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Abstract. The ideas and techniques developed in [12, 3] are extended to a
basic stage structured model. Each strategy consists of two stages: a Juvenile

(L for larvae), and Adult (A). A general model of this basic stage structure is

formulated as a dynamical system on the state space of finite signed measures.
Nonnegativity, well-posedness and uniform eventual boundedness are estab-

lished under biologically natural conditions on the rates. Similar to [12] we

also have the unifying of discrete and continuous systems and the containment
of the classic nonlinearities.

1. Introduction. In this paper an Evolutionary Game (EG) is defined as a game
in which the strategy profiles evolve over time under evolutionary forces (EF) i.e.
birth, mortality, mutation, selection (replication), recombination, drift etc... More
specifically, in this paper each strategy class is divided into two stages and we
concentrate on the five evolutionary forces: Birth, Death, Transition, Selection and
Mutation.

It is well known that the solutions of many such EG models constructed on
the state space of continuous or integrable functions converge to a Dirac measure
concentrated at the fittest strategy or trait [1, 2, 8, 9, 13, 21, 22, 23, 26]. This
is particularly the case where competitive exclusion is the evolutionary outcome.
Consider the following EG model of generalized logistic growth with pure selection
(i.e. strategies replicate themselves exactly and no mutation occurs) which was
developed and analyzed in [2]:

d

dt
x(t, q) = x(t, q)(q1 − q2X(t)), (1)

where X(t) =
∫
Q
x(t, q)dq is the total population, Q ⊂ int(R2

+) is compact and the

state space is the set of continuous real valued functions C(Q). Each q = (q1, q2) ∈ Q
is a two tuple where q1 is an intrinsic replication rate and q2 is an intrinsic mortality
rate. The solution to this model converges to a Dirac mass centered at the fittest q-
class. This is the class with the highest birth to death ratio q1

q2
, and this convergence

is in a topology called weak∗ (point wise convergence of functions) [2].
In [21, ch.2], these measure-valued limits are illustrated in a biological and adap-

tive dynamics environment. This convergence is in the weak∗ topology [2]. Thus,
the asymptotic limit of the solution is not in such state spaces (function spaces); it is
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a measure. Among other things this precludes stability analysis which traditionally
requires the equilibrium point to be in the state space. Some models (e.g. [1], [26])
have addressed this problem. In [1], the authors formulated a pure selection model
on the space of finite signed measures with density dependent birth and mortality
functions and a 2-dimensional strategy space. They discussed existence-uniqueness
of solutions and studied the long term behavior of the model. Another very im-
portant drawback with the previous literature (function space approach) that this
abstraction allows us to resolve is that we can handle a nonlinear mutation term.
Here our mutation term is nonlinear because it comprises a product of a mutation
kernel and a density dependent replication rate. The nonlinearity of this term is
due to the density dependence of the replication rate. The previous methods have a
mutation term that is linear. This is done in order to use the Perron Frobenius the-
ory when one wishes to study asymptotic behavior of the model once wellposedness
has been established [9].

Another way to think of these types of models is as being derived from stochastic
individual based models. One then takes limits, in specific orders, on population
size, mutation rate, mutation step, while rescaling time accordingly to arrive at a
macroscopic model [10, 15, 17]. Here I use the methods developed in [1, 2, 12, 3].

Modeling tumor growth, cancer therapy and viral evolution are immediate appli-
cations. For example, tumor heterogeneity is one main cause of tumor robustness.
Tumors are robust in the sense that tumors are systems that tend to maintain sta-
ble functioning despite various perturbations. While tumor heterogeneity describes
the existence of distinct subpopulations of tumor cells with specific characteristics
within a single neoplasm. The mutation between the subpopulations is one ma-
jor factor that makes the tumor robust. To date there is no unifying framework
in mathematical modeling of carcinogenesis that would account for parametric
heterogeneity [16]. To introduce distributed parameters (heterogeneity) and mu-
tation is essential as we know that cancer recurrence, tumor dormancy and other
dynamics can appear in heterogeneous settings and not in homogeneous settings.
Increasing technological sophistication has led to a resurgence of using oncolytic
viruses in cancer therapy. So in formulating a cancer therapy it is useful to know
that in principle a heterogeneous oncolytic virus (a virus with more than one strain)
must be used to eradicate a tumor cell.

Starting from the papers [1, 2, 12, 3] there are many directions to go in extend-
ing the basic theory of measure valued evolutionary games. The stage-structured
direction is both natural and there is a need for more ideas in developing a general
framework for studying predictive evolution. According to [5] there is no general
theoretical framework existing for understanding or predicting evolution in stage-
structured populations. Evolution occurs when organisms exhibit differences in the
vital rates of birth, death, and dispersal that are at least partly heritable. The best-
developed body of evolutionary theory that accounts for interindividual variability
in vital rates is for age-structured populations [11, 18]. Many factors other than age,
such as sex, body size, location, developmental stage, the magnitude of nutritional
reserves, and measures of physiological condition, can be better predictors of birth
and death.

This paper is organized as follows: In section 2 we go over some background
material needed for our study of Evolutionary Games. In section 3, we develop the
basic stage structured model. It is a juvenile adult model. In section 4, we prove the
well-posedness of the model developed in section 3. In section 5, we show that the
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model covers both the discrete and continuous case, pure selection and mutation.
In section 6 we begin the next phase of this project, asymptotic analysis, proving a
very basic result. In section 7, we have a conclusion.

