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Abstract. Focusing on a specific crowd dynamics situation, including real

life experiments and measurements, our paper targets a twofold aim: (1) we

present a Bayesian probabilistic method to estimate the value and the uncer-
tainty (in the form of a probability density function) of parameters in crowd

dynamic models from the experimental data; and (2) we introduce a fitness

measure for the models to classify a couple of model structures (forces) accord-
ing to their fitness to the experimental data, preparing the stage for a more

general model-selection and validation strategy inspired by probabilistic data
analysis. Finally, we review the essential aspects of our experimental setup and
measurement technique.

1. Introduction.

1.1. Background. Crowd models are powerful tools to explore the complex dy-
namics which characterizes the motion of pedestrians, cf. e.g. the overview [29] and
references cited therein. Understanding how crowds move and eventually being
able to predict their behavior under given (possibly extreme) conditions becomes
an increasingly important matter for our society. Reliable mathematical models
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for crowds would be of great benefit, for instance, to increase pedestrian comfort
(ensuring a regular flow motion at acceptable densities), security (evacuation assess-
ments) and structural serviceability (crowd-structure interaction), in particular if
the theoretical information/forecast is in real-time agreement with the actual crowd
behavior.

Aiming at quantitative models, a proper assessment of the uncertainty is needed
given experimental data (e.g., in the form of crowd recordings) together with a model
or a collection of models. This paper treats a basic crowd scenario: pedestrians
crossing an U-shaped landing (corridor) in a defined direction. In particular, the
questions we consider here relate to a low density regime, in which pedestrians can
be considered as moving alone, being just influenced by their desires as well as the
geometry of the (built) environment in their surroundings (“rarefied gas” regime).
We explicitly wonder (in a quantitative sense specified afterwards): do pedestrians
interact with walls? How does the presence of walls affect the pedestrian motion?
Are walls purely repulsive, or could they be attractive?

To address these (and related) questions, extensive video recordings of a trafficked
U-shaped landing in Eindhoven University of Technology (see Appendix A) have
been made and 7 different test models describing the pedestrian-wall interaction are
deducted and compared against.

1.2. Simple crowd models. Ensembles. Since the movement of pedestrians is
to a large extent non-deterministic, any model that describes the detailed motion
of pedestrians requires the introduction of some elements of noise. To address this
issue, one may choose to describe the dynamics from a “coarse grained” point of
view, hence either at the mesoscopic scale or at the macroscopic scale. For instance,
when a macroscopic level of description is used, a balance equation for the density
of pedestrians (possibly supported by balance of momentum, see e.g. [9] for details
on balance laws) models the evolution of the crowd, while the detailed microscopic
behaviors are averaged out. In principle, the latter equations can be derived directly
from the microscopic equations, although a problem remains: microscopic models
for crowd dynamics (see, for instance, the social force model proposed by Helbing
and Molnar [16]) describe the detailed motion of pedestrians, but to which extent
the microscopic details are relevant to capture the intrinsic crowd patterns at larger
scales and what is the role of noise and uncertainty? In other words, which details
of the microscopic information are necessary to capture the behavior of the crowd?

Usually, in an attempt to keep into account the observed non-deterministic be-
havior of the crowds, noise is added to deterministic models turning them into
Langevin-like equations for the so-called active Brownian particles (see e.g. [27, 29])
or in measure-valued evolutions (see e.g. [1, 14, 2]).

Since we cannot describe deterministically the motion of pedestrians, we opt for
a different strategy. We choose to construct a probabilistic ensemble of pedestrians
(referred here as the ensemble1) whose properties can be directly deduced in a
quantitative manner on the basis of experimental observations.

We construct such crowd ensemble by the means of a connection to simple evolu-
tion models, which can be cast in the form of a potential of interaction of pedestrians
with obstacles or amongst themselves together via Newtonian dynamics. The po-
tential or force in the model is characterized by a set of parameters, whose statistical

1By “ensemble” we understand a collection of the copies of a system distributed according to
a probability distribution function (pdf).
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properties can be obtained by comparing the model with well-controlled experimen-
tal data. Thus the model and the probability distribution of the model parameters
(inferred from data) define our crowd ensemble. In this way we cast the force es-
timation problem into a well defined procedure of probabilistic data analysis, very
much inspired by [32, 31]. A related approach for traffic-flow models is mentioned
in [17] and references therein.

1.3. Aim of the paper. We focus our attention on the effects of walls (obsta-
cles) on pedestrian motion for a specific crowd dynamics scenario (extensively de-
scribed in Section 1.4 from a qualitative point of view, and in the Appendix A
from a technical point of view). Once the effect of walls is understood, considering
pedestrian-pedestrian interactions in the same scenario is expected to be easier.

Note that even standard crowd dynamics situations are actually rather complex,
in particular, the following aspects among others need to be considered carefully:

(i) the motion of pedestrian is complex and influenced by many sources, among
others: desires/aims, interaction with geometry and interaction with neigh-
boring peers;

(ii) the effects of these interaction appears simultaneously and in an entangled
way.

