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Abstract. We prove existence and uniqueness of solutions, continuous de-
pendence from the initial datum and stability with respect to the boundary
condition in a class of initial–boundary value problems for systems of balance
laws. The particular choice of the boundary condition allows to comprehend
models with very different structures. In particular, we consider a juvenile-
adult model, the problem of the optimal mating ratio and a model for the op-
timal management of biological resources. The stability result obtained allows
to tackle various optimal management/control problems, providing sufficient
conditions for the existence of optimal choices/controls.

1. Introduction. This paper is devoted to the following initial–boundary value
problem for a system of balance laws in one space dimension:











∂tui + ∂x
(

gi(t, x)ui
)

= di(t, x)ui (t, x) ∈ R
+ × R

+

gi(t, 0)ui(t, 0+) = Bi

(

t, u1(t), . . . , un(t)
)

t ∈ R
+

ui(0, x) = uoi (x) x ∈ R
+

(1.1)

Here, i = 1, . . . , n and t ∈ R
+ is time. The “space” variable x varies in R

+ and
in the applications of (1.1) will have the meaning of a biological age, or size. The
unknowns u1, . . . , un are the densities of the biological species under consideration.
The scalar functions g1, . . . , gn are growth functions, −d1, . . . ,−dn are the individual
mortality rates and uo1, . . . , u

o
n constitute the initial data. A key role is played by

our choice of the per capita birth function Bi, for i = 1, . . . , n, which we assume of
the form

Bi(t, u1, . . . , un) = αi

(

t, u1(x̄1−), . . . , un(x̄n−)
)

+βi

(

∫

I1

w1(x)u1(x) dx , . . . ,

∫

In

wn(x)un(x) dx

)

(1.2)
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for suitable functions αi, βi, weights wi, points x̄i > 0 and measurable Ii ⊆ R
+, for

i = 1, . . . , n.
The literature on equations similar to (1.1) is vast. We refer for instance to the

exhaustive monograph [15] or to the more recent edition of [5] and to the references
therein. Specific features of (1.1) are that it is a system, boundary conditions may
contain both a local term, the αi, and a nonlocal term, the βi.

From the analytic point of view, in the present treatment we emphasize the role
of the total variation, setting the main result in BV. In particular, this allows
to consider a function of the type (1.2) and to prove that the boundary data are
attained in the sense of traces, also due to the boundary being non characteristic.
In this setting, the stability of solutions with respect to αi and βi is also obtained.
Moreover, the techniques used in the sequel can easily be extended to more general
source terms as well as to situations where also the space distribution needs to be
taken into account.

From the modeling point of view, the use of boundary conditions of the type (1.2)
unifies the treatment of rather diverse situations. First, it comprises the standard
case always covered in the literature on renewal equations, where the independent
variable x varies along a segment or a half line, see Figure 1, left. The dependent

J A

Figure 1. Biological structures comprised in (1.1)–(1.2). Left, a
standard linear setting and, right, a juvenile-adult situation.

variable u represents the population density that at time t is of size (or age) x.
A more complicate structure was recently considered in [1], see Figure 1, right.

There, the size/age biological variable varies along a graph consisting of 2 distinct
sets, corresponding to the juvenile and to the adult stages in the development of the
considered species. Here, we are able to deal also with this situation, as depicted
in Figure 2, right.

M

F

J

S

R

Figure 2. Biological structures comprised in (1.1)–(1.2). Left,
a framework corresponding, for instance, to sexual reproduction:
the two branches correspond to males M and females F . Right,
a structure possibly accounting for the exploitation of biological
resources: when juveniles reach the adult stage, they are split into
a part S which is, say, sold and a part R used for reproduction.

The finite propagation speed intrinsic to models of the type (1.1) clearly allows
to combine various instances of the graphs above. Other situations of biological
interest can be for instance a three stage linear structure or a tree shaped one,
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see Figure 3. These schemes, as well as many others, all fit into the scope of
Theorem 2.4 below. In this connection, we recall that similar network structures
are widely considered in the framework of vehicular traffic modeling, see [10].

Figure 3. General graphs for further biological structures com-
prised in (1.1)–(1.2).

In the case of nonlinear systems of balance laws with flow independent from the
space variable, the initial boundary value problem has been widely investigated, see
for instance [8]. For the relations between the problems with boundaries and with
junction see [9, Proposition 4.2].

The present treatment is self-contained. Section 2 is devoted to the analytically
results. Specific applications are in Section 3, where sample numerical integrations
are also provided. All technical details are deferred to Section 4.

2. Analytic results. Throughout, we use the standard notationR
+ = [0,+∞[ and

R̊
+ = ]0,+∞[. When A and B are suitable subsets of Rm, C0(A;B), respectively

C0,1(A;B), L1(A;B) or L∞(A;B), is the set of continuous, respectively Lipschitz
continuous, Lebesgue integrable or essentially bounded, maps defined on A and
attaining values in B. For the basic theory of BV functions we refer to [3].

When referring to a function u : R+ × R
+ → R, the first argument is time, the

second is the biological age/size variable. If I ⊆ R
+ is an interval, we denote

TV
(

u(t, ·)
)

= sup







N
∑

h=1

∣

∣u(t, xh)− u(t, xh−1)
∣

∣ :
N ∈ N

x0 < x1 < · · · < xN







,

TV
(

u(t, ·); I
)

= sup











N
∑

h=1

∣

∣u(t, xh)− u(t, xh−1)
∣

∣ :
N ∈ N

x0 < x1 < · · · < xN
x1, x2, . . . , xN ∈ I











,

TV
(

u(·, x); I
)

= sup











N
∑

h=1

∣

∣u(th, x)− u(th−1, x)
∣

∣ :
N ∈ N

t1 < t2 < · · · < tN
t0, t1, . . . , tN ∈ I











.

Preliminary, we consider the following initial–boundary value problem for a linear
scalar balance law, or renewal equation in [15, Chapter 3]:











∂tu+ ∂x
(

g(t, x)u
)

= d(t, x)u (t, x) ∈ R
+ × R

+

u(0, x) = uo(x) x ∈ R
+

g(t, 0)u(t, 0+) = b(t) t ∈ R
+

(2.1)

under the following assumptions



314 RINALDO M. COLOMBO AND MAURO GARAVELLO

(b): b ∈ BVloc

(

R
+;R

)

;

(g): g ∈ C1(R+×R
+; [ǧ, ĝ]) for ĝ > ǧ > 0 and

{

supt∈R+ TV
(

g(t, ·)
)

< +∞,
supt∈R+ TV

(

∂xg(t, ·)
)

< +∞;

(d): d ∈ (C1 ∩ L∞)(R+ × R
+;R), supt∈R+ TV

(

d(t, ·)
)

< +∞.

The solutions to (2.1) can be written in terms of the ordinary differential equation
ẋ = g(t, x). If g satisfies (g), we can introduce the globally defined maps

t→ X(t; to, xo) that solves

{

ẋ = g(t, x)
x(to) = xo

and

x→ T (x; to, xo) that solves

{

t′ = 1
g(t,x)

t(xo) = to .

(2.2)

Denote γ(t) = X(t; 0, 0), its inverse being t = Γ(x). Note that

if x ≥ γ(t) then X(0; t, x) ∈ [0, x] and if x < γ(t) then T (0; t, x) ∈ [0, t] .

Recall the following definition of solution to (2.1), see also [4, 6, 12, 15, 19].

Definition 2.1. Assume that (b), (g) and (d) hold. Choose an initial datum
uo ∈ L1(R+;R). The function u ∈ C0

(

R
+;L1(R+;R)

)

is a solution to (2.1) if

1. for all ϕ ∈ C1
c(R̊

+ × R̊
+;R),

∫

R+

∫

R+

[

u(t, x) ∂tϕ(t, x) + g(t, x)u(t, x) ∂xϕ(t, x) + d(t, x)u(t, x)ϕ(t, x)
]

dt dx = 0;

2. u(0, x) = uo(x) for a.e. x ∈ R
+;

3. for a.e. t ∈ R
+, limx→0+ g(t, x)u(t, x) = b(t).

The following Lemma summarizes various properties of the solution to (2.1),
see also [15]. Here, we stress the role of BV estimates. The proof is deferred to
Section 4.

Lemma 2.2. Let (b), (g) and (d) hold. Then, for any uo ∈ (L1 ∩ BV)(R+;R),
the map u : R+ × R

+ → R defined by

u(t, x) =











































uo(X(0; t, x))

× exp

[

∫ t

0

(

d(τ,X(τ ; t, x)) − ∂xg
(

τ,X(τ ; t, x)
)

)

dτ

]

x>γ(t)

b(T (0;t,x))
g(T (0;t,x),0)

× exp

[

∫ t

T (0;t,x)

(

d(τ,X(τ ; t, x)) − ∂xg
(

τ,X(τ ; t, x)
)

)

dτ

]

x<γ(t)

(2.3)

solves (2.1) in the sense of Definition 2.1. Moreover, there exists a constant C
dependent only on g and d, see (4.6), such that the following a priori estimates hold
for all t ∈ R

+:

∥

∥u(t)
∥

∥

L∞(R+;R)
≤

(

‖uo‖L∞(R+;R) +
1

ǧ
‖b‖

L∞([0,t];R)

)

eCt (2.4)

∥

∥u(t)
∥

∥

L1(R+;R)
≤

(

‖uo‖L1(R+;R) +
1

ǧ
‖b‖

L1([0,t];R)

)

eCt (2.5)

TV
(

u(t)
)

≤
[

‖uo‖L∞(R+;R) +TV(uo)
]

eCt
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+

[

C + ǧ

ǧ2
‖b‖

L∞([0,t];R) +
1

ǧ
TV(b; [0, t])

]

eCt (2.6)

TV
(

u(·, x); [0, t]
)

≤







































‖uo‖L∞([X(0;t,x),x];R) e
Ct

+TV(uo; [X(0; t, x), x]) eCt x>γ(t)
(

‖uo‖L∞([0,x];R) +TV(uo; [0, x])
)

eCt

+ 1
ǧ
TV(b; [0, T (0; t, x)]) eCt

+C t
ǧ2 ‖b‖L∞([0,T (0;t,x)];R) e

Ct x<γ(t) .