2. Background material. In this section, we state assumptions and define nota-
tion that we will use throughout the paper. Here M =M(Q) are the finite signed
Borel measures on [Q, d], a compact metric space. We will consider two norms on
M under which it becomes a NLS or normed linear space. They are ‖ · ‖∗BL, the
bounded lipschitz dual norm and ‖ · ‖V which denotes total variation.

Let C(Q) = C(Q;R), the Banach space of continuous real valued functions on Q
under the supremum norm ‖ · ‖∞,

‖f‖∞ = sup
q∈Q
|f(q)|.

If ν ∈M, then [4, pg. 185] relays that

‖ν‖V = sup
f∈C(Q;R),‖f‖∞≤1

|ν(f)|.

Let BL(Q;R) denote the R -valued bounded Lipschitz functions on Q under the
norm

‖f‖BL = ‖f‖∞ + ‖f‖Lip
where

‖f‖Lip = sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ Q, x 6= y

}
.

Now since BL(Q;R) ⊂ C(Q;R), then M(Q) = C∗(Q;R) ⊂ BL∗(Q;R) and we
can view M⊂ [BL∗(Q), ‖ · ‖∗BL], where

‖µ‖∗BL = sup

{
‖
∫
Q

fdµ‖ : ‖f‖BL ≤ 1

}
.

This makes M into a NLS which we denote as Mw and on the cone, M+,w,
this norm generates the weak∗ topology [14]. The duality < C(Q),M > given
by < f, µ >7→

∫
Q
f(q)dµ generates the weak∗ topology on M , i.e., the locally

convex TVS (topological vector space) (M, σ(M, C(Q)). Here if (µn)n∈N, µ ∈ M
convergence is defined by

µn
w∗→ µ

provided
|µn(f)− µ(f)| → 0 for every f ∈ C(Q;R).

Or if ρf (µ) = | < µ, f > | = |µ(f)| is the seminorm defined by the duality, then
ρf (µn − µ)→ 0 for each f ∈ C(Q;R) as n→∞.

Note that we can use sequences to detect limits onM+,w, because onM+,w the
weak∗ topology is completely metrizable e.g. with ‖ · ‖∗BL [14].

Obviously if µ ∈ M , then ‖µ‖∗BL ≤ ‖µ‖V . We will use this fact liberally in the
estimates to follow.
Ba[ν] will denote the closed total variation ball of radius a around ν ∈M.
If ‖ · ‖ represents one of the two norms defined above, then we can also put a

NLS structure on [M, ‖ · ‖]× [M, ‖ · ‖] = [M, ‖ · ‖]2 under the norm

‖(µ, ν)‖·2 = ‖µ‖+ ‖ν‖.
Note that if we are using total variation, ‖ · ‖V , then both M and M×M are
Banach spaces. If the total variation norm is denoted ‖ · ‖V , then MV will denote
the Banach space of the finite signed measures with the total variation norm. If
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S ⊆ M, Sw denotes the same set under the weak∗ topology and SV the same set
under total variation. If no topology is indicated then S is simply a subset of the
Riesz space of ordered measures. Also S+ = S ∩M+.

If Pw denotes the probability measures under the weak∗ topology, then C(Q,
Pw(Q)), the continuous Pw valued functions on Q with the topology of uniform
convergence is a complete metric space. That is if γ ∈ C(Q,Pw), then

||γ||∞ = sup
q∈Q
‖γ(q)‖∗BL.

Suppose f is continuous. If γ ∈ C(Q,Pw(Q)), g ∈ C(Q), then(∫
Q

f(q̂)γ(q̂)µ(dq̂)
)

[g] =

∫
Q

f(q̂)γ(q̂)[g]µ(dq̂).

Also the measure E 7→
∫
E
f(q)µ(dq) , denoted <

∫
f(q)µ(dq), · >, as a functional

has the action: g 7→
∫
Q
g(q)f(q)µ(dq) for g ∈ C(Q).

If X is any set, and ‖ · ‖ is one of the two previously defined norms on M and
f = (fL, fA) is a bounded map from X into M2 then under the sup norm, i.e.,

‖f‖S = sup
x∈X
‖fL(x)‖+ sup

x∈X
‖fA(x)‖ (2)

we obtain another Banach space denoted BM(X ) := (BM(X ), ‖·‖S). BM(X ) is the
space in which we are always working and should be kept in mind when we begin the
fixed point argument as there are several topologies being used. For our dynamical
system purposes, if a, b > 0, m0 = (m0L,m0A) and (0,m0) ∈ R+×M×M are given,

we are interested in the set X = [−b, b]× (Ba[m0L])+,w× (Ba[m0A])+,w×C(Q,Pw).

Let’s denote by C
(

[−b, b]×(Ba[m0L])+,w×(Ba[m0A])+,w×C(Q,Pw); (B2a[m0L])w×

(B2a[m0A])w

)
the closed subcollection of continuous maps into (B2a[m0L])w ×

(B2a[m0A])w. Then it is an exercise to show that (M(a, b,m0), ‖ · ‖S) where

M(a, b,m0) = {α ∈ BM(X )| α ∈ C
(

[−b, b]× (Ba[m0L])+,w × (Ba[m0A])+,w×

C(Q,Pw); (B2a[m0L])w × (B2a[m0A])w

)
, α ≥ 0, α(0;u, γ) = u}.

(3)

is a nonempty closed metric subspace of the complete metric space BM
(

[−b, b] ×

Ba[m0L]+ ×Ba[m0A]+ × C(Q,Pw)
)
.