To attempt to disclose the cause-effect relations in this complex motion, we choose
a step by step approach; therefore, we opt to look exclusively at situations in which
the interaction among pedestrians is absent and the motion is fully regulated by own
desires and neighboring geometry. As a clear consequence, this study sets a possi-
ble stage for the analysis of pedestrian-pedestrian interactions which is inevitably
perturbed by the effects mentioned at (i) and (ii). To make the complete dynamics
approachable, the hypothesis of linear superposition of effects has to be made.

In social-force models [16, 11, 26, 34, 4] (for overviews on the matter see, e.g., [13,
29]), pedestrians move according to a Newtonian dynamics; in particular, in the
absence of neighboring peers, the force acting on a single particle can be expressed
as:

F = Fvd + Fwall, (1)

where

• Fvd is a force which keeps into account the desires of the pedestrians in terms of
the direction he/she is willing to follow. Usually, this term induces a relaxation
of the velocity v of the pedestrian towards a background desired velocity field
vd = vd(x, y). The desired velocity field usually drives the pedestrian all over
the domain toward a given “desired” target. In formulas, this term reads as
Fvd = (v − vd)/τ , where τ is a characteristic relaxation time.

• Fwall describes the interactions pedestrians have with walls. This term doesn’t
just model the impenetrability of the latter, rather it is aimed at taking into
account the will of pedestrians to maintain a certain distance from walls.

Structure and parameters dependence of vd and Fwall shall be assumed. In the
following, we suppose vd to be parametrized by its magnitude (the desired speed
|vd| ≡ const), whilst its direction is kept as a model feature.

On the other hand, Fwall is assumed to be a sum of forces pointing outwards
the walls in the proximity of the particle, i.e.

Fwall =
∑
w∈W

Fw
wall,
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Figure 1. Left: Representation of the landing map. Right: Ac-
tual view from the camera. Here two pedestrians are detected as
they walk through the landing. Multi-pedestrian events, such as
the one shown here for illustration, are actually filtered out, so
that only trajectories involving only one pedestrian at a time are
considered. The density plot in the background shows the density
count of pedestrian, as measured from our camera and distributed
over the 2D space of the landing, after a long time.

where the sum is performed on every wall w in the set of the walls W . One usually
supposes that every contribution Fw

wall has a fixed functional form which depends
on the distance between the pedestrian and the wall, and is parametrized by a set

of Np parameters ~P =
{
P1, P2, . . . , PNp

}
= {Pi}. Note, however, that different,

more general, forms of Fwall can be chosen; see e.g. [18].
In the present work, our main purpose is to estimate the probability distribution

functions of the model parameters vd and {Pi} from experimental data (cf. Section
1.4 and Appendix A).

1.4. Experimental data. The kinematic data referring to trajectories of pedes-
trians (positions, velocities, accelerations) walking through a rectangular section of
a U-shaped landing (see Figure 1 and consider Appendix A for technical details)
is acquired via an over head recording camera. In general, the landing features a
rich pedestrian dynamics for its size; pedestrian walking in the two directions (in
general, ascending and descending the stairs) can be continuously observed during
working hours, and up to six pedestrians have been seen walking together at the
same time.

Due to the geometry of the setting, trajectories of pedestrians tend to bend
slightly as the landing is crossed. This is a consequence of the presence of 90 degree
turns at the ends of the landing.

An more extensive description of the various dynamics recorded in the corridor,
possibly conditioned to the direction and to the flow condition, can be found in the
work [5] by the same authors.

In the following, since we focus our attention on the walls-pedestrian interaction,
we consider only data concerning a single pedestrian (i.e. appearing alone in the
camera field of view) and that has a specific desired direction (from the left to the
right hand side of the landing). In other words, all recordings referring to situations
in which more than one pedestrian is present at a time, or in which she is not going
to the right, are not taken into consideration.
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The measured data considered consists of a set Ts of NTs pedestrian trajectories,
where NTs ≈ 1500, i.e.

Ts = {Ti| 1 ≤ i ≤ NTs} .
Such large set of trajectory is assumed to give a complete, “statistically resolved”,
description of the considered behavior. In other words, it is assumed that enlarging
the set Ts with further trajectories would not change its features significantly.

Every trajectory is itself a set of recorded points in the (2+1)-dimensional space-
time of the landing; in other words, given a pedestrian having trajectory Ti, she
assumes spatial position (xik, y

i
k) at time instant tk, where k is an integer ranging

from 1 to the number of steps Mi describing the trajectory. In formulas, a trajectory
can be therefore written as

Ti = {(xik, yik, tik)| 1 ≤ k ≤Mi}. (2)

Remark 1. Looking back at the considered model parameters (i.e., the desired
speed |vd| and the wall force parameters, {Pi}), we observe that |vd| is a parameter
specific of the trajectories, i.e. to every trajectory it corresponds a specific value
|vd| that needs to be estimated. In contrast, one can think of {Pi} as a set of
global parameters, in the sense that they are shared between all trajectories. This
would suggest the use of a two-steps optimization procedure; see Section 2.4. In
this paper, we decide to treat all parameters in the same way, and thus we postpone
the two-steps optimization idea for a later approach.