(2.7)

Moreover, for any interval I ⊆ R
+ and for any w ∈ C1(I; [−W,W ]) for a W > 0,

TV

(∫

I

w(x)u(·, x) dx ; [0, t]

)

≤ CW

∫ t

0

[

∥

∥u(τ)
∥

∥

L∞(I;R)
+TV

(

u(τ, ·); I
)

]

dτ . (2.8)

For every t ∈ R
+, there exists a positive L dependent on ǧ, ĝ, C and TV(b; [0, t]),

‖b‖
L∞([0,t];R), such that, for t′, t′′ ∈ [0, t],

∥

∥u(t′)− u(t′′)
∥

∥

L1(R+;R) ≤ L
∣

∣t′′ − t′
∣

∣. (2.9)

For u′o, u
′′
o ∈ (L1 ∩BV)(R+;R) and b′, b′′ as in (b), the solutions u′ and u′′ to











∂tu+ ∂x
(

g(t, x)u
)

= d(t, x)u
u(0, x) = u′o(x)
g(t, 0)u(t, 0+) = b′(t)

and











∂tu+ ∂x
(

g(t, x)u
)

= d(t, x)u
u(0, x) = u′′o(x)
g(t, 0)u(t, 0+) = b′′(t)

(2.10)

satisfy the stability and monotonicity estimates

∥

∥u′(t)− u′′(t)
∥

∥

L1(R+;R)
≤

[

∥

∥u′o − u′′o
∥

∥

L1(R+;R)
+

1

ǧ

∥

∥b′ − b′′
∥

∥

L1([0,t];R)

]

eCt,(2.11)

u′o(x) ≤ u′′o(x) ∀x∈R
+

b′(t) ≤ b′′(t) ∀ t∈R
+

}

⇒ u′(t, x) ≤ u′′(t, x) ∀(t, x) ∈ R
+ × R

+ . (2.12)

Recall that in the present case of a linear conservation law, the definition of weak
solution at 2. is equivalent to the definition of Kružkov solution [12, Definition 1].

It is immediate to verify that for uo = 0 and b = 0, problem (2.3) admits the
solution u = 0. Hence, the monotonicity property (2.12) also ensures that non-
negative initial and boundary data in (1.1)–(1.2) lead to non-negative solutions.

In order to pass to system (1.1), we need the following notation for norms and
total variations of functions attaining values in R

n:

‖u‖
L1(R+;Rn) =

∑n

i=1 ‖ui‖L1(R+;R) , ‖u‖
L∞(R+;Rn) =

∑n

i=1 ‖ui‖L∞(R+;R) ,

TV(u) =
∑n

i=1 TV(ui) .

As a reference for the usual definition of weak solution to scalar conservation laws,
see [4, 12].

Definition 2.3. Let T > 0. Consider (1.1) with g1, . . . , gn satisfying assump-
tions (g), d1, . . . , dn satisfying (d) and the maps α ≡ (α1, . . . , αn), β ≡ (β1, . . . , βn)
and (w1, . . . , wn) satisfy

α ∈ C0,1(R+ × R
n;Rn) α(t, 0) = 0

β ∈ C0,1(Rn;Rn) β(0) = 0
wi ∈ C1(Ii; [−W,W ]) i = 1, . . . , n ,

(2.13)
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where W > 0 and I1, . . . , In are real intervals. Fix an initial datum uo ∈ (L1 ∩
BV)(R+;Rn). A map

u ∈ C0

(

[0, T ]; (L1 ∩BV)(R+;Rn)
)

is a solution to (1.1)–(1.2) if, setting

bi(t) = αi

(

t, u1(t, x̄1−), . . . , un(t, x̄n−)
)

+βi

(

∫

I1

w1(x)u1(t, x) dx , . . . ,

∫

In

wn(x)un(t, x) dx

)

for all i = 1, . . . , n, the i-th component ui is a solution to










∂tui + ∂x
(

gi(t, x)ui
)

= di(t, x)ui (t, x) ∈ R
+ × R

+

ui(0, x) = uio(x) x ∈ R
+

gi(t, 0)ui(t, 0+) = bi(t) t ∈ R
+

(2.14)

in the sense of Definition 2.1.

The following result ensures the well posedness of (1.1)–(1.2). Its proof is pre-
sented in Section 4.

Theorem 2.4. Let n ∈ N \ {0}, x̄1, . . . , x̄n ∈ R̊
+, g1, . . . , gn satisfy (g) and

d1, . . . , dn satisfy (d). Assume that the maps α ≡ (α1, . . . , αn), β ≡ (β1, . . . , βn)
and (w1, . . . , wn) satisfy (2.13), where W > 0 and I1, . . . , In are real intervals.
Then, for any uo ∈ (L1 ∩ BV)(R+;Rn), the problem (1.1) admits a unique solu-
tion in the sense of Definition 2.3. Moreover, there exists an increasing function
K ∈ C0(R+;R+) dependent only on Lip(α), Lip(β), W and on C in (4.6) such
that for any initial data u′o, u

′′
o ∈ (L1 ∩ BV)(R+;Rn), the corresponding solutions

u′ and u′′ satisfy
∥

∥u′(t)− u′′(t)
∥

∥

L1(R+;Rn)

≤ K(t)
(

∥

∥u′o − u′′o
∥

∥

L1(R+;Rm)
+ t
∥

∥u′o − u′′o
∥

∥

L∞(R+;Rm)

)

and (2.15)
∥

∥u′(t)− u′′(t)
∥

∥

L∞(R+;Rn)

≤ K(t)
(

∥

∥u′o − u′′o
∥

∥

L1(R+;Rm)
+
∥

∥u′o − u′′o
∥

∥

L∞(R+;Rm)

)

. (2.16)

Moreover, if uo = 0, then the solution is u(t, x) = 0 for all (t, x) ∈ R
+ × R

+.

We now state separately the stability of solutions to (1.1)–(1.2) with respect to
the birth function B. This result plays a key role in the optimization problems
considered below.

Theorem 2.5. Let both systems










∂tui + ∂x
(

gi(t, x)ui
)

= di(t, x)ui
gi(t, 0)ui(t, 0+) = B′

i

(

t, u1(t), . . . , un(t)
)

ui(0, x) = uoi (x)
and











∂tui + ∂x
(

gi(t, x)ui
)

= di(t, x)ui
gi(t, 0)ui(t, 0+) = B′′

i

(

t, u1(t), . . . , un(t)
)

ui(0, x) = uoi (x)

(2.17)

with

B′
i(t, u1, . . . , un) = α′

i

(

t, u1(x̄1−), . . . , un(x̄n−)
)
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+β′
i

(

∫

I1

w′
1(x)u1(x) dx , . . . ,

∫

In

w′
n(x)un(x) dx

)

,

B′′
i (t, u1, . . . , un) = α′′

i

(

t, u1(x̄1−), . . . , un(x̄n−)
)

+β′′
i

(

∫

I1

w′′
1 (x)u1(x) dx , . . . ,

∫

In

w′′
n(x)un(x) dx

)

satisfy the assumptions of Theorem 2.4. Then, the corresponding solutions u′ and
u′′ are such that

∥

∥u′(t)− u′′(t)
∥

∥

L1(R+;Rn)
≤ H(t)

∥

∥α′ − α′′
∥

∥

C0(R+×Rn;Rn)
+H(t)

∥

∥β′ − β′′
∥

∥

C0(Rn;Rn)

+H(t)

n
∑

j=1

∥

∥

∥w′
j − w′′

j

∥

∥

∥

C0(Ij ;R)

(2.18)

where H ∈ C0(R+;R+) is such that H(0) = 0.

The proof is deferred to Section 4.
In applications of Theorem 2.4 to systems motivated by, for instance, structured

population biology, further assumptions are natural and lead to further reasonable
properties.

Proposition 2.6. Under the assumptions of Theorem 2.4, if the boundary functions
and the initial data are such that

∂uj
αi ≥ 0 for all i, j = 1, . . . , n ,

∂wj
βi ≥ 0 for all i, j = 1, . . . , n ,
wi ≥ 0 for all i = 1, . . . , n ,

(u′o)i ≥ (u′′o )i for all i = 1, . . . , n ,

then, the corresponding solutions satisfy u′i(t, x) ≥ u′′i (t, x) for all (t, x) ∈ R
+ × R

+

and i = 1, . . . , n. In particular, if (u′o)i ≥ 0 for i = 1, . . . , n, then u′i(t, x) ≥ 0 for
i = 1, . . . , n.

The proof follows immediately from Theorem 2.4 and from (2.12) and it is omit-
ted.

3. Applications. This section is devoted to sample applications of Theorem 2.4
and Theorem 2.5 to models inspired by structured population biology. We selected
three cases corresponding to three different graphs, namely those in Figure 1, right,
and in Figure 2.