Also, for any time dependent mapping, f(t), we let f ′(t) = df
dt (t)

3. Juvenile adult model. We have ([Q, d], BQ, P ) where [Q, d] is a compact met-
ric space, BQ are the Borel sets on [Q, d] and P is a probability measure on the
Measurable Space ([Q, d], BQ) representing an initial weighting on the strategies.
One can think of Q as a compact subset of Rn and P as a probability measure
(initial weighting) on this set.

As mentioned in the first paragraph, the evolutionary forces that act on our
population are: α(q, L,A), µ(q, L,A) the per capita mortality rates of adult and
juvenile populations of strategy q respectively. Likewise β(q, L,A) is a per capita
birth rate of the q -strategy, while f(q, L,A) is the density dependent transition rate
from q strategy juveniles to q-strategy adults. We assume the following regularity.

Assumption 11.1. f, α, β, µ : Q× [0,∞)2 → (0,∞) are continuous functions with
the following additional properties:
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(1) f(q, ·), β(q, ·) are nonincreasing and Lipschitz continuous uniformly for q ∈ Q.
(2) α(q, ·), µ(q, ·) are nondecreasing and Lipschitz continuous uniformly for q ∈ Q.
(3) γ ∈ C(Q,Pw(Q)) and γ(q̂)(E) is the proportion of q̂ -strategy offspring that

adopt strategies that are in the Borel set E. Since γ(q) is a probability measure
for q ∈ Q, it can also be viewed as a continuous linear functional and the
notation γ(q)[g] will denote the value of this measure on g ∈ C(Q), if C(Q)
represents the real valued functions on Q.

Similar to [12] we start with a density version of the juvenile adult model taken
from [25, pg. 154] and then integrate and use Fubini to obtain a measure the-
oretic model. In (4) below, let L(t, q) denote the q -strategy juvenile popula-
tion at time t. Likewise A(t, q) denotes the q - strategy adult population. Also
m(t) = (mL(t),mA(t)) ∈M×M where sometimes we denote

m(t)(Q) = (mL(t)(Q),mA(t)(Q)).

Then

L′(t, q) =

∫
Q

γ(q̂)({q})β(q̂,m(t)(Q))A(t, q̂)P (dq̂)− [µ(q,m(t)(Q))

+ f(q,m(t)(Q))]L(t, q)

A′(t, q) = f(q,m(t)(Q))L(t, q)− α(q,m(t)(Q))A(t, q)

(4)

m′L(t)(E) =

∫
Q

γ(q)(E)β(q,m(t)(Q))mA(t)(dq)−
∫
E

[µ(q,m(t)(Q))

+ f(q,m(t)(Q)]mL(t)(dq)

m′A(t)(E) =

∫
E

f(q,m(t)(Q))mL(t)(dq)−
∫
E

α(q,m(t)(Q))mA(t)(dq)

(5)

This (5) is the full measure theoretic model and γ(q)(E) is the proportion of the
q -strategy population offspring adopting strategies that are in E, a Borel subset of
Q.

If m = (mL,mA) ∈M×M is as above then let

F :M×M× C(Q,Pw)→M×M

be given by F (m, γ) = F (mL,mA, γ) = (F1(mL,mA, γ), F2(mL,mA, γ)) where

F1(m, γ)(E)

=

∫
Q

γ(q)(E)β(q,m(Q))mA(dq)−
∫
E

[µ(q,m(Q)) + f(q,m(Q))]mL(dq)

=F11(m, γ)− F12(m, γ)

F2(m, γ)(E)

=

∫
E

f(q,m(Q))mL(dq)−
∫
E

α(q,m(Q))mA(dq)

=F21(m, γ)− F22(m, γ).

(6)

Then we are interested in the solution to the following IVP (initial value prob-
lem). {

m′(t;u, γ) = F (m, γ)
m(0;u, γ) = u.

(7)
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4. Wellposedness of measure theoretic dynamics. The main result of this
paper is as follows:

Theorem 4.1. Assume Assumption 11.1. There exists a continuous dynamical
system (M+,w×M+,w, C(Q,Pw), ϕ) where ϕ : R+×M+,w×M+,w×C(Q,Pw)→
M+,w ×M+,w satisfies the following:

1. The mapping (t;u, γ) 7→ ϕ(t;u, γ) is continuous.
2. For fixed u, γ, the mapping t 7→ ϕ(t;u, γ) is continuously differentiable in total

variation, i.e., ϕ(·;u, γ) : R+ →MV,+ ×MV,+ is continuously differentiable.
3. For fixed u, γ, the mapping t 7→ ϕ(t;u, γ) is the unique solution to{

m′(t) = F (m, γ)
m(0) = u.

(8)

4.1. Local existence. First let 0 denote the zero measure and let F :MV ×MV ×
C(Q;Pw)→MV ×MV be as in (6) and (7).

For each N ∈ N, define FN as follows. If j is one of the functions α, β, µ or f then
we extend j to Q×R×R by setting jN (q, x, y) = j(q, 0, 0) for x, y ≤ 0 and make the
modification jN (q, x, y) = j(q,N,N) for x, y ≥ N . Then jN (q, ·, ·) : R×R→ (0,∞)
is bounded and Lipschitz continuous uniformly for q ∈ Q. Let FN (m, γ)(E) be the
redefined vector field obtained by replacing j with jN .