1.5. Structure of the paper. The paper is organized as follows: Section 2 con-
tains the working methodology which is based on probability estimates guided by
Bayes theorem; moreover, how Bayes theorem can be used for model selection is
pointed out. The main result of this paper is presented in Section 3: following
the described working methodology, parameters of a number of simple wall force
models for our crowd scenario are estimated. Furthermore, on this basis, models
are compared quantitatively and qualitatively. Section 4 discusses the obtained re-
sults. Finally, the measurement technique and the collected experimental data are
described in Appendix A.

2. Probabilistic data analysis of crowd ensembles. In this section, we intro-
duce the methodology behind the probabilistic data analysis used here. For more
details, we refer the reader to the introductory guide by Skilling [32] or to the
mathematical background presented by Sivia in [31].

2.1. Probability estimates. Bayes theorem. We denote all the measured data
by D and all prior information by I. In other words, while D encloses all the
information acquired in the measurement process, I includes the assumptions made
on model and thus on the type of dynamics.

Our goal is to identify the parameters for a considered set of pedestrian models
(|vd|, {Pi}) for the considered scenario. This task can be performed by estimating
the posterior probability law

Prob (vd, {Pi} |D, I) ,

which describes the probability associated to the parameters of a considered model
being conditioned on data D and all prior information I. Such probability law can
be either peaked around a given maximum value, which does correspond to the
solution of the estimation problem, or can be dispersed. In such case the mean
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value and the standard deviation of the law can be used as a fair representation of
the full distribution.

By means of Bayes theorem (see e.g. [8, 7, 21]), the posterior probability can be
related to other probabilities of easier computation (or even known already). The
theorem reads as

Prob (vd, {Pi} |D, I) =
Prob (D|vd, {Pi} , I)Prob (vd, {Pi} |I)

Prob (D|I)
. (3)

The probabilities involved in the l.h.s of Equation (3) are respectively

• the likelihood function Prob (D|vd, {Pi} , I);
• the prior probability Prob (vd, {Pi} |I);
• the data evidence Prob (D|I).

In the following subsections such probabilities are extensively used and details re-
garding their computations are given. It is worth to notice that, since the data D is
assumed as given, the data evidence plays the role of a mere normalization constant
and, as a consequence, we can write

Prob (vd, {Pi} |D, I) ≈ Prob (D|vd, {Pi} , I)Prob (vd, {Pi} |I) , (4)

to stress the fact that the quantities playing a significant role in parameter estima-
tion are just the likelihood function and the prior probability.

2.2. Likelihood function. Misfit norm(s). The likelihood function measures
how well the model, along with the given parameters, fits the data. We distinguish
between four different schemes to compare data and models:

(i) positions in trajectory data versus positions predicted in the model;
(ii) velocities obtained from data versus velocities as calculated from the model;

(iii) acceleration deducted from data versus acceleration in the model;
(iv) a combination of the previous three.

It is worth to remark that the third scheme has the advantage of not requiring
the computation of the full trajectories generated by the model. On the other
hand, acceleration data are usually more noisy, as a consequence of the double time
differentiation of pedestrian trajectories - which is itself never exempt from noise
(see also [28] for further insights on acceleration-based comparison between models
and data in the case of noisy measurements).

The likelihood function can be obtained from the Principle of Maximum Entropy
(MaxEnt) once the kind of noise in the data is assumed, see [31] for details. In
particular, assuming Gaussian noise, the likelihood function results in

Prob (D|vd, {Pi} , I) = ΠNk
k=1

(
σk
√

2π
)−1

exp

(
−
∑Nk

k=1 (dk −mk)
2

2σ2
k

)
, (5)

where dk is the acceleration in the trajectory data, at sample k, and mk is the
acceleration provided by the model with parameters |vd| and {Pi} at the same
point. According to the adopted notation, σk is the error estimation, or standard
deviation, for the experimental acceleration dk.

In the following subsections, we consider the likelihood function for two different
assumptions on the noise in the data: Gaussian noise (in 2.2.1) and Exponential
noise (in 2.2.2). Further assumptions on the noise2 may be made These two options
seem to be more common in literature.

2Note that in the Bayesian framework the noise is part of the model.
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For what concerns the analysis of real data reported in Section 3, the comparison
between model and data is performed considering accelerations (scheme (iii)) and
the noise is assumed to be Gaussian. The analysis of the actual noise structure is
left for further investigations (see [6]).

2.2.1. Gaussian noise. The misfit function χ2 is defined such that

χ2 = −2 log Prob (D|vd, {Pi} , I) + C(σk, Nk)

or

Prob (D|vd, {Pi} , I) ≈ exp

(
−χ2

2

)
.

Therefore, for the case of Gaussian noise in the data, we have the `2 norm for
the “distance” between the model and data;

χ2 =

∑Nk
k=1 (dk −mk)

2

σ2
k

.

Since the logarithm is a monotonically increasing function, finding the maximum
of Prob (D|vd, {Pi} , I) is equivalent to finding a minimum for χ2. It becomes more
simplified if σk are equal to σ,

χ2 =
1

σ2

Nk∑
k=1

(dk −mk)
2

or more reasonably since we would intuitively expect that the error estimate be
proportional to the data σk = σ |dk| and define a new misfit norm by dividing the
previous one by Nk;

χ2 =
1

Nkσ2

Nk∑
k=1

(
dk −mk

dk

)2

.