First, the well posedness ensured by Theorem 2.4 provides a ground for the
reliability of each model. Then, the stability result in Theorem 2.5 allows to consider
further problems. On the one hand, it ensures the existence of a choice of parameters
in the equations that lead to solution that best approximate a given set of data.
On the other hand, it allows to tackle the problem of optimal mating ratio in
a population with sexual reproduction. Finally, we consider the problem of the
optimal management of a biological resource. In the former case, the presentation is
based on [1, 2] where a sensitivity analysis for a model belonging to the class (1.1)–
(1.2) is proved. In the latter cases, we provide numerical integrations showing
further qualitative properties of the models considered.
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3.1. A nonautonomous juvenile–adult model. In (1.1)–(1.2), setting n = 2
and with reference to the structure in Figure 1, right,

u1(t, x) = J(t, x) g1(t, x) = 1 α1(t, u1, u2) = 0
u2(t, x) = A(t, x + xmin) g2(t, x) = g(t, x+ xmin) α2(t, u1, u2) = u1

x̄1 = amax d1(t, x) = −ν(t, x) β1(w1, w2) = w2

x̄2 = 0 d2(t, x) = −µ(t, x+ xmin) β2(w1, w2) = 0

(3.1)

with moreover I2 = [0, xmax−xmin], we recover [1, Formula (2.1)] in the case β = 1,
which we state here for completeness:










































∂tJ + ∂aJ = −ν(t, a)J (t, a) ∈ R
+ × [0, amax]

∂tA+ ∂x
(

g(t, x)A
)

= −µ(t, x)A (t, x) ∈ R
+ × [xmin, xmax]

J(t, 0) =

∫ xmax

xmin

A(t, x) dx t ∈ R
+

g(t, xmin)A(t, xmin) = J(t, amax) t ∈ R
+

J(0, a) = Jo(a) a ∈ [0, amax]
A(0, x) = Ao(x) x ∈ [xmin, xmax] .

(3.2)

Theorem 2.4 then applies and ensures the well posedness of (3.2) under assumptions
slightly different from those in [1].

Corollary 3.1. In (3.2), assume that

ν ∈ (C1 ∩ L∞)(R+ × [0, amax];R) and supt∈R+ TV
(

ν(t, ·)
)

< +∞
µ ∈ (C1 ∩ L∞)(R+ × [xmin, xmax];R) and supt∈R+ TV

(

µ(t, ·)
)

< +∞

g ∈ C1(R+ × [xmin, xmax]; [ǧ, ĝ]) and

{

supt∈R+ TV
(

g(t, ·)
)

< +∞
supt∈R+ TV

(

∂xg(t, ·)
)

< +∞

Jo ∈ BV([0, amax];R
+)

Ao ∈ BV([xmin, xmax];R
+) .

Then, problem (3.2) admits a unique solution in the sense of Definition 2.3, the
continuous dependence estimates (2.15)–(2.16) and the stability estimate (2.18) ap-
ply.

For completeness, we remark that the model in [1] contains the following slightly
more general boundary inflow:

J(t, 0) =

∫ xmax

xmin

β(t, x)A(t, x) dx .

As soon as β ∈ C1(R+ × [xmin, xmax]; [β̌,+∞[) for a suitable β̌ > 0, the change of
variables

A(t, x) = β(t, x)A(t, x) (3.3)

still allows to apply Theorem 2.4. Indeed, with this variable, the second equation
in (3.2) becomes

∂tA+ ∂x
(

g(t, x)A
)

=
(

∂tβ(t, x) + g(t, x) ∂xβ(t, x) − µ(t, x)
)

A ,

which is again of the type (2.1) and hence Theorem 2.4 can still be applied.
The stability proved above allows to tackle the problem of parameter identifica-

tion. Indeed, through a Weierstraß argument based on Theorem 2.5, one can prove
the existence of a set of parameters in (3.2) that minimizes a continuous functional
representing the distance between the computed solution and a set of experimental
data. For a detailed sensitivity analysis for a juvenile–adult model we refer to [2].
A different approach to a juvenile-adult model is in [7].
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3.2. Optimal mating ratio. Consider a species consisting of males and females,
whose densities at time t and age a are described through the functionsM =M(t, a)
and F = F (t, a) on a structure as that in Figure 2, left. A natural model is then














































∂tM + ∂aM = −κµM
∂tF + ∂aF = −(1− κ)µF

M(t, 0) + F (t, 0) = νmin

{

ϑ

∫ m2

m1

M(t, a) da , (1 − ϑ)

∫ f2

f1

F (t, a) da

}

ηM(t, 0) = (1− η)F (t, 0)
M(0, a) =Mo(a)
F (0, a) = Fo(a) .

(3.4)

Here, κµ, respectively (1−κ)µ, is the mortality rate of males, respectively females,
with µ > 0 and κ ∈ [0, 1]. The positive parameter η ∈ [0, 1] defines the ratio of
male to female newborns, in the sense that every ηM males, (1− η)F females are
born. The constant ν is the fertility rate. We describe the mating ratio at age a
through the parameter ϑ, with ϑ ∈ [0, 1] as follows. The fertile ages are those in
the intervals [m1,m2] for males and [f1, f2] for females, where m1,m2, f1, f2 are
positive constants. According to (3.4), all individuals in their fertile age might
contribute to reproduction provided the condition imposed by the presence of the

mating ratio ϑ is met. If ϑ
∫m2

m1
M(t, a) da exceeds (1 − ϑ)

∫ f2

f1
F (t, a) da, then only

1−ϑ
ϑ

∫ f2

f1
F (t, a) da males contribute to the overall population’s fertility.

Problem (3.4) fits into (1.1)–(1.2) setting

u1 =M g1 = 1 d1(t, x) = −κ
u2 = F g2 = 1 d2(t, x) = −(1− κ)µ
I1 = [m1,m2] α1 = 0 β1(w1, w2) = (1− η) ν min{ϑw1, (1− ϑ)w2}
I2 = [f1, f2] α2 = 0 β2(w1, w2) = η ν min{ϑw1, (1− ϑ)w2}.

Corollary 3.2. Let µ, ν ∈ R̊
+; η, ϑ, κ ∈ [0, 1]; m1,m2, f1, f2 ∈ R

+ with m1 < m2

and f1 < f2. For Mo, Fo ∈ (L1 ∩BV)(R+;R), problem (3.4) has a unique solution
in the sense of Definition 2.3, the continuous dependence estimates (2.15)–(2.16)
and the stability estimate (2.18) apply.

The proof is immediate and, hence, omitted. Here, we note that the presence of
C1 positive weights in the integrands defining the boundary data can be recovered
through a change of variables entirely similar to that in (3.3).

A first immediate property of the solutions to (3.4) is that a zero initial density
in either of the two sexes leads to the extinction of the other at exponential speed.

Several different optimization problems can be tackled in the framework of (3.4).
It is possible to investigate the relations between the parameters κ (identifying
relative mortality), η (the relative natality) and ϑ (the mating ratio). Below, we look
for the optimal mating ratio for given relative natality and mortality coefficients.

To this aim, consider the instantaneous average fertility rate over the fertile
population

R =
ν min

{

ϑ
∫m2

m1
M(t, a) da , (1− ϑ)

∫ f2

f1
F (t, a) da

}

∫m2

m1
M(t, a) da+

∫ f2

f1
F (t, a) da

. (3.5)

Remark that the functions M and F in (3.5) are solutions to (3.4), hence they
depend on the mating ratio ϑ that enters the boundary condition throughout the
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time interval [0, t]. It is natural to assume that a key role is played by the maximal
value of R, which is obtained by the choice

ϑ =

∫ f2

f1
F (t, a) da

∫m2

m1
M(t, a) da+

∫ f2

f1
F (t, a) da

. (3.6)

Remarkably, this leads to the maximal fertility rate

R = ν

(

∫m2

m1
M(t, a) da

) (

∫ f2

f1
F (t, a) da

)

(

∫m2

m1
M(t, a) da+

∫ f2

f1
F (t, a) da

)2

coherently with the classical harmonic mean law, see [11, 14, 16, 17, 18, 20].
On the other hand, the right hand sides in (3.5) and (3.6) are time dependent

and it can be hardly accepted that ϑ is instantaneously adjusted to the value that
maximizes R. More reasonably, one may imagine that ϑ is optimal1 over a suitably
long time interval. We are thus lead to introduce the utility function

R(ϑ;T,Mo, Fo) =
1

T

∫ T

0

νmin
{

ϑ
∫m2

m1
M(t, a) da , (1− ϑ)

∫ f2

f1
F (t, a) da

}

∫m2

m1
M(t, a) da+

∫ f2

f1
F (t, a) da

dt . (3.7)

We thus consider the problem

find ϑ that maximizes R(ϑ;T,Mo, Fo) .

A straightforward corollary of Theorem 2.5 ensures the existence of one such ϑ.

Corollary 3.3. Under the assumptions of Corollary 3.2, for any T ∈ R̊
+ and any

initial datum (Mo, Fo) ∈ (L1 ∩BV)(R+;R) there exists a ϑ∗ ∈ ]0, 1[ such that

R(ϑ∗;T,Mo, Fo) = max
ϑ∈[0,1]

R(ϑ;T,Mo, Fo) .

The proof is immediate: thanks to Theorem 2.5, the function ϑ→ R(ϑ;T,Mo, Fo)
is continuous for any choice of T ∈ R

+ and (Mo, Fo) ∈ (L1 ∩BV)(R+;R). By the
compactness of [0, 1], Weierstraß Theorem ensures the existence of ϑ∗. Moreover,
since R(0;T,Mo, Fo) = R(1;T,Mo, Fo) = 0, we also have ϑ∗ ∈ ]0, 1[.