Below ‖βN‖BL = ‖βN (q, ·, ·)‖BL, for any q ∈ Q, ‖βN‖∞ = ‖βN (·, 0, 0)‖∞,
likewise for f . Also ‖αN‖BL = ‖αN (q, ·, ·)‖BL, for any q ∈ Q, and ‖αN‖∞ =
‖αN (·, N,N)‖∞. Likewise for µN . However,

‖µN + fN‖∞ = ‖µN (·, N,N) + fN (·, 0, 0)‖∞.
We will resolve the following IVP first.{

m′(t;u, γ) = FN (m, γ)
m(0;u, γ) = u.

(9)

Lemma 4.2. (Lipschitz FN ) Let

FN :MV ×MV × C(Q,Pw)→MV ×MV

be as above and let W ⊆MV be bounded in total variation. Then on WV ×WV ×
C(Q;Pw), FN (·, ·, γ) is bounded and uniformly Lipschitz for γ ∈ C(Q,Pw) .

Proof. We must show that FN is bounded and Lipschitz uniformly for γ ∈ C(Q,Pw).

So if (ρ, γ) = (ρL, ρA, γ), (ρ†, γ) = (ρ†L, ρ
†
A, γ), we will find BL, BA such that

‖FN (ρ, γ)− FN (ρ†, γ)‖V 2 ≤ BL‖ρL − ρ†L‖V +BA‖ρA − ρ†A‖V .
Below if j is α, β, µ or f then

jN = jN (q, ρL(Q), ρA(Q)), j†N = jN (q, ρ†L(Q), ρ†A(Q)). (10)

Now

‖FN (ρ, γ)− FN (ρ†, γ)‖V 2 =
∥∥[FN1(ρ, γ, ), FN2(ρ, γ]− [FN1(ρ†, γ), FN2(ρ†, γ)]

∥∥
V 2

=
∥∥[FN1(ρ, γ)− FN1(ρ†, γ), FN2(ρ, γ)− FN2(ρ†, γ)]

∥∥
V 2

=
∥∥FN1(ρL, ρA, γ)− FN1(ρ†L, ρ

†
A, γ)︸ ︷︷ ︸

D1

∥∥
V

+
∥∥FN2(ρ, γ)− FN2(ρ†, γ)︸ ︷︷ ︸

D2

∥∥
V
.

(11)
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Consider the following assignments:

D11 = FN,11(ρ, γ)− FN,11(ρ†, γ) D12 = FN,12(ρ, γ)− FN,12(ρ†, γ) (12)

D21 = FN,21(ρ, γ)− FN,21(ρ†, γ) D22 = FN,22(ρ, γ)− FN,22(ρ†, γ). (13)

Then

D1 = D11 +D12, D2 = D21 +D22. (14)

We show that FN1 (or D1) and FN2 (or D2) are bounded and Lipschitz and the
result for FN follows immediately.
D1 : If g ∈ C(Q), ‖g‖∞ ≤ 1, then |D1(g)| ≤ |D11(g)|+ |D12(g)| where

D11[·] =

∫
Q

γ(q)[·]βN (ρA − ρ†A)(dq) +

∫
Q

γ(q)[·](βN − β†N )ρ†A(dq)

D12[·] =<

∫
[µN + fN ](ρL − ρ†L)(dq), · >

+ <

∫
[(µN + fN )− (µ†N + f†N )](ρ†L)(dq), · > .

(15)

|D11(g)| ≤ |
∫
Q
γ(q)[g]βN (ρA − ρ†A)(dq)| + |

∫
Q
γ(q)[g](βN − β†N )ρ†A(dq)|

= ‖γ(·)βN (·, 0, 0)‖∞1|
∫
Q

γ(q)[g]βN

‖γ(·)βN (·,0,0)‖∞ (ρA−ρ†A)(dq)| + |
∫
Q

(
γ(q)[g](βN −β†N )

)
ρ†A(dq)| ≤ ‖γ(·)βN (·, 0, 0)‖∞‖ρA − ρ†A‖V +

∫
Q
|βN − β†N ||ρ

†
A|(dq) 2

≤ ‖γ(·)βN (·, 0, 0)‖∞‖ρA−ρ†A‖V +
(
‖βN‖BL‖ρL−ρ†L‖∗BL+‖βN‖BL‖ρA−ρ†A‖∗BL

)
‖ρ†A‖V
≤ ‖ρ†A‖V ‖βN‖BL‖ρL − ρ†L‖∗BL +

(
‖γ(·)βN (·, 0, 0)‖∞ + ‖ρ†A‖V ‖βN‖BL

)
‖ρA −

ρ†A‖V .

D12[·] =<

∫
[µN + fN ](ρL − ρ†L)(dq), · >

+ <

∫
[(µN + fN )− (µ†N + f†N )](ρ†L)(dq), · > .

(16)

|D12(g)| ≤ |
∫
Q

[µN+fN ]g(q)(ρL−ρ†L)(dq)| + |
∫
Q

[(µN+fN )−(µ†N+f†N )]g(q)ρ†L(dq)|

≤ ‖µN + fN‖∞
∣∣ ∫
Q

[µN+fN ]
‖µN+fN‖∞ g(q)(ρL − ρ†L)(dq)

∣∣ +
(

[‖µN‖BL + ‖fN‖BL]‖ρL −

ρ†L‖∗BL + [‖µN‖BL + ‖fN‖BL]‖ρA − ρ†A‖∗BL
) ∫

Q
|g(q)||ρ†L|(dq)

≤
(
‖µN + fN‖∞+ ‖ρ†L‖V (‖µN‖BL + ‖fN‖BL)

)∥∥ρL− ρ†L∥∥V + ‖ρ†L‖V (‖µN‖BL +

‖fN‖BL)‖ρA − ρ†A‖∗BL.
Hence ‖D1‖V ≤

(
‖ρ†A‖V ‖βN‖BL+‖µN+fN‖∞+‖ρ†L‖V (‖µN‖BL+‖fN‖BL)

)
‖ρL

−ρ†L‖V +
(
‖γ(·)βN (·, 0, 0)‖∞+‖ρ†A‖V ‖βN‖BL+‖ρ†L‖V (‖µN‖BL+‖fN‖BL)

)
‖ρA−

ρ†A‖V .