Remark 2. Since we do not study explicitly the absolute magnitude of the noise,
we take everywhere in the paper σ to be 1.

This form of χ2 has the interesting property that if mk = dk(1 + εσ), i.e., if the
model misses the data by a (small) fraction of ε of the error estimate, then we have

χ2(ε) = ε2.

2.2.2. Exponential noise. The exponential noise in the data corresponds to

Prob (D|vd, {Pi} , I) = ΠNk
k=1 (2σk)

−1
exp

(
−

Nk∑
k=1

|dk −mk|
σk

)
,

therefore the misfit χ2 in this case will be the l1 norm

χ2 =

Nk∑
k=1

|dk −mk|
σk

.

Again if we assume σk = σ |dk| and divide by Nk we obtain

χ2 =
1

Nkσ

Nk∑
k=1

∣∣∣∣dk −mk

dk

∣∣∣∣ .
A similar calculation as the one we did for Gaussian noise for the deviation mk =
dk(1 + εσ), yields

χ2(ε) = ε.
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The exponential distribution is less centrally distributed than a Gaussian. Con-
sequently, the `1 norm is more robust and it is expected to fit better data that
contains a number of “wildly” distributed points.

With our choice of the misfit functions χ2, we are de facto pushing forward an
empirical probability measure (defined by the data), from the parameter space onto
the real line. This allows us to compare in a natural fashion different models.

2.3. Prior probability.

2.3.1. Background. The prior probability Prob (vd, {Pi} |I) encodes our prior state
of knowledge on the parameters, before taking into account the acquired data D.
For most practical purposes we can suppose that it is a constant over the range of
parameters that we consider acceptable. More precisely we can use the symmetry
group transformations and/or the principle of maximum entropy to assign the prior
probabilities. From translation symmetry arguments, it turns out that for position
parameters, like coordinates, a uniform prior distribution over the expected range is
the optimal choice. For scale parameters, the right prior is the Jeffreys distribution
Prob (p) ∝ 1

p , which is a consequence of scale invariance symmetry [21, 19, 20].

As long as the data is of good quality and the range of parameters is chosen well,
one expects that the effect of the likelihood function dominates, and the posterior
probability is less sensitive to the exact choice of the prior probability.

2.3.2. Law of large numbers. Since the number of trajectories measured can be ar-
bitrarily large, we expect that the law of large numbers applies and that one can use
an optimization procedure on each single trajectories separately and then employ
the resulting histogram to estimated the parameters as the probability distribution
for the value of the parameters. Thus having access to a large number of trajectories
simplifies the estimation scheme.

2.4. Two-steps optimization. As mentioned in Remark 1, the experimental tech-
nique and setup indicate that there is an intrinsic difference between the parameters
vd and {Pi}, the former being trajectory dependent and the later being global. One
way to take this into account is to estimate firstly the parameters for each trajec-
tory, in particular vd, obtaining vd,i As the second step, one can afterwards use the
data {(Ti, vd,i) | 1 ≤ i ≤ NT } for globally estimating {Pi} and calculating the global
fitness of the model to data. We do not follow this approach here, rather we treat
all parameters equally.

2.5. Simulated annealing. The parameter space is in general multidimensional,
and posterior probability is likely to be multi-modal, where the probability maxi-
mums (or the minimum of the misfit norm) are generally not analytically solvable.
Among other techniques, one can use the simulated annealing method [22] to tackle
this problem; in analogy with thermodynamics, one supposes that the misfit norm
is an energy function and uses the Metropolis Monte Carlo algorithm [24] to sample
the points in parameter space according to the Boltzmann-Gibbs distribution at a
given temperature, T :

ProbT (vd, {Pi}) ∝ e
−χ2

T .

Clearly by setting T = 1 we get the same distribution as the desired likelihood
probability. The basic idea of simulated annealing is to start with T > 1 and then
reduce the temperature dynamically until T = 1. In this way, starting from a more
“energetic” point, it is more likely to overcome the local minimum traps of the misfit



ESTIMATION OF THE SOCIAL FORCE PARAMETERS 345

function, and reach the most significant parts around the global minimum. After-
wards we will continue the sampling with T = 1 to obtain the points in parameter
space distributed according to the posterior. In order to achieve good convergence,
it might be necessary to repeat the whole annealing procedure several times and
by starting from different random initial points. The resulting distribution can be
used to obtain the marginal probability distribution of for example vd;

Prob (vd) =

∫
ProbT=1 (vd, {Pi})

∏
dPi,

which can be directly plotted or used to calculate the average and the standard
deviation for the parameter;

vd = 〈vd〉 =

∫
vd ProbT=1 (vd, {Pi})

∏
dPi

σ2
vd

:=
〈

(vd − vd)
2
〉

=

∫
v2d ProbT (vd, {Pi})

∏
dPi − vd

2.

In the framework of this paper, using many trajectories as data, we perform the
per-trajectory optimization approach mentioned in Section 2.3.2 and we thus do
not require the simulated annealing approach.

2.6. Selection and hierarchy of models.

2.6.1. Background. Suppose we have two models MA and MB . In such case, we
can apply the Bayes theorem to obtain

Prob (MA|D, I) =
Prob (D|MA, I)Prob (MA|I)

Prob (D|I)

and, similarly for MB . Therefore, we have

Prob (MA|D, I)

Prob (MB |D, I)
=
Prob (D|MA, I)Prob (MA|I)

Prob (D|MB , I)Prob (MB |I)
.

