ L1([0, T ]). (67)

Hence, the fact that φ̄ ∈ L2([0, T ]) yields via Part 2 of Corollary 4.2 that∫ t

0

‖∂αxGt−s‖L2(Ω)|φ̄(s)| ds ∈ L2([0, T ]), (68)

for each |α| ∈ {1, 2}. It follows from (54), (66) and (68) that

û2 ∈ L2([0, T ];H2(Ω)). (69)

Together with (57), this finishes the proof of the first part.
The last statement follows from (55) and a similar result for the spatial deriva-

tives. For all ψ ∈ C∞c (Ω) and h ∈ C∞c (R+), ψ⊗h(x, t) := ψ(x)h(t) is in C∞c (Ω×R+)
and one has

〈∂tû, ψ ⊗ h〉 =
〈(
∂tG·) ∗x û0, ψ ⊗ h

〉
+

∫
Ω

〈
∂t
[
G·(x)

]
∗t φ̄, h

〉
ψ(x) dx

= 〈d(∆G·) ∗x û0, ψ ⊗ h〉+

∫
Ω

〈
d[∆G·(x)] ∗t φ̄, h

〉
ψ(x) dx

= 〈d∆(G· ∗x û0), ψ ⊗ h〉+
〈
d∆(G· ∗t φ̄), ψ ⊗ h

〉
= 〈d∆û, ψ ⊗ h〉 .

By density of C∞c (Ω)⊗C∞c (R+) in the space of test functions D(Ω×R+) we obtain
∂tû = d∆û in the sense of distributions on Ω×R+. Since both are given by (locally
integrable) functions according to the first part of the proof, ∂tû(t) = d∆û(t) for
almost every t.

Remark 10. The estimates (64)–(65) hinge on the fact that Ω is bounded away
from 0, where the integrand is singular.
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