It can be of interest to note that M and F may well increase exponentially with

time, but R(ϑ;T,Mo, Fo) ∈ [0, ν] for all T ∈ R̊
+ and (Mo, Fo) ∈ (L1∩BV)(R+;R).

As a specific example, we consider the situation identified by the following choices
of functions and parameters in (3.4)–(3.7):

κ = 0.600 µ = 0.020 m1 = 18 f1 = 16
η = 0.485 ν = 5 m2 = 60 f2 = 55

(3.8)

and we consider ϑ as a control parameter in [0, 1]. As initial datum we choose

Mo(a) = 10 and Fo(a) = 10 for all a . (3.9)

The graph of the average fertility rateR(ϑ;T,Mo, Fo) as a function of ϑ for T = 500
is in Figure 4. The outcome shows a reasonable qualitative behavior. As ϑ → 0 or
ϑ→ 1, the number of newborns goes to 0; hence the population extinguish. Near to
ϑ = 0.77 there is an optimal choice for the parameter ϑ with respect to the average
fertility rate (3.7), which yields a maximal value of 0.83, see Figure 5

1Here and in the sequel, optimal is understood in the sense that it is the value that maximizes
R. However, an excessive natality rate might turn out to be not optimal from the biological point
of view.
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Figure 4. Average fertility rate (3.7) along the solutions to (3.4)–
(3.8) with initial datum (3.9) plotted as a function of ϑ. For ϑ = 0
or ϑ = 1, there is no reproduction and the population extinguishes.
For ϑ ≈ 0.77, the average natality rate reaches its maximum value,
which is approximately equal to 0.83.

Figure 5. Graphs of the solutions to (3.4)–(3.8)–(3.9). The inte-

grals
∫ 80

0 M(t, a) da (blue) and
∫ 90

0 F (t, a) da (green) as a function
of time. Left, for ϑ = 0.4647, the population vanishes. Middle, with
ϑ = 0.7067, there is an equilibrium and right, for ϑ = 0.7772, the
population grows exponentially. The latter value gives the maximal
average natality rate, see Figure 4.

For completeness, we precise that the numerical integration above was obtained
using a Lax–Friedrichs algorithm, see [13, § 12.5], with space mesh ∆a = 0.04167.

3.3. Management of a biological resource. In biological resource management,
one typically rears/breeds a species up to a suitable stage, then part of the popula-
tion is sold and part is used for reproduction. The equations (1.1)–(1.2) comprehend
this situation. Indeed, call J = J(t, a) the density of the juveniles at time t of age or
size a. Juveniles reaching the age/size ā are then selected. The density S = S(t, a)
refers to those individuals that are going to be sold, while R = R(t, a) stands for
the density of those reserved for reproduction purposes. One is thus lead to the
following model, defined on the structure in Figure 2, right:































































∂tJ + ∂a
(

gJ(t, a)J
)

= dJ (t, a)J (t, a)∈R
+ × [0, ā]

∂tS + ∂a
(

gS(t, a)S
)

= dS(t, a)S (t, a)∈R
+ × [ā,+∞[

∂tR + ∂a
(

gR(t, a)R
)

= dR(t, a)R (t, a)∈R
+ × [ā,+∞[

gJ(t, 0)J(t, 0) = β
(

∫ amax

ā
R(t, x) dx

)

t∈R
+

gS(t, ā)S(t, ā) = η gJ(t, ā)J(t, ā) t∈R
+

gR(t, ā)R(t, ā) = (1− η) gJ (t, ā)J(t, ā) t∈R
+

J(0, a) = Jo(a) a∈ [0, ā]
S(0, a) = So(a) a∈ [ā,+∞[
R(0, a) = Ro(a) a∈ [ā,+∞[ .

(3.10)
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Above, we used the obvious notation for growth and mortality functions gJ , gS , gR
and dJ , dS , dR. The birth rate is described through the function β. A key role
is played by the parameter η ∈ [0, 1] which quantifies the percentage of juveniles
selected for the market.

System (3.10) fits into (1.1)–(1.2) setting w ≡ (w1, w2, w3) and

u1(t, s) = J(t, x) g1(t, x) = gJ(t, x) α1(t, w) = 0
u2(t, x) = S(t, x+ ā) g2(t, x) = gS(t, x+ ā) α2(t, w) = η w1 g1(t, x̄1)
u3(t, x) = R(t, x+ ā) g3(t, x) = gR(t, x+ ā) α3(t, w) = (1 − η)w1 g1(t, x̄1)

d1(t, x) = dJ (t, x) β1(w) = β(w3)
x̄1 = ā d2(t, x) = dS(t, x + ā) β2(w) = 0
I3 = [ā, amax] d3(t, x) = dR(t, x+ ā) β3(w) = 0

Corollary 3.4. Let gJ , gS, gR satisfy (g) for suitable ǧ, ĝ ∈ R
+ with ĝ > ǧ > 0. Let

dJ , dS , dR satisfy (d). Let β ∈ C0,1(R+;R) be such that β(0) = 0. For any η ∈ [0, 1]
and any initial data Jo ∈ BV([0, ā];R+) and So, Ro ∈ (L1 ∩ BV)([ā,+∞[ ,R+),
system (3.10) admits a unique non negative solution and the stability estimates in
Theorem 2.4 apply.

A natural question based on model (3.10) is: find the optimal percentage η of
juveniles that have to be chosen for the market. To this aim, we postulate simple,
though reasonable, cost and gain functionals

C(η;T ) =

∫ T

0

∫ ā

0

CJ (a)J(t, a) da dt

+

∫ amax

ā

[

CS(a)S(t, a) + CR(a)R(t, a)
]

da dt ,

G(η;T ) =

∫ T

0

∫ amax

ā

G(a)S(t, a) da dt .

(3.11)

Here, CJ (a) is the unit cost to grow a juvenile at age a, and similarly CR, CS are
the costs for the other two groups. The gain obtained selling an adult at age a is
G(a). We denoted by J = J(t, a), S = S(t, a) and R = R(t, a) the solution to (3.10)
with initial datum Jo and So = 0, Ro = 0 and with the selection parameter η. A
direct consequence of Theorem 2.5 is the following corollary.

Corollary 3.5. In the same assumptions of Corollary 3.4, for any T ∈ R̊
+ and

any Jo, So, Ro ∈ (L1 ∩BV)(R+;R), there exists an optimal choice η∗ such that

G(η∗;T )− C(η∗;T ) = max
η∈[0,1]

(

G(η;T )− C(η;T )
)

.

The proof relies on Weierstraß Theorem, exactly as that of Corollary 3.3 and is
here omitted.

As a specific example, we consider the situation identified by the following choices
of functions and parameters in (3.10)–(3.11):

gJ(t, a) = 1 dJ (t, a) = 0 CJ (t, a) = a β(w) = 2w
gS(t, a) = 1 dS(t, a) = −a−ā

2 CS(t, a) = 0 G(t, a) = 10
gR(t, a) = 1 dR(t, a) = −a−ā

2 CR(t, a) = 0.5 [ā, amax] = [1, 2]
(3.12)

and we consider η as a control parameter in [0, 1]. As initial datum we choose

Jo(a) = 5 , So(a) = 0 , Ro(a) = 0 . (3.13)
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Figure 6. Cost (3.11) along the solutions to (3.10)–(3.12) with
initial datum (3.13). Left, as a function of η (on the horizontal
axis) and t (on the vertical axis). Right, as a function of η at
time t = 15.00. Recall that for η = 0, all individual are kept for
reproduction and no one is sold. On the contrary, for η = 1, they
are all sold and no one is kept for reproduction.

The graph of the cost G(η;T )−C(η;T ) (see (3.11)) for T = 15 with respect to λ is in
Figure 6. The outcome shows a reasonable qualitative behavior. As η → 0, nothing
is sold, all population members are kept for reproduction, the population increases
exponentially as also does the functional G(η;T ) − C(η;T ). On the contrary, for
η → 1, all population members are immediately sold giving a positive gain and the
population vanishes as also G − C. Near to η ≈ 0.23 there is an optimal balance,
given the chosen unitary costs and gain (3.11)–(3.12).

With the chosen parameters, the optimal choice for η is η∗ ≈ 0.23, which yields
a gain of about 260.48 at time t = 15. As expected, different choices of η have deep
influences on the solutions to (3.10)–(3.12)–(3.13), as shown in Figure 7.

For completeness, we precise that the numerical integration above was obtained
using a Lax–Friedrichs algorithm, see [13, § 12.5], with space mesh ∆a = 0.001.

4. Technical details. Throughout, when BV functions are considered, we refer to
a right continuous representative. We now recall the following elementary estimates
on BV functions.

u∈BV(R+;R)
w ∈BV(R+;R)

}

⇒
TV(uw) ≤ ‖u‖

L∞(R+;R) TV(w)

+TV(u) ‖w‖
L∞(R+;R)

(4.1)

f ∈C0,1(R;R)
u∈BV(R+;R)

}

⇒ TV(f ◦ u) ≤ Lip(f) TV(u) (4.2)

u ∈BV(R+;R)

f ∈BV(R+; [f̌ ,+∞[)

f̌ > 0











⇒ TV

(

u

f

)

≤
1

f̌
TV(u) +

1

f̌2
TV(f) ‖u‖

L∞(R+;R) (4.3)

u∈L1(R+;BV(R+;R)) ⇒ TV

(

∫ t

0

u(τ, ·) dτ

)

≤

∫ t

0

TV
(

u(τ)
)

dτ (4.4)

u∈BV(R+;R)
h∈L∞(R;R+)

}

⇒

∫

R+

∣

∣

∣u
(

x+ h(x)
)

−u(x)
∣

∣

∣dx ≤TV(u)‖h‖
L∞(R+;R).(4.5)
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Figure 7. Solutions to (3.10)–(3.12)–(3.13). Time varies along
the vertical axis and a along the horizontal one. Above, η = 0.23
is near to the optimal choice. Middle, η = 0.50 and, below, η =
0.91.