In general, the two models will have different set of parameters,
−→
P A and

−→
P B ,

respectively. We have for the data D and assuming model MA that

Prob (D|MA, I) =

∫
Prob

(
D|
−→
P A,MA, I

)
Prob

(−→
P A|MA, I

)
d
−→
P A,

hence
Prob (MA|D, I)

Prob (MB |D, I)

=
Prob (MA|I)

Prob (MB |I)
×

∫
Prob

(
D|
−→
P A,MA, I

)
Prob

(−→
P A|MA, I

)
d
−→
P A∫

Prob
(
D|
−→
P B ,MB , I

)
Prob

(−→
P B |MB , I

)
d
−→
P B

.

P rob (M |I) indicates our prior probability for the model M . The integrals over
the likelihood function can be calculated with the same stochastic procedure as
explained in the section for simulated annealing. We see now that the parameters

priors Prob
(−→
P |M, I

)
play a role, therefore it is important to make sure they are

assigned properly, especially when the two models are nearly identical. We take

here Prob(MA|I)
Prob(MB |I) = 1 but, in principle, this ratio does not need to be one and it can

therefore be used for the updating procedures provided previous information are
available.
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Figure 2. The setup of the models as seen from the camera. From
up to bottom; the desired velocity field of M1, the desired velocity
field of M3 and the force field of M5.

2.6.2. Law of large numbers. As in the previous section, we use again the fact that
we are in a law of large numbers regime and, after the optimization procedure on
each single trajectory separately, we use the resulting histogram of the minimum
value of the misfit function as the criteria for the model selection. If only one
number is required to compare the models, it will be then the average of

L = χ2 (6)

in such histograms, for each model, the smaller values are an indication that the
model fits better to the data.

3. Estimating wall forces.

3.1. Choice of models. We consider 7 different simple crowd models which we
denote by the symbols M1,M2, . . . ,M7, respectively. We apply the probabilistic pa-
rameter estimation technique described in Section 2, together with our experimental
test scenario described in Appendix A.

The chosen models aim at mimic the basic aspects of the pedestrian motion for
individuals going from the left hand side to the right hand side of the landing as are
observed in the experimental data. M1 −M7 feature different levels of complexity
as more and more phenomenological aspects are introduced.

In the simplest case, a rightward directed homogeneous velocity field is considered
as desired velocity and wall interaction is neglected (M1,M3). This basic hypothesis
on the velocity is refined by considering a desired velocity field pointing toward an
estimated exit point (M2,M4,M7). Furthermore, as previously mentioned (see also
Figure 1 (right)), pedestrian trajectories are slightly bending as a consequence of
the landing shape. Turning pedestrians are de facto subjected to a (centripetal)
force which we assume related to the presence of the walls. This observation defines
the last refinement step for the models considered (M5,M6,M7).

More precisely, the models M1 −M7 are:
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M1: An homogeneous desired velocity field parallel to the span-wise walls is adopted.
The repulsion force of the walls is neglected. The relaxation time is hereby
adopted as fixed and, according to [16], the value τ = 0.5s is chosen. As a

consequence, the parameter to estimate is the desired speed |vd|, i.e.
−→
P 1 = {};

see Figure 2 (top).
M2: An homogeneous velocity field analogous to the one in M1 is chosen, however

the relaxation time τ is also treated as a parameter to be estimated, i.e.
−→
P 2 =

{τ}.
M3,4 : These models are similar - respectively - to M1 and M2, and they differ from

the latter as the desired velocity field is such that at every point the desired

velocity vector is directed towards the exit point, i.e.
−→
P 3 = {} and

−→
P 4 = {τ};

see Figure 2 (middle).
M5: This model features exclusively the wall force Fwall and no relaxation toward

a desired velocity field. In general, trajectories observed in the landing are
slightly U-bending, hence a centripetal acceleration pointing toward the inner
wall is expected. This is modeled via the wall force

Fwall(x, y) = m(x, y)~ι(x, y),

where m(x, y) is the magnitude of the force and ~ι(x, y) is a unit vector field
pointing toward an approximated acceleration center C, which, in this ge-
ometry, is close or lies on the lower wall. In the present case, C has been
estimated from the tracks as the zero point of the average acceleration field
as C = (0.2,−0.3)m. Generally speaking, for symmetry reasons, C can be
expected to be approximately at the center of the lower wall (see Figure 2
(bottom)).

As this acceleration is expected to be mostly induced by the exterior walls,
the magnitude m(x, y) at a point (x, y) is modeled as

m(x, y) = A

3∑
i=1

e−kd(ri(x,y)) +B,

where A,B and k are parameters to be estimated and d(ri(x, y)) is the distance

of the point (x, y) and the exterior walls (left, top, right: i = 1, 2, 3), i.e.
−→
P 5 =

{A,B, k}.
M6: This is a particular case of M5, where we suppose that the force magnitude is

constant, i.e.
m(x, y) = A.

Here A is the parameter to be estimated, in other words,
−→
P 6 = {A}.