1 Here ‖γ(·)βN (·, 0, 0)‖∞ = supq∈Q ‖βN (q, 0, 0)γ(q)‖V =

supg∈C(Q),‖g‖∞≤1,q∈Q |γ(q)[g]βN (q, 0, 0)|.
2 Here |ρ†A| means the absolute value of the measure ρ†A.
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D2: |D2(g)| ≤ |D21(g)|+ |D22(g)| where

D21 =

∫
Q

fNg(q)ρL(dq)−
∫
Q

f†Ng(q)ρ†L(dq)

D22 =

∫
Q

αNg(q)ρA(dq)−
∫
Q

α†Ng(q)ρ†A(dq).

(17)

Hence,

|D21(g)|+ |D22(g)|

≤‖fN‖∞
∣∣ ∫
Q

fN
‖fN‖∞

g(q)(ρL − ρ†L)(dq)
∣∣+
∣∣ ∫
Q

[fN − f†N ]g(q)ρ†L(dq)
∣∣

+ ‖αN‖∞|
∫
Q

αN
‖αN‖∞

g(q)(ρA − ρ†A)(dq)
∣∣+
∣∣ ∫
Q

[αN − α†N ]g(q)ρ†A(dq)
∣∣

≤
(
‖fN‖∞ + ‖ρ†L‖V ‖fN‖BL + ‖ρ†A‖V ‖αN‖BL

)
‖ρL − ρ†L‖V

+
(
‖αN‖∞ + ‖ρ†L‖V ‖fN‖BL + ‖ρ†A‖V ‖αN‖BL

)
‖ρA − ρ†A‖V .

So if

BL(ρ†) =
(
‖ρ†A‖V ‖βN‖BL + ‖µN + fN‖∞ + ‖ρ†L‖V (‖µN‖BL + ‖fN‖BL)

)
+
(
‖fN‖∞ + ‖ρ†L‖V ‖fN‖BL + ‖ρ†A‖V ‖αN‖BL

)
,

BA(ρ†) =
(
‖γβN (·, 0, 0)‖V + ‖ρ†A‖V ‖βN‖BL + ‖ρ†L‖V (‖µN‖BL + ‖fN‖BL)

)
+
(
‖αN‖∞ + ‖ρ†L‖V ‖fN‖BL + ‖ρ†A‖V ‖αN‖BL

)
,

then

‖FN (ρ, γ)− FN (ρ†, γ)‖V 2 ≤ BL(ρ†)‖ρL − ρ†L‖V +BA(ρ†)‖ρA − ρ†A‖V . (18)

So if CW is such that ‖µ‖V ≤ CW for µ ∈WV our result is immediate.

If a, b > 0, α ∈M(a, b,m0), g ∈ C(Q), then we define

∆N,s,t,α(·;u,γ)(q̂)[g] =

∫
Q

e−
∫ t
s
[µN+fN ](q,α(τ)(Q))dτg(q)γ(q̂)(dq).

Lemma 4.3. (Estimates) If ζ, ξ ∈ M(N3 , b,0), t1, t2, t, s ∈ [−b, b], let C1 = 2N
3 . If

g ∈ C(Q), ‖g‖∞ ≤ 1 then we have the following estimates:

1. (a)
∣∣∣∫[t1,t2]×Q βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]ζA(s)(dq̂)ds

∣∣∣ ≤ 2bC1‖βN (·, 0,
0)‖∞

(b)

∣∣∣∣∫ t2t1 ∫Q e− ∫ t2
t1
αN (q,ζ(τ)(Q))dτfN (q, ζ(s)(Q))g(q)ζL(s)(dq)ds

∣∣∣∣ ≤ 2bC1‖fN (·,

0, 0)‖∞
2. (a)

∣∣∣e− ∫ t
s
[µN+fN ](q,ζ(τ)(Q))dτ−e−

∫ t
s
[µN+fN ](q,ξ(τ)(Q))dτ

∣∣∣ ≤ (‖µN‖BL+‖fN‖BL)∫ t
s
‖ζ(τ)− ξ(τ)‖∗BL2dτ

(b)
∣∣∣e− ∫ t

s αN (q,ζ(τ)(Q))dτ − e−
∫ t
s αN (q,ξ(τ)(Q))dτ

∣∣∣ ≤ (‖αN‖BL)
∫ t
s
‖ζ(τ)− ξ(τ)‖∗BL2dτ
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(c)
∣∣∣e− ∫ t1

s
[µN+fN ](q,ζ(τ ;u1,γ1)(Q))dτ−e−

∫ t
s
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτ

∣∣∣ ≤ (‖µN‖BL+

‖fN‖BL)
∫ t
s
‖ζ(τ ;u1, γ1)− ζ(τ ;u, γ)‖∗BL2dτ + (‖µN‖BL + ‖fN‖BL)|t1− t|

3. (a)
∣∣∣∆N,s,t,ζ(·;u,γ)(q̂)[g]−∆N,s,t,ξ(·;u,γ)(q̂)[g]