Inequality (4.1) follows from [3, Formula (3.10)]. The definition of total variation
directly implies (4.2), (4.3) and (4.4). For a proof of (4.5) see for instance [6,
Lemma 2.3].

Proof of Lemma 2.2. To verify that (2.3) solves (2.1), a standard integration along
characteristics is sufficient. The bounds (2.4) and (2.5) are an immediate conse-
quence of (2.3).

Passing to the estimates on the total variation, introduce

C = 2 max











‖∂xg‖L∞(R+×R+;R), ‖∂tg‖L∞(R+×R+;R),

supt∈R+ TV
(

g(t, ·)
)

, supt∈R+ TV
(

∂xg(t, ·)
)

,
‖d‖

L∞(R+×R+;R), supt∈R+ TV
(

d(t, ·)
)











(4.6)

which is finite by (g) and (d).
Consider the total variation estimates. Using (4.1), (4.2), (4.3), (4.4), compute:

TV
(

u(t)
)

= TV
(

u(t, ·), [0, γ(t)]
)

+TV
(

u(t, ·),
[

γ(t),+∞
[

)

≤ TV

(

b(·)

g(·, 0)
; [0, t]

)

eCt +
‖b‖

L∞([0,t];R)

ǧ
eCt +TV(uo)e

Ct + ‖uo‖L∞(R+;R)e
Ct
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≤



‖uo‖L∞(R+;R) +TV(uo) +
1

ǧ

(

(

1 +
C

ǧ

)

‖b‖
L∞([0,t];R) +TV(b; [0, t])

)



 eCt

proving (2.6). The bound (2.6) follows from (2.3), using (4.1), (4.2) and (4.3). We
exploit now (4.4) and [3, Definition 3.4], and in the lines below, for typographical
reasons, we denote by J the real interval [−1, 1].

TV

(∫

I

w(x)u(·, x) dx ; [0, t]

)

= sup

{

∫ t

0

∫

I

w(x)u(τ, x) dx ∂tϕ(τ) dτ : ϕ ∈ C1

c
(]0, t[ ; J)

}

≤ sup

{

∫ t

0

∫

I

w(x)u(τ, x)χ(x) ∂tϕ(τ) dx dτ :
ϕ∈C1

c
(]0, t[ ; J)

χ∈C1
c(I̊ ; J)

}

≤ W sup

{

∫ t

0

∫

I

u(τ, x)ψ(x) ∂tϕ(τ) dx dτ :
ϕ∈C1

c
(]0, t[ ; J)

ψ ∈C1
c(I̊ ; J)

}

= W sup







∫ t

0

∫

I

[

g(τ, x)u(τ, x)∂xψ(x)ϕ(τ)
+d(τ, x)u(τ, x)ψ(x)ϕ(τ)

]

dxdτ :
ϕ∈C1

c(]0, t[ ; J)

ψ ∈C1
c
(I̊; J)







≤ W sup

{

∫ t

0

∫

I

g(τ, x)u(τ, x) ∂xψ(x)ϕ(τ) dx dτ :
ϕ∈C1

c(]0, t[ ; J)

ψ ∈C1
c
(I̊ ; J)

}

+W sup

{

∫ t

0

∫

I

d(τ, x)u(τ, x)ψ(x)ϕ(τ) dx dτ :
ϕ∈C1

c
(]0, t[ ; J)

ψ ∈C1
c(I̊; J)

}

≤ W sup











∫ t

0

sup

{∫

I

g(τ, x)u(τ, x) ∂xψ(x) dx : ψ ∈ C1

c
(I̊; J)

}

ϕ(τ) dτ :

ϕ ∈ C1
c
(]0, t[ ; J)











+W sup











∫ t

0

sup

{∫

I

d(τ, x)u(τ, x)ψ(x) dx : ψ ∈ C1

c
(I̊ ; J)

}

ϕ(τ) dτ :

ϕ ∈ C1
c(]0, t[ ; J)











= W sup

{

∫ t

0

TV
(

g(τ, ·)u(τ, ·)
)

ϕ(τ) dτ : ϕ ∈ C1

c
(]0, t[ ; J)

}

+W sup

{

∫ t

0

TV
(

d(τ, ·)u(τ, ·)
)

ϕ(τ) dτ : ϕ ∈ C1

c(]0, t[ ; J)

}

≤ W

∫ t

0

(

TV
(

g(τ, ·)u(τ, ·)
)

+TV
(

d(τ, ·)u(τ, ·)
)

)

dτ

Apply now (4.1) to obtain:

TV

(∫

I

w(x)u(·, x) dx ; [0, t]

)

≤ W

∫ t

0

(

TV
(

g(τ, ·)
)

+TV
(

d(τ, ·)
)

)

∥

∥u(τ)
∥

∥

L∞(R+;R)
dτ
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+W

∫ t

0

(

∥

∥g(τ)
∥

∥

L∞(R+;R)
+
∥

∥d(τ)
∥

∥

L∞(R+;R)

)

TV
(

u(τ)
)

dτ

≤ 2CW

∫ t

0

(

∥

∥u(τ)
∥

∥

L∞(R+;R)
+TV

(

u(τ)
)

)

dτ ,

completing the proof of (2.8). Concerning the stability bounds, (2.3) implies

∫ γ(t)

0

∣

∣u(t, x)
∣

∣ dx ≤
1

ǧ

∫ t

0

∣

∣b(τ)
∣

∣ dτ +

∫ t

0

∫ γ(t)

0

∣

∣d(τ, x)u(τ, x)
∣

∣ dxdτ

∫ +∞

γ(t)

∣

∣u(t, x)
∣

∣ dx ≤

∫ +∞

0

∣

∣uo(x)
∣

∣ dx+

∫ t

0

∫ +∞

γ(t)

∣

∣d(τ, x)u(τ, x)
∣

∣ dx dτ

∥

∥u(t)
∥

∥

L1(R+;R)
≤ ‖uo‖L1(R+;R) +

1

ǧ
‖b‖

L1([0,t];R) + C

∫ t

0

∥

∥u(τ)
∥

∥

L1(R+;R)
dτ .

An application of Gronwall Lemma yields the desired estimate (2.11). Finally, the
monotonicity property (2.12) directly follows from (2.3).

To prove (2.9), fix t′, t′′ ∈ R
+ with t′ < t′′. Then,

∥

∥u(t′′)− u(t′)
∥

∥

L1(R+;R)
=

∫ γ(t′)

0

∣

∣u(t′′, x) − u(t′, x)
∣

∣ dx (4.7)

+

∫ γ(t′′)

γ(t′)

∣

∣u(t′′, x)− u(t′, x)
∣

∣ dx (4.8)

+

∫ +∞

γ(t′′)

∣

∣u(t′′, x)− u(t′, x)
∣

∣ dx (4.9)

and we deal with the three terms separately, using (2.3) as follows. Begin with (4.7):

∫ γ(t′)

0

∣

∣u(t′, x)− u(t′′, x)
∣

∣ dx

≤

∫ γ(t′)

0

∣

∣

∣

∣

∣

∣

b
(

T (0; t′, x)
)

g
(

T (0; t′, x), 0
) exp

∫ t′

T (0;t′,x)

[

d
(

τ,X(τ ; t′, x)
)

− ∂xg
(

τ,X(τ ; t′, x)
)

]

dτ

−
b
(

T (0; t′′, x)
)

g
(

T (0; t′′, x), 0
) exp

∫ t′′

T (0;t′′,x)

[

d
(

τ,X(τ ; t′′, x)
)

− ∂xg
(

τ,X(τ ; t′′, x)
)

]

dτ

∣

∣

∣

∣

∣

∣

dx

≤

∫ γ(t′)

0

∣

∣

∣

∣

∣

b
(

T (0; t′, x)
)

g
(

T (0; t′, x), 0
) −

b
(

T (0; t′′, x)
)

g
(

T (0; t′′, x), 0
)

∣

∣

∣

∣

∣

× exp

(

∫ t′

T (0;t′,x)

(

d
(

τ,X(τ ; t′, x)
)

− ∂xg
(

τ,X(τ ; t′, x)
)

)

dτ

)

dx

+

∫ γ(t′)

0

∣

∣

∣

∣

∣

b
(

T (0; t′′, x)
)

g
(

T (0; t′′, x), 0
)

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

exp

(

∫ t′

T (0;t′,x)

(

d
(

τ,X(τ ; t′, x)
)

− ∂xg
(

τ,X(τ ; t′, x)
)

)

dτ

)
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− exp

(

∫ t′′

T (0;t′′,x)

(

d
(

τ,X(τ ; t′′, x)
)

− ∂xg
(

τ,X(τ ; t′′, x)
)

)

dτ

)

∣

∣

∣

∣

∣

∣

dx

≤ ĝ t′

(

TV(b; [0, t′′])

ǧ
+ ‖b‖

L∞([0,t′′];R)

TV
(

g(·, 0); [0, t′′]
)

ǧ2

)

(t′′ − t′) e2C t′

+2ĝ t′
‖b‖

L∞([0,t′′];R)

ǧ
e2C t′′(t′′ − t′)

[

C

ǧ
+ C

+ĝ t′′
(

‖d‖
L∞([0,t′′];R) +TV(d) +

∥

∥∂xg(·, 0)
∥

∥

L∞([0,t′′];R)
+TV ∂xg(·, 0)

)

]

≤ L (t′′ − t′)

for a suitable positive L dependent on t′′, ǧ, ĝ, C and TV(b; [0, t′′]), ‖b‖
L∞([0,t′′];R).