M7: This is similar to M5, but, in addition to the force, a desired velocity is also
taken into account. This desired velocity field is chosen to be similar to one
in the models M3 and M4, pointing towards the exit. As in M3, τ = 0.5s,

i.e.
−→
P 7 = {A,B, k}.

3.2. Optimization method. We use the `2 norm for the misfit function (cor-
responding to the choice of Gaussian noise) and a “global” brute-force-based op-
timization procedure to find the best fitting parameters per trajectory. A priori
knowledge on the parameters range is assumed; this defines a box β∗ in the param-
eters space. The box is sampled by means of an orthogonal fine grid and the cost
function is evaluated on every node. A gradient descent approach is then applied
starting from the sample of minimum cost so to further refine the result.
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Figure 3. The empiric distribution of misfit (L) of the consid-
ered models is reported in these histograms (cf. Equation 6). The
performances of a model in terms of accordance with the data are
higher whenever the misfit is low - i.e. the misfit distribution is
closer to zero. This happens in the cases of models M5 and M6.

The aforementioned a priori knowledge is built upon two criteria: whenever
a parameter has clear physical interpretation (e.g. a desired speed |vd|) then its
limits are defined to be physically admissible (e.g. 0 ≤ |vd| ≤ 2m/s); otherwise, a
decreasing sequence of coarse sampled “test” parameter boxes β0 ⊃ β1 ⊃ β2 ⊃ . . . is
used to estimate a feasible “final” parameter box β∗ which is then analyzed with a
finer grid. In other words, a “large”, arbitrary, parameter box β0 is considered first.
Such box is then sampled with a coarse grid and the empiric distribution function
of the optimal parameters is found. The box size is then reduced up to a box β∗ in
a way such that the support of the optimal parameter distribution lies entirely in
it.

The behavior of the optimization method with respect to the choice of the model
must finally be commented. The most relevant scaling factor for what concerns
the computation time of the optimal model parameters is the dimension of the
parameter space. In particular, when such a brute force algorithm is used, the
computation time grows exponentially with the dimensions of the parameter space.
In this context one can take full advantage of parallel computing as the duty of the
search in the parameter space can be evenly split among different computing nodes.

In Figure 3, models can be compared on the basis of the empiric distribution
(histogram) of the associated misfit functions. These empiric distributions provide
insights on the capabilities of the model to be in accordance with the data. The
closer the misfit distribution is to zero, the better the model behavior. Such empiric
distributions have been obtained by the obtained optimal parameter distributions
reported in Figures 4 and 5. Finally, in Table 1 the average values of the parameters
and the misfit norms calculated from the histograms are reported.

3.3. First observations. Looking at the results of the estimation method shown
in Figure 3 in terms of empiric distribution of misfit L, we observe that in the sense
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Figure 4. Histogram distributions (counts (frequency) vs. values)
for the value of parameters corresponding to models M1, . . . ,M4.

Figure 5. Histogram distributions (counts (frequency) vs. values)
for the value of parameters corresponding to models M5, . . . ,M7.

of accordance with the data the two best performing models are the force-only
models, i.e. M5 and M6; good performances are also provided by M3.

We choose 〈L〉, i.e. the average value of L, as a synthetic comparison quantity
(see also Table 3.3). The wide reduction of 〈L〉 in M4 when compared to M2 shows
the importance of having a “good” desired velocity field and that more complicated
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Model A[ms−2] B[ms−2] k[m−1] |vd|[ms−1] τ [s] 〈L〉[1]

M1 - - - 1.11 - 1.30
M2 - - - 1.18 2.14 0.83
M3 - - - 1.13 - 0.81
M4 - - - 1.20 1.40 0.33
M5 −0.016 0.55 1.31 - - 0.20
M6 0.13 - - - - 0.25
M7 3.05 −3.85 1.02 1.19 - 0.73

Table 1. Average value of models parameters and the misfit norm

fields might possibly reduce 〈L〉 even further. However, the value of 〈L〉 in the case
of M4 is still larger than the value of 〈L〉 produced by M5, which uses a quite simple
force field.

Comparing the outcome in the case of models M1 and M2 (or similarly in the
case of models M3 and M4), we notice that the introduction of the extra parameter
for the relaxation time τ decreases 〈L〉, thus producing a better fit to the data.
However doing that has a negligible effect on the magnitude of the desired velocity.
The average τ , on the other hand, is rather dependent on the desired velocity field,
as it can be seen from a comparison of models M2 and M4, but again the average
magnitude of the desired velocity is not very sensitive to the choice of the field and in
fact it varies negligibly across the models M1, M2, M3, M4 and M7. The estimated
desired speed shows agreeing values (see the histograms of |vd| in Figures 4 and 5,
and its average values in Table 3.3) which, furthermore, are slightly overestimating
the actual pedestrian velocities measured (〈v〉 ≈ 1.05m/s) consistent with the fact
that they define a comfortable target velocity the pedestrians aim at achieving.

We found considerable correlations between the values of A and B in the models
M5 and M7. This indicates that the data that we have is not able to estimate
these two parameters separately very well, but their sum A+B can be rather well
estimated, which is approximately (given that k in M5 and M7 is small) what is
being done in M6, where the histogram for A is more sharply peaked than the
histogram for either A or B in the models M5 and M7.