∣∣∣ ≤ (‖µN‖BL+‖fN‖BL)b||ζ−ξ||S
3

(b)
∣∣∣∆N,s,t1,ζ(·;u1,γ1)(q̂)[g]−∆N,s,t,ζ(·;u,γ)(q̂)[g]

∣∣∣ ≤ (‖µN‖BL + ‖fN‖BL)∫ t
s
‖ζ(τ ;u1, γ1)− ζ(τ ;u, γ)‖∗BL2dτ + (‖µN‖BL + ‖fN‖BL)|t1 − t| +

|
∫
Q
e−

∫ t
s
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτg(q)[γ1(q̂)− γ(q̂)](dq)|

4. (a)
∣∣∣βN (q̂, ζ(s;u, γ)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]− βN (q̂, ξ(s;u, γ)(Q))∆N,s,t,ξ(·;u,γ)(q̂)[g]

∣∣∣
≤ ‖βN‖BL‖ζ(s;u, γ)− ξ(s;u, γ)‖∗BL2 + b‖βN‖∞(‖µN‖BL+ ‖fN‖BL)‖ζ−
ξ‖S

(b)
∣∣∣fN (q̂, ζ(s)(Q))e−

∫ t
s αN (q,ζ(τ ;u,γ)(Q))dτ−fN (q̂, ξ(s)(Q))e−

∫ t
s αN (q,ξ(τ ;u,γ)(Q))dτ

∣∣∣ ≤
‖fN‖BL‖ζ(s;u, γ)− ξ(s;u, γ)‖∗BL2 + b‖fN‖∞(‖αN‖BL)||ζ − ξ||S

Proof. 1. Since∣∣βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]
∣∣

= |βN (q̂, ζ(s)(Q))

∫
Q

g(q)e−
∫ t
s
[µN+fN ](q,ζ(τ)(Q))dτ

γ(q̂)(dq)| ≤ ‖βN (·, 0, 0)‖∞,∣∣∣∣∫
[t1,t2]×Q

βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]ζA(s)(dq̂)ds
∣∣∣ ≤ ∫

[t1,t2]×Q∣∣∣βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]
∣∣∣|ζA(s)|(dq̂)ds ≤ 2bC1‖βN (·, 0, 0)‖∞.

A similar argument holds for the second inequality.
2. (a) Using the mean value theorem on the C∞(R) function, ex, there exists

θ = θ(s, t) > 0, such that∣∣∣e− ∫ t
s
[µN+fN ](q,ζ(τ)(Q))dτ − e−

∫ t
s
[µN+fN ](q,ξ(τ)(Q))dτ

∣∣∣
= e−θ

∣∣∣∫ ts [[µN + fN ](q, ζ(τ)(Q))− [µN + fN ](q, ξ(τ)(Q))
]
dτ
∣∣∣

≤ (‖µN‖BL + ‖fN‖BL)
[∫ t
s
‖ζL(τ)− ξL(τ)‖∗BLdτ +

∫ t
s
‖ζA(τ)− ξA(τ)‖∗BLdτ

]
= (‖µN‖BL + ‖fN‖BL)

∫ t
s
‖ζ(τ)− ξ(τ)‖∗BL2dτ.

(b) This argument is similar to (a) above.
(c) Using the mean value theorem on the C∞(R) function, ex, there exists

θ = θ(s, t1, t) > 0, such that∣∣∣e− ∫ t1
s

[µN+fN ](q,ζ(τ ;u1,γ1)(Q))dτ − e−
∫ t
s
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτ

∣∣∣
≤ e−θ

∣∣∣∣∫ ts [[µN + fN ](q, ζ(τ ;u1, γ1)(Q))− [µN + fN ](q, ζ(τ ;u, γ)(Q))
]
dτ

∣∣∣∣
+e−θ

∣∣∣∣∫ t1t [µN + fN ](q, ζ(τ ;u1, γ1)(Q))dτ

∣∣∣∣
≤

∫ t
s
(‖µN‖BL + ‖fN‖BL)|ζL(τ ;u1, γ1)(Q)− ζL(τ ;u, γ)(Q)|dτ
+
∫ t
s
(‖µN‖BL + ‖fN‖BL)|ζA(τ ;u1, γ1)(Q)− ζA(τ ;u, γ)(Q)|dτ

+(‖µN‖BL + ‖fN‖BL)|t1 − t|.

3 Here ‖ · ‖S is taken with respect to total variation norm, see (2),(20).
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3. (a)

∣∣∆N,s,t,ζ(·;u,γ)(q̂)[g]−∆N,s,t,ξ(·;u,γ)(q̂)[g]
∣∣ = |

∫
Q

[
e−

∫ t
s
[µN+fN ](q,ζ(τ)(Q))dτ−

e−
∫ t
s
[µN+fN ](q,ξ(τ)(Q))dτ

]
g(q)γ(q̂)(dq)|

Since ‖g‖∞ ≤ 1 and γ(q̂) is a probability measure our results are imme-
diate from 2(a).