Passing to (4.8), use (4.6) and (2.5):

∫ γ(t′′)

γ(t′)

∣

∣u(t′′, x)− u(t′, x)
∣

∣ dx

≤ 2 ĝ max
{

∥

∥u(t′)
∥

∥

L∞(R+;R)
,
∥

∥u(t′′)
∥

∥

L∞(R+;R)

}

(t′′ − t′)

≤ 2 ĝ

(

‖uo‖L∞(R+;R) +
1

ǧ
‖b‖

L∞([0,t′′];R)

)

eCt′′(t′′ − t′)

Finally, deal with (4.9) using (4.5):

∫ +∞

γ(t′′)

∣

∣u(t′, x)− u(t′′, x)
∣

∣ dx

≤

∫ +∞

γ(t′′)

∣

∣

∣
u(t′, x)− u

(

t′, X(t′; t′′, x)
)

∣

∣

∣

× exp

[

∫ t′′

t′

(

d
(

τ,X(τ ; t′, x)
)

− ∂xg
(

τ,X(τ ; t′, x)
)

)

dτ

]

dx

≤

∫ +∞

γ(t′′)

∣

∣

∣u(t′, x)− u
(

t′, X(t′; t′′, x)
)

∣

∣

∣dx

+

∫ +∞

γ(t′′)

∣

∣

∣
u
(

t′, X(t′; t′′, x)
)

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

exp

(

∫ t′′

t′

(

d
(

τ,X(τ ; t′, x)
)

− ∂xg
(

τ,X(τ ; t′, x)
)

)

dτ

)

− 1

∣

∣

∣

∣

∣

∣

dx

≤ TV(u)
∥

∥g(t)
∥

∥

L∞(R+;R)
(t′′ − t′) +

∥

∥u(t′)
∥

∥

L1(R+;R)

(

exp
(

2C(t′′ − t′)
)

− 1
)

≤
(

ĝ TV(u) + 2C
∥

∥u(t′)
∥

∥

L1(R+;R)

)

(t′′ − t′)

Completing the proof of (2.9). �

The following elementary lemma is of use below.

Lemma 4.1. Let H,K ∈ R
+ and assume that the numbers Bk ∈ R

+ satisfy Bk+1 ≤

H +KBk for all k ∈ N. Then, Bk ≤ KkB0 +
1−Kk

1−K
H.
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Proof of Theorem 2.4. Fix a time T so that

γ(T ) ∈
]

0, min
i=1,...,n

x̄i

[

(4.10)

and define u0(t, x) = uo(x) for t ∈ [0, T ]. Recursively, for k ≥ 1 let uk ≡ (uk1 , . . . , u
k
n)

solve














∂tu
k
i + ∂x

(

gi(t, x)u
k
i

)

= di(t, x)u
k
i (t) (t, x) ∈ R

+ × R
+

gi(t, 0)u
k
i (t, 0) = bki (t) t ∈ R

+

ui(0, x) = uoi (x) x ∈ R
+

i = 1, . . . , n

(4.11)
where

bki (t) = αi

(

t, uk−1
1 (t, x̄1), . . . , u

k−1
n (t, x̄n)

)

+βi

(

∫

I1
w1(x)u

k−1
1 (t, x) dx , . . . ,

∫

In
wn(x)u

k−1
n (t, x) dx

)

.
(4.12)

Note that (b) is satisfied and Lemma 2.2 applies. Indeed, if k = 1, then b1i is
independent on time. Let k > 1, then by (2.13) and (2.8)

TV
(

bki ; [0, T ]
)

≤ TV

(

αi

(

·, uk−1
j (·, x̄)|j=1,...,n

)

; [0, T ]

)

+TV



βi

(

∫

Ij

wj(x)u
k−1
j (·, x) dx|j=1,...,n

)

; [0, T ]





≤ Lip(α)

(

T +TV
(

uk−1
j (·, x̄)|j=1,...,n; [0, T ]

)

)

+Lip(β)

n
∑

i=1

TV

(

∫

Ii

wi(x)u
k−1
i (·, x) dx ; [0, T ]

)

≤ Lip(α)

(

T +TV
(

uk−1
j (·, x̄j)|j=1,...,n; [0, T ]

)

)

+CW Lip(β)

n
∑

i=1

∫ t

0

[

∥

∥

∥uk−1
i (τ)

∥

∥

∥

L∞(R+;R)
+TV

(

uk−1
i (τ)

)

]

dτ

≤ Lip(α)

(

T +TV
(

uk−1
j (·, x̄j)|j=1,...,n; [0, T ]

)

)

+CW Lip(β)

∫ t

0

(

∥

∥

∥uk−1(τ)
∥

∥

∥

L∞(R+;Rn)
+TV

(

uk−1(τ)
)

)

dτ

which is finite by induction. Lemma 2.2 then ensures existence and uniqueness of
a solution to (4.11)–(4.12) for any k > 0. By construction, (4.10) ensures that

uk(t, x) = u1(t, x) for all x > γ(t) and k ≥ 1 . (4.13)

Therefore, also αi

(

t, uk(t, x̄i)
)

= αi

(

t, u1(t, x̄i)
)

for all t ∈ [0, T ], for all k ≥ 1 and

all i = 1, . . . , n. Compute now
∥

∥

∥
uk+1
i (t)− uki (t)

∥

∥

∥

L1(R+;R)
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≤
1

ǧ

∥

∥

∥
bk+1
i − bki

∥

∥

∥

L1([0,t];R)

≤
ĝ

ǧ

∥

∥

∥

∥

αi

(

·, uk(·, x̄i)
)

− αi

(

·, uk−1(·, x̄i)
)

∥

∥

∥

∥

L1([0,t];R)

+
ĝ

ǧ

∥

∥

∥

∥

βi

(

∫

I1

w1(x)u
k
1(·, x) dx , . . . ,

∫

In

wn(x)u
k
n(·, x) dx

)

−βi

(

∫

I1

w1(x)u
k−1
1 (·, x) dx , . . . ,

∫

In

wn(x)u
k−1
n (·, x) dx

)

∥

∥

∥

∥

L1([0,t];R)

≤
ĝ

ǧ
W Lip(β)

n
∑

j=1

∥

∥

∥

∥

∥

∫

Ij

(

ukj (·, x) − uk−1
j (·, x)

)

dx

∥

∥

∥

∥

∥

L1([0,t];R)

≤
ĝ

ǧ
W Lip(β)

n
∑

j=1

∥

∥

∥

∥

∫

R+

(

ukj (·, x)− uk−1
j (·, x)

)

dx

∥

∥

∥

∥

L1([0,t];R)

≤
ĝ

ǧ
W Lip(β)

n
∑

j=1

∫ t

0

∥

∥

∥
ukj (τ) − uk−1

j (τ)
∥

∥

∥

L1(R+;R)
dτ

≤
ĝ

ǧ
W Lip(β)

∫ t

0

∥

∥

∥
uk(τ)− uk−1(τ)

∥

∥

∥

L1(R+;Rn)
dτ (4.14)

Adding up all the components,
∥

∥

∥uk+1 − uk
∥

∥

∥

C0([0,T ];L1(R+;Rn))
≤ n

ĝ

ǧ
W Lip(β)

∫ T

0

∥

∥

∥uk − uk−1
∥

∥

∥

L1(R+;Rn)
dτ

≤ n
ĝ

ǧ
W Lip(β)T

∥

∥

∥
uk − uk−1

∥

∥

∥

C0([0,T ];L1(R+;Rn))

and, recursively,
∥

∥

∥
uk+1 − uk

∥

∥

∥

C0([0,T ];L1(R+;Rn))

≤

(

n
ĝ

ǧ
W Lip(β)T

)k ∥
∥

∥
u1(τ) − u0(τ)

∥

∥

∥

C0([0,T ];L1(R+;Rn))
.

Choosing now also T < 1/
(

n ĝ
ǧ
W Lip(β)

)

, the sequence uk is a Cauchy sequence

and we obtain the existence of a map u∗ ∈ C0
(

[0, T ];L1(R+;Rn)
)

which is the

limit of the sequence uk, in the sense that

lim
k→+∞

sup
t∈[0,T ]

∥

∥

∥uk(t)− u∗(t)
∥

∥

∥

L1(R+;Rn)
= 0 . (4.15)

To prove that u∗ solves (1.1), it is sufficient to check that the boundary condition
is attained. Indeed, proving that u∗ is a weak solution to the balance law is a
standard procedure. Clearly, the initial datum is attained, since uk(0) = uo for all
k.