Finally, as firstly stated in Section 1.4, since a large set of experimental data (Ts)
has been used, no significant difference in the statistical behavior of L is expected
when adding more trajectories. In other words, we expect the “common” behavior
adopted by single pedestrians when crossing the facility from left to right to be
satisfactorily described by the sample of trajectories contained in Ts.

4. Discussion. Focusing on a specific pedestrian dynamics scenario, we presented
a procedure for quantifying the fitness of pedestrian movement models and for esti-
mating the related parameters. Such procedure has hence been used on measured,
“real life”, pedestrian trajectories. Basing the method on Bayesian foundations,
we indicated how having access to a large number of measurements simplifies and
improves the procedures of models selection and estimation of parameters.

When considering force-based pedestrian dynamics models, the force defined by
the relaxation toward a desired velocity field and the “external” force acting on
pedestrians due to walls are two different modeling routes and ingredients, used
sometimes separately, and sometimes in combination. For instance, in the original
social force model [16] both ingredients are present. In the simple landing setup
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Figure 6. Schematics of the experimental site; on the left: top
view; on the right: perspective view. The geometry of the staircases
at the ends of the landing induces curved trajectories.

studied in this paper, both forces expressed through simple models have been con-
sidered. In particular, we found that the force-only models do a significantly better
job in matching the data and apparently outperform also models that combine force
and desired velocities. This is presumably due to the fact that the slight increased
complexity of the model is not necessarily producing better fit to the data in general.
The outcome of such increase in models complexity is nontrivial.

Possible extensions of this work can go in multiple directions: for instance, one
definitely needs to study other geometries and flow conditions - this would allow
the deduction of more abstract and transversal models to describe the interaction
among pedestrians and walls. More detailed models allowing for instance the in-
terplay between pedestrian(s)-wall vs. pedestrian-pedestrian interaction have to be
considered as well, hence compared with the case of the single pedestrian prelim-
inarily explored (at least in this scenario) hereby, e.g. as perturbations. Last but
not least, we expect that from the experimental measurements much can be learned
on the time and space structure of the correlations in the pedestrian flow (to be
followed by us in [6]).

Finally, it is worth to note that the approach presented here is not exclusively
meant for crowd dynamics applications. The parameter identification procedure can
be exploited in a large variety of settings ranging from the tracking of cells motion
in biological flows, the motion of colloidal suspensions, the detection of localization
patterns of stress-driven defects in materials.

Appendix A. Experimental setup. We provide hereby fundamental informa-
tion on the experimental setup and data used in this paper.

A.1. Lagrangian measurement of pedestrian dynamics. The experimental
data considered in this paper, which have been used as a reference to tune and to
compare pedestrian models, have been collected during a months-long experimental
campaign.

A heavily trafficked landing (see Figure 6), which connects the canteen to the
dining area of the MetaForum building at Eindhoven University of Technology, has
been recorded on full-time (24/7) basis. These recordings allowed us to gather
the statistics concerning pedestrian trajectories that we considered throughout this
manuscript.

It is important to highlight that our data do not refer to pedestrians instructed a
priori to cross the landing (as common in many “laboratory” crowd experiments);
rather, they refer to the actual, unbiased, “field” measurement of pedestrian traffic.
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ff

Figure 7. Left: schematic of how the sensor observe pedestrians
passing in the landing; on the right: actual depth map recorded in
the measurement site.

Following an approach similar to the one already introduced by Seer et al. [30],
we performed recordings by employing a standard commercial KinectTM sensor by
Microsoft Corp. [25] that allows reliable acquisition of pedestrian positions.

The KinectTM sensor is equipped with a special camera designed to enhance nat-
ural interaction, i.e. an interaction with computers and the gaming consoles (Mi-
crosoft Xbox 360TM) based on movements. In particular, in addition to an ordinary
camera, the KinectTM is able to perform hardware measurements of the depth map
of the observed scene. The depth map is a two dimensional grey-scale map which
associates to every recorded pixel an intensity proportional to its distance from the
camera plane (see Figure 7). In our experiments, in order to track pedestrians, we
did not acquire any recordings from the standard camera, rather we relied totally
on the depth map measurements.

As typically done in literature (cf. e.g. [15, 3, 23]) when one is concerned with
the measurement of pedestrian trajectories, it is often favorable to record the top
view of the scene. From the top view phenomena like partial body exposure to
the camera or mutual hiding are absent. The problem of constructing pedestrian
trajectories can be solved via identification and tracking of heads. Although the
heads are always exposed to a top-viewing camera, performing their automatic
tracking without additional hypothesis, e.g. on the clothing of pedestrian, can be
hard. As pointed out in [30], the depth map associated to the top view of a given
scene can be fruitfully used to detect heads. Heuristically speaking, the objects
which are closest to the camera generate the local minima in the depth map: such
objects, modulo a background subtraction, are most likely to be heads.

A.2. The algorithm. To generate pedestrian trajectories, “raw” depth maps are
first processed to detect heads positions; then, a multi-particle tracking algorithm
is used to estimate trajectories.