(b)

∣∣∣∣∆N,s,t1,ζ(·;u1,γ1)(q̂)[g]−∆N,s,t,ζ(·;u,γ)(q̂)[g]

∣∣∣∣=∣∣ ∫
Q
e−

∫ t1
s

[µN+fN ](q,ζ(τ ;u1,γ1)(Q))dτg(q)γ1(q̂)(dq)

−
∫
Q
e−

∫ t
s
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτg(q)γ(q̂)(dq)

∣∣ ≤∫
Q

∣∣∣e− ∫ t1
s

[µN+fN ](q,ζ(τ ;u1,γ1)(Q))dτ − e−
∫ t
s
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτ∣∣∣|g(q)|γ1(q̂)(dq)

+ |
∫
Q
e−

∫ t
s
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτg(q)(γ1(q̂)− γ(q̂))(dq)|

Since ‖g‖∞ ≤ 1 and γ1(q̂) is a probability measure using 2(c) our results
are immediate.

4. (a)∣∣βN (q̂, ζ(s;u, γ)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]− βN (q̂, ξ(s;u, γ)(Q))∆N,s,t,ξ(·;u,γ)(q̂)[g]
∣∣

≤ |βN (q̂, ζ(s;u, γ)(Q))− βN (q̂, ξ(s;u, γ)(Q))|
∣∣∆N,s,t,ζ(·;u,γ)(q̂)[g]

∣∣
+ βN (q̂, ξ(s;u, γ)(Q))

∣∣∆N,s,t,ζ(·;u,γ)(q̂)[g]−∆N,s,t,ξ(·;u,γ)(q̂)[g]
∣∣

≤ ‖βN‖BL‖ζL(s)− ξL(s)‖∗BL + ‖βN‖BL‖ζA(s)− ξA(s))‖∗BL + ‖βN‖∞(‖µN‖BL+

‖fN‖BL)

∫ t

s

‖ζ(τ)− ξ(τ)‖BL2dτ.

using 2(a) and 3(a) in the last estimate.

(b)
∣∣∣fN (q̂, ζ(s)(Q))e−

∫ t
s αN (q,ζ(τ ;u,γ)(Q))dτ − fN (q̂, ξ(s)(Q))e−

∫ t
s αN (q,ξ(τ ;u,γ)(Q))dτ

∣∣∣
≤ |fN (q̂, ζ(s)(Q))− fN (q̂, ξ(s)(Q))|e−

∫ t
s
αN (q,ζ(τ ;u,γ)(Q))dτ+

|e−
∫ t
s
αN (q,ζ(τ ;u,γ)(Q))dτ − e−

∫ t
s
αN (q,ξ(τ ;u,γ)(Q))dτ |fN (q̂, ξ(s)(Q))

≤ ‖fN‖BL‖ζ(s) − ξ(s)‖∗BL2 + ‖fN‖∞(‖αN‖BL)
∫ t
s
‖ζ(τ) − ξ(τ)‖∗BL2dτ.

Using 2(b) for the last estimate.

For the convenience of the reader we mention again a few important notions from
section 2.

If ζ ∈M(a, b,m0), then for g ∈ C(Q),

∆s,t,ζ(·;u,γ)(q̂)[g] =

∫
Q

e−
∫ t
s
[µ+f ](q,ζ(τ)(Q))dτg(q)γ(q̂)(dq).

and

∆N,s,t,ζ(·;u,γ)(q̂)[g] =

∫
Q

e−
∫ t
s
[µN+fN ](q,ζ(τ)(Q))dτg(q)γ(q̂)(dq).
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(M(a, b,m0), ‖ · ‖S) is defined as

M(a, b,m0) =
{
α ∈ BM(X )| α ∈ C

(
[−b, b]× (Ba[m0L])+,w × (Ba[m0A])+,w

×C(Q,Pw); (B2a[m0L])w × (B2a[m0A])w

)
, α ≥ 0, α(0;u, γ) = u

}
(19)

and

||ζ||S = sup
(t,u,γ)

‖ζ(t;u, γ)‖V 2 . (20)

Lemma 4.4. (Fixed Point) Let C1 be as in Lemma 4.3, 0 × 0 =
−→
0 . Pick b such

that :

• 2b‖βN (·, 0, 0‖∞C1 <
N
3 , 2b‖fN (·, 0, 0)‖∞C1 <

N
3 .

• KL = b
(
(‖µN‖BL+‖fN‖BL)C1+‖βN‖∞+C1‖βN‖BL+C1b‖βN‖∞(‖µN‖BL+

‖fN‖BL)
)

< 1
2 and KA = b

(
‖αN‖BLC1 + ‖fN‖∞ + C1(‖fN‖BL +

‖fN‖∞‖αN‖BLb)
)
< 1

2 .

Then

S : M
(N

3
, b,
−→
0
)
→M

(N
3
, b,
−→
0
)

given by

(Sζ)(t;u, γ) = [(Sζ)L(t;u, γ), (Sζ)A(t;u, γ)]

where if g ∈ C(Q),

(Sζ)L(t;u, γ)[g]

=

∫
Q

e−
∫ t
0
[µN+fN ](q,ζ(τ)(Q))dτg(q)uL(dq) +

∫ t

0

[

∫
Q

∆N,s,t,ζ(·;u,γ)(q̂)[g]

βN (q̂, ζ(s)(Q))ζA(s)(dq̂)]ds (21)

(Sζ)A(t;u, γ)[g] =

∫
Q

e−
∫ t
0
αN (q,ζ(τ)(Q))dτg(q)uA(dq) +

∫ t

0

∫
Q

e−
∫ t
s
αN (q,ζ(τ)(Q))dτ

fN (q, ζ(s)(Q))g(q)ζL(s)(dq)ds (22)

has a unique fixed point.