Using Lemma 2.2, (2.3), (4.13) and (4.15), for all large k ∈ N we have
∥

∥

∥bk+1
∥

∥

∥

L∞([0,T ];Rn)

≤ Lip(α)

n
∑

i=1

∥

∥

∥uk(·, x̄i)
∥

∥

∥

L∞([0,T ];R)
+W Lip(β)

∥

∥

∥uk
∥

∥

∥

C0([0,T ];L1(R+;Rn))



330 RINALDO M. COLOMBO AND MAURO GARAVELLO

≤ Lip(α) ‖uo‖L∞(R+;Rn)e
CT +W Lip(β)(‖u∗‖

C0([0,T ];L1(R+;Rn)) + 1). (4.16)

With the above choice of T , using Lemma 2.2,

TV
(

bk+1
i ; [0, T ]

)

≤ Lip(α)T + Lip(α)

(

‖uo‖L∞([0,maxj x̄j];Rn) +TV

(

uo; [0,max
j
x̄j ]

)

)

eCT

+C Lip(β)

∫ T

0

(

‖uo‖L∞(R+;Rn) +
1

ǧ

∥

∥

∥bk
∥

∥

∥

L∞([0,τ ];Rn)

)

eCτ dτ

+C Lip(β)

∫ T

0



‖uo‖L∞(R+;Rn) +TV(uo)

+
1

ǧ

[

C + ǧ

ǧ

∥

∥

∥
bk
∥

∥

∥

L∞([0,τ ];Rn)
+TV(bk; [0, τ ])

]



eCτ dτ

≤ Lip(α)T + Lip(α)
(

‖uo‖L∞(R+;Rn) +TV(uo)
)

eCT

+2C Lip(β)

∫ T

0

(

‖uo‖L∞(R+;Rn) + TV(uo)
)

eCτ dτ

+
C

ǧ
Lip(β)

∫ T

0

(

2ǧ + C

ǧ

∥

∥

∥bk
∥

∥

∥

L∞([0,τ ];Rn)
+TV(bk; [0, τ ])

)

eCτ dτ

≤ Lip(α)T + Lip(α)
(

‖uo‖L∞(R+;Rn) +TV(uo)
)

eCT

+2 Lip(β)
(

‖uo‖L∞(R+;Rn) +TV(uo)
)

(eCT − 1)

+
C

ǧ
Lip(β)

∫ T

0

(

2ǧ + C

ǧ

∥

∥

∥bk
∥

∥

∥

L∞([0,τ ];Rn)
+TV(bk; [0, τ ])

)

eCτ dτ

≤ Lip(α)T + Lip(α)
(

‖uo‖L∞(R+;Rn) +TV(uo)
)

eCT

+2 Lip(β)
(

‖uo‖L∞(R+;Rn) +TV(uo)
)

(eCT − 1)

+
2ǧ + C

ǧ2
Lip(β)

(

∥

∥

∥
bk
∥

∥

∥

L∞([0,T ];Rn)
+TV(bk; [0, T ])

)

(eCT − 1)

Inserting now the estimate (4.16) in the latter term above, we can apply Lemma 4.1
to the inequality Bk+1 ≤ H +KBk, where

Bk = TV
(

bk; [0, T ]
)

H = n Lip(α)T

+n
(

Lip(α) eCT + 2 Lip(β)(eCT − 1)
)(

‖uo‖L∞(R+;Rn) +TV(uo)
)

+n
2ǧ + C

ǧ2
Lip(β) (eCT − 1)

×
(

Lip(α) ‖uo‖L∞(R+;Rn)e
CT + Lip(β) (‖u∗‖

C0([0,T ];L1(R+;Rn)) + 1)
)

×(eCT − 1)
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K = n
2ǧ + C

ǧ2
Lip(β) (eCT − 1) .

Hence, as soon as T is so small that

n
2ǧ + C

ǧ2
Lip(β) (eCT − 1) < 1 ,

we obtain a bound on TV
(

bk; [0, T ]
)

uniform in k. This bound, due to Lemma 2.2,

ensures that also supt∈[0,T ] supk∈N TV
(

uk(t)
)

< +∞ and, by the lower semiconti-

nuity of the total variation with respect to the L1 topology, supt∈[0,T ]TV
(

u∗(t)
)

<

+∞. Therefore, the trace limx→0+ u
∗(t, x) exists for all t ∈ [0, T ].

The uniform bound on TV
(

bk; [0, T ]
)

, together with (2.9) and [6, Theorem 2.4],

ensure that for a.e. x ∈ R
+, we have limk→+∞ uk(t, x) = u∗(t, x). Choose one such

x and observe that:

u∗(t, x)

= lim
k→+∞

uk(t, x)

= lim
k→+∞

bk
(

T (0; t, x)
)

g
(

T (0; t, x), 0
)

× exp

(

∫ t

T (0;t,x)

(

d(τ,X(τ ; t, x)) − ∂xg
(

τ,X(τ ; t, x)
)

)

dτ

)

=
lim

k→+∞
bk
(

T (0; t, x)
)

g
(

T (0; t, x), 0
)

× exp

(

∫ t

T (0;t,x)

(

d(τ,X(τ ; t, x)) − ∂xg
(

τ,X(τ ; t, x)
)

)

dτ

)

=
lim

k→+∞
B
(

T (0; t, x), uk−1
)

g
(

T (0; t, x), 0
)

× exp

[

∫ t

T (0;t,x)

(

d(τ,X(τ ; t, x)) − ∂xg
(

τ,X(τ ; t, x)
)

)

dτ

]

=
B
(

T (0; t, x), u
)

g
(

T (0; t, x), 0
) exp

(

∫ t

T (0;t,x)

(

d(τ,X(τ ; t, x)) − ∂xg
(

τ,X(τ ; t, x)
)

)

dτ

)

where in the last step above we used the convergences:

lim
k→+∞

αi

(

t, ukj (t, x̄j)|j=1,...,n

)

= αi

(

t, u∗(t, x̄j)|j=1,...,n

)

lim
k→+∞

βi

(

∫

Ij

wj(x)u
k
j (t, x) dx|j=1,...,n

)

= βi

(

∫

Ij

wj(x)u
∗(t, x) dx|j=1,...,n

)

the former by (4.13) and the latter by (4.15).
The time T chosen above depends only on β, mini x̄i, on d and on g. In particular,

it is independent from the initial datum. Hence, the above procedure can be iter-
ated, extending u∗ to a function defined on all R+, i.e. u∗ ∈ C0

(

R
+;L1(R+;Rn)

)

.
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Let now u′o, u
′′
o be two initial data. Define x̄ = mini=1,...,n x̄i and t̄ = Γ(x̄).

Denote Ī = [x̄,+∞[. To prove the stability estimate, with obvious notation, pre-
liminary compute for t ∈ [0, t̄]:

∥

∥u′′(t)− u′(t)
∥

∥

L1(Ī;Rn)
≤

∥

∥u′′o − u′o
∥

∥

L1(R+;Rn)
eCt

∥

∥u′′(t)− u′(t)
∥

∥

L∞(Ī;Rn)
≤

∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
eCt

Moreover, by (4.12) and (2.13), for t ∈ [0, t̄],
∥

∥b′′ − b′
∥

∥

L∞([0,t̄];Rn)

≤ n Lip(α)
∥

∥u′′(t)− u′(t)
∥

∥

L∞(Ī;Rn)
+ nW Lip(β)

∥

∥u′′(t)− u′(t)
∥

∥

L1(R+;Rn)

≤ n Lip(α)
∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
eCt

+nW Lip(β)
∥

∥u′′(t)− u′(t)
∥

∥

L1(R+;Rn)
. (4.17)

∥

∥b′′ − b′
∥

∥

L1([0,t̄];Rn)

≤ nLip(α)
eCt − 1

C

∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)

+nW Lip(β)

∫ t

0

∥

∥u′′(τ)− u′(τ)
∥

∥

L1(R+;Rn)
dτ . (4.18)

Therefore, by (2.9), for t ∈ [0, t̄],

∥

∥u′′(t)− u′(t)
∥

∥

L1(R;Rn)
≤

(

1

ǧ

∥

∥b′′ − b′
∥

∥

L1([0,t];R)
+
∥

∥u′′o − u′o
∥

∥

L1(R+;Rn)

)

eCt

≤
n Lip(α)

ǧ

eCt − 1

C
eCt
∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)

+
∥

∥u′′o − u′o
∥

∥

L1(R+;Rn)
eCt

+nW Lip(β)

∫ t

0

∥

∥u′′(τ) − u′(τ)
∥

∥

L1(R+;Rn)
dτ eCt .

An application of Gronwall Lemma yields, for t ∈ [0, t̄],
∥

∥u′′(t)− u′(t)
∥

∥

L1(R;Rn)

≤

(

nLip(α)

ǧ

eCt − 1

C

∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
+
∥

∥u′′o − u′o
∥

∥

L1(R+;Rn)

)

× exp
(

Ct+ nW Lip(β)eCt
)

To iterate beyond time t̄, using (2.5), (4.17) and the above bound to estimate
∥

∥u′′(t)− u′(t)
∥

∥

L∞(R;Rn)

≤

(

1

ǧ

∥

∥b′′ − b′
∥

∥

L∞([0,t];Rn)
+
∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)

)

eCt

≤
n Lip(α)

ǧ

∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
e2Ct

+
nW Lip(β)

ǧ

∥

∥u′′(t)− u′(t)
∥

∥

L1(R+;Rn)
eCt +

∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
eCt

≤

(

n Lip(α)

ǧ
eCt + 1

)

∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
eCt
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+
nW Lip(β)

ǧ

∥

∥u′′(t)− u′(t)
∥

∥

L1(R+;Rn)
eCt

≤

[(

n Lip(α)

ǧ
eCt + 1

)

+
nW Lip(β)

ǧ

nLip(α)

ǧ

eCt − 1

C
exp

(

Ct+ nW Lip(β)eCt
)

]

×
∥

∥u′′o − u′o
∥

∥

L∞(R+;Rn)
eCt

+
nW Lip(β)

ǧ
exp

(

2Ct+ nW Lip(β)eCt
)

∥

∥u′′o − u′o
∥

∥

L1(R+;Rn)

completing the proof. �

Proof of Theorem 2.5. Define, for i = 1, . . . , n,

b′i(t) = α′
i

(

t, u′1(t, x̄1−), . . . , u′n(t, x̄n−)
)

+β′
i

(

∫

I1

w′
1(x)u

′
1(t, x) dx , . . . ,

∫

In

w′
n(x)u

′
n(t, x) dx

)

,

b′′i (t) = α′′
i

(

t, u′′1(t, x̄1−), . . . , u′′n(t, x̄n−)
)

+β′′
i

(

∫

I1

w′′
1 (x)u

′′
1 (t, x) dx , . . . ,

∫

In

w′′
n(x)u

′′
n(t, x) dx

)

.