Specifically, the head detection procedure in use has been firstly introduced
in [30], whilst well-established tracking algorithms in use in experimental fluid me-
chanics (and specifically in Particle Tracking Velocimetry (PTV)) have been used
for the reconstruction of the trajectories.

For sake of completeness the whole algorithmic procedure is reported (steps
1,2,4,5,6 can be found in [30], Section 2.2, as steps 1,2,3,5).
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Let fn = fn(z) be the depth map recorded by KinectTM (VGA resolution 640×
480px2) at time instant n and at position z, i.e.

fn(z) := dist(element in z, camera plane), (7)

where z = (x, y) is a point in the VGA frame.

1. Background subtraction. In the recorded picture, and hence in the depth
maps, a common background is expected.

To detect pedestrians, the foreground must be first isolated. Let B = B(z)
be a depth map of the background (possibly built after suitable averages of
empty backgrounds), the foreground Fn = Fn(z) associated to a depth map
fn = fn(z) is obtained through the thresholding

Fn(z)← fn(z) · [fn(z)−B(z) > ε1],

where ε1 > 0 is a given (small) threshold, and [P ] = 1 if proposition “P” holds
true, [P ] = 0, otherwise.

2. Height thresholding. A second thresholding operation is performed to
eliminate objects which, although part of the foreground, are too small to
be pedestrians, i.e.

Fn(z)← Fn(z) · [Fn(z) > h1].

3. Foreground noise reduction In dependence on the complexity of the filmed
scene, Fn(z) may present small, intermittent, misdetected spots. Such spots
are removed by filtering out all the connected components of Fn(x) (consider-
ing an 8-neighbor pixels based connection) whose area is smaller than a given
threshold ε2.

4. Generation of a sparse depth map. For computational reasons, the fore-
ground of the thresholded depth map Fn is random sampled generating a
sparse depth map of N samples

Fn
s = {(z1, Fn(z1)), (z2, F

n(z2)), . . . , (zN , F
n(zN ))},

where every pair (zi, F
n(zi)) satisfies Fn(zi) 6= 0, i.e. the selected sample owns

to the foreground and, likely, to a pedestrian.
5. Sparse samples clusterization and pedestrian detection. In order to

identify and isolate pedestrians, sparse samples are agglomerated in macro-
samples which are likely to be in correspondence with pedestrians themselves.

The agglomeration is performed via a hierarchical clustering based on the
geometrical distance between points, in particular, a complete linkage clus-
tering algorithm is used [12]. Heuristically speaking, the sparse samples get
agglomerated in a binary fashion forming larger and larger macro-samples.
Ideally, macro-samples whose mutual distance is larger than the scale length
of the human body S (e.g., average distance between the shoulders) do corre-
spond to individuals.

The iterative agglomeration procedure merges macro-samples on the basis
of their distance starting from the closest pairs. In particular, given two
macro-samples q1 and q2, the metric used satisfies{

d∞(q1, q2) = max(z1∈q1,z2∈q2) d
∞(z1, z2),

d∞(z1, z2) = d(z1, z2), if z1 and z2 are simple samples,

where d is the ordinary euclidean distance on the plane.
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Figure 8. Left: depth map in which three pedestrians have been
separated; on the right: cut dendrogram at height S, three macro-
samples are present.

The procedure, which iteratively agglomerates all the points in just one
super-sample, can be visualized via a dendrogram (see Figure 8).

To conclude, we observe that if the clusterization tree is truncated at an
height S (having the same scale of the human body) than the mutual distances
among all the sub-trees underneath that threshold provide estimates for the
pedestrian in the scene.

6. Head position estimation. Given pedestrian identified by the cluster Cn
j ∈

Qn
m, for some j, 1 ≤ j ≤ Nn (beingNn the total number of pedestrians present

in frame n), we consider as head the set Hn
j ⊂ Cn

j of samples whose depth is
smaller than a given percentile αk (usually k = 10) of the depth distribution
of Cn

j ,

Hn
j = {z ∈ Cn

j : depth(z) ≥ αk}.
The head position is then estimated considering the centroid of the set, in
formulas

z̄nj = (xnj , y
n
j ) = mean(Hn

j ).

7. Linking positions across the frames. An estimate z̄nj of the heads position
across the frames has been given. In order to approximate the pedestrian
trajectories, heads positions must hence be tracked.

The problem of tracking time-sampled particle positions has been studied
in several fields, in particular, it is central in Experimental Fluid Dynam-
ics when a Lagrangian approach to flows is pursued. Following standard ap-
proaches in experimental Particle Tracking Velocimetry (PTV), and especially
via OpenPTV [35, 33], Pedestrian trajectories are generated. In particular,
sequences in the form of Equation (2) are obtained.

8. Estimation of kinematic observables associated to trajectories. Once
the trajectories are known in their sampled form, kinematic observables such
as velocities and accelerations must be estimated. Since the head estima-
tion procedure is not exempt of measurement noise, and a certain degree of
regularity in trajectories is expected, a smoothing spline (with smoothing pa-
rameter λ = 1) is used [10] (See Figure 9 for an example of some of the final
trajectories).

After such procedure, the set of trajectories including relative velocities and accel-
erations is deducted.
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Figure 9. A sample selection of 20 pedestrian trajectories in the
final data.
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