Preliminary, using (2.13), let us estimate the term
∥

∥b′ − b′′
∥

∥

L1([0,t];Rn)

≤

n
∑

i=1

∫ t

0

∣

∣

∣α′
i

(

s, u′1(s, x̄1), . . . , u
′
n(s, x̄n)

)

− α′′
i

(

s, u′′1(s, x̄1), . . . , u
′′
n(s, x̄n)

)

∣

∣

∣ ds

+

n
∑

i=1

∫ t

0

∣

∣

∣

∣

∣

∣

β′
i

(

∫

Ij

w′
j(x)u

′
j(s, x) dx

)

− β′′
i

(

∫

Ij

w′′
j (x)u

′′
j (s, x) dx

)

∣

∣

∣

∣

∣

∣

ds

≤ t
∥

∥α′ − α′′
∥

∥

C0(R+×Rn;Rn) + Lip
(

α′′
)

n
∑

i=1

∫ t

0

∣

∣

∣u′j(s, x̄j)− u′′j (s, x̄j)
∣

∣

∣ ds

+t
∥

∥β′ − β′′
∥

∥

C0(Rn;Rn)
+W Lip

(

β′′
)

∫ t

0

∥

∥u′(s)− u′′(s)
∥

∥

L1(R+;Rn) ds

+Lip(β′′)

∫ t

0

∥

∥u′(s)
∥

∥

L1(R+;Rn)
ds

n
∑

j=1

∥

∥

∥w′
j − w′′

j

∥

∥

∥

C0(Ij ;R)
.

Define x̄ = mini=1,...,n x̄i and t̄ = Γ(x̄). As long as s ∈ [0, T̄ ], we have u′j(s, x̄j) =
u′′j (s, x̄j). Hence the above estimate leads to

∥

∥b′ − b′′
∥

∥

L1([0,t];Rn)

≤ t

(

∥

∥α′ − α′′
∥

∥

C0(R+×Rn;Rn) +
∥

∥β′ − β′′
∥

∥

C0(Rn;Rn)

)

+ Lip
(

β′′
)

∫ t

0

∥

∥u′(s)− u′′(s)
∥

∥

L1(R+;Rn) ds
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+ Lip(β′′)

∫ t

0

K(s) ds
[

‖uo‖L1(R+;Rn) + t‖uo‖L∞(R+;Rn)

]

n
∑

j=1

∥

∥

∥w′
j − w′′

j

∥

∥

∥

C0(Ij ;R)

for all t ∈ [0, t̄]. In the same time interval,
∥

∥u′(t)− u′′(t)
∥

∥

L1(R+;Rn)

≤
eCt

ǧ

∥

∥b′ − b′′
∥

∥

L1([0,t];Rn)

≤
t eCt

ǧ

(

∥

∥α′ − α′′
∥

∥

C0(R+×Rn;Rn) +
∥

∥β′ − β′′
∥

∥

C0(Rn;Rn)

)

+
Lip(β′′) eCt

ǧ

∫ t

0

∥

∥u′(s)− u′′(s)
∥

∥

L1(R+;Rn) ds

+
Lip(β′′)

∫ t

0
K(s) ds eCt

ǧ

[

‖uo‖L1(R+;Rn) + t‖uo‖L∞(R+;Rn)

]

n
∑

j=1

∥

∥

∥w′
j − w′′

j

∥

∥

∥

C0(Ij ;R)

so that by Gronwall Lemma, for t ∈ [0, t̄],
∥

∥u′(t)− u′′(t)
∥

∥

L1(R+;Rn)

≤

[

t eCt

ǧ

(

∥

∥α′ − α′′
∥

∥

C0(R+×Rn;Rn) +
∥

∥β′ − β′′
∥

∥

C0(Rn;Rn)

)]

exp

[

Lip(β′′) t eCt

ǧ

]

+
Lip(β′′)

∫ t

0
K(s) ds eCt

ǧ

(

‖uo‖L1(R+;Rn) + t ‖uo‖L∞(R+;Rn)

)

×

n
∑

j=1

∥

∥

∥w′
j − w′′

j

∥

∥

∥

C0(Ij ;R)
exp

[

Lip(β′′) t eCt

ǧ

]

.

A repeated application of the estimate above on the intervals [(k − 1)t̄, k t̄] allows
to complete the proof. �

Proof of Corollary 3.1. Introduce u1, u2, . . . as in table (3.1). Then, extend d1, d2
and g2 to R

+ × R maintaining the required regularity and bounds on the total
variation. The resulting system fits into (1.1)–(1.2). Hence, (d), (g) and (2.13)
hold. Theorem 2.4 applies, ensuring the well posedness of the Cauchy problem.
Finally, the solution to (3.2) is obtained restricting the solution to (1.1)–(1.2)–(3.1)
to [0, amax] and to [xmin, xmax]. �
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[4] C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary
conditions, Comm. Partial Differential Equations, 4 (1979), 1017–1034.

[5] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemi-
ology , Second edition, Texts in Applied Mathematics, 40, Springer, New York, 2012.

http://www.ams.org/mathscinet-getitem?mr=MR2496711&return=pdf
http://dx.doi.org/10.1137/080723673
http://www.ams.org/mathscinet-getitem?mr=MR2944802&return=pdf
http://dx.doi.org/10.1016/j.camwa.2011.12.053
http://www.ams.org/mathscinet-getitem?mr=MR1857292&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR542510&return=pdf
http://dx.doi.org/10.1080/03605307908820117
http://www.ams.org/mathscinet-getitem?mr=MR3024808&return=pdf
http://dx.doi.org/10.1007/978-1-4614-1686-9


STRUCTURED POPULATION MODELS ON GRAPHS 335

[6] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Prob-
lem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press,
Oxford, 2000.

[7] J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi ap-
proach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137–161.

[8] R. M. Colombo and G. Guerra, On general balance laws with boundary, J. Differential
Equations, 248 (2010), 1017–1043.

[9] R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes
and canals, SIAM J. Control Optim., 48 (2009), 2032–2050.

[10] M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics,
1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

[11] N. Keyfitz, The mathematics of sex and marriage, in Proceedings of the Sixth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 4: Biology and Health, University
of California Press, Berkeley, Calif., 1972, 89–108.
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Basel, 2007.

[16] R. Schoen, The harmonic mean as the basis of a realistic two-sex marriage model, Demogra-
phy , 18 (1981), 201–216.

[17] R. Schoen, Relationships in a simple harmonic mean two-sex fertility model, Journal of Math-
ematical Biology , 18 (1983), 201–211.

[18] R. Schoen, Modeling Multigroup Populations, Springer, 1988.
[19] D. Serre, Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-

Boundary Value Problems, Translated from the 1996 French original by I. N. Sneddon, Cam-
bridge University Press, Cambridge, 2000.

[20] A. Sundelof and P. Aberg, Birth functions in stage structured two-sex models, Ecological

Modeling , 193 (2006), 787–795.

Received April 24, 2014; Accepted July 23, 2014.

E-mail address: rinaldo.colombo@unibs.it

E-mail address: mauro.garavello@unimib.it

http://www.ams.org/mathscinet-getitem?mr=MR1816648&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2290377&return=pdf
http://dx.doi.org/10.1016/j.mbs.2006.09.012
http://www.ams.org/mathscinet-getitem?mr=MR2592880&return=pdf
http://dx.doi.org/10.1016/j.jde.2009.12.002
http://www.ams.org/mathscinet-getitem?mr=MR2516198&return=pdf
http://dx.doi.org/10.1137/080716372
http://www.ams.org/mathscinet-getitem?mr=MR2328174&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0401217&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0267257&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1925043&return=pdf
http://dx.doi.org/10.1017/CBO9780511791253
http://www.ams.org/mathscinet-getitem?mr=MR2270822&return=pdf
http://dx.doi.org/10.2307/2061093
http://dx.doi.org/10.1007/BF00276087
http://dx.doi.org/10.1007/978-1-4899-2055-3
http://www.ams.org/mathscinet-getitem?mr=MR1775057&return=pdf
http://dx.doi.org/10.1016/j.ecolmodel.2005.08.040
mailto:rinaldo.colombo@unibs.it
mailto:mauro.garavello@unimib.it

	1. Introduction
	2. Analytic results
	3. Applications
	3.1. A nonautonomous juvenile–adult model
	3.2. Optimal mating ratio
	3.3. Management of a biological resource

	4. Technical details
	REFERENCES