Proof. Since (t, u, γ) 7→ [uL, uA] ∈ M
(
N
3 , b,
−→
0
)
, M

(
N
3 , b,
−→
0
)
6= ∅. If ζ ∈ M

(
N
3 , b,

−→
0
)
, then from the form of (21), (22) [Sζ](0;u, γ) = u and [Sζ] is nonnegative.

Using Lemma 4.3 1a, b we get our first two estimates in demonstrating that Sζ ∈
M
(
N
3 , b,
−→
0
)

. Indeed, we have

((Sζ)L)(t;u, γ) = <
∫
e−

∫ t
0
[µN+fN ](q,ζ(τ)(Q))dτ (uL)(dq), · >

+

(∫ t
0

∫
Q
βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[·]ζA(s)(dq̂)× ds

)
and

‖(Sζ)L(t;u, γ)‖V ≤ ‖uL‖V + 2b‖βN (·, 0, 0)‖∞C1

≤ N
3 + 2b‖βN (·, 0, 0)‖∞C1 <

2N
3 .

Likewise,

(Sζ)A(t;u, γ) = <
∫
e−

∫ t
0
αN (q,ζ(τ)(Q))dτ (uA)(dq), · >

+
∫ t
0
<
∫
e−

∫ t
0
αN (q,ζ(τ)(Q))dτfN (q, ζ(s)(Q))ζL(s)(dq), · > ds
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and
‖(Sζ)A(t;u, γ)‖V ≤ ‖uA‖V + 2b‖fN (·, 0, 0)‖∞C1

≤ N
3 + 2b‖fN (·, 0, 0)‖∞C1 <

2N
3 .

We now show that [Sζ] is continuous. Since [Sζ] = [(Sζ)L, (Sζ)A], this is equiv-
alent to showing that (Sζ)L and (Sζ)A are both continuous. We will show that
(Sζ)L is continuous, the case for (Sζ)A is easier and similar. This means that if

vn = (tn;un, γn), v = (t;u, γ) ∈ [−b, b]× (BN
3 ,+

[(0)L]w× (BN
3 ,+

[(0)A]w×C(Q,Pw)

and vn → v then

(Sζ)L(vn)→ (Sζ)L(v)

in (B 2N
3 ,+[(0)L])w. Below

ζn(·) = [ζL(·;un, γn), ζA(·;un, γn)], ζ(·) = [ζL(·;u, γ), ζA(·;u, γ)]. (23)

Let
Ia =<

∫
e−

∫ t
0
[µN+fN ](q,ζ(τ)(Q))dτ ((un)L − uL)(dq), · >,

Ib =<
∫

[e−
∫ tn

0
[µN+fN ](q,ζn(τ)(Q))dτ − e−

∫ t
0
[µN+fN ](q,ζ(τ)(Q))dτ ](un)L(dq), · >,

IIa =

(∫ tn
t

∫
Q
βN (q̂, ζn(s)(Q))∆N,s,tn,ζ(·;un,γn)(q̂)[·]ζA(s;un, γn)(dq̂)ds

)
,

IIb1 =

(∫ t
0

∫
Q

(
βN (q̂, ζn(s)(Q))− βN (q̂, ζ(s)(Q))

)
∆N,s,tn,ζ(·;un,γn)(q̂)[·]

ζA(s;un, γn)(dq̂)ds

)
,

IIb2 =

(∫ t
0

∫
Q
βN (q̂, ζ(s)(Q))(∆N,s,tn,ζ(·;un,γn)(q̂)−∆N,s,t,ζ(·;u,γ)(q̂))[·]

ζA(s;un, γn)(dq̂)ds

)
, and

IIb3 =

(∫ t
0

∫
Q
βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[·](ζA(s;un, γn)−

ζA(s;u, γ))(dq̂)ds

)
.

Then,

(Sζ)L(vn)− (Sζ)L(v) = Ia+ Ib+ IIa+ IIb1 + IIb2 + IIb3.

We remind the reader that the weak∗ topology is generated by the family of semi-
norms ρg(µ) = |

∫
Q
gdµ|, where g ∈ C(Q). So if ρg is a seminorm, we need to show

that ρg
(
(Sζ)L(vn)−(Sζ)L(v)

)
→ 0, as n→∞. To this end, we provide an estimate

for each of the terms above.

1. ρg(Ia) = |Ia[g]| → 0 since e−
∫ t
0
[µN+fN ](q,ζ(τ))dτ is continuous in q and by

hypothesis (un)L → uL in Mw.
2. ρg(Ib) = |Ib[g]| → 0 since by Lemma 4.3 2 (c)

|Ib[g]| ≤ C1(‖µN‖BL+‖fN‖BL)
∫ t
s
‖ζ(τ ;un, γn)−ζ(τ ;u, γ)‖∗BL2dτ+(‖µN‖BL

+ ‖fN‖BL)|tn − t|. By hypothesis hn(τ) = ‖ζ(τ ;un, γn)− ζ(τ ;u, γ)‖∗BL2 → 0
and |tn − t| → 0, hence by dominated convergence our result is immediate.

3. ρg(IIa) = |IIa[g]| → 0 since by hypothesis tn → t, and

hn(s) =

∫
Q

βN (q̂, ζn(s))∆N,s,tn,ζ(·;un,γn)(q̂)[g]ζA(s;un, γn)(dq̂)

is uniformly bounded.
4. ρg(IIb1) = |IIb1[g]| → 0 since |IIb1[g]| ≤ ‖βN‖BLC1b‖ζn(s)− ζ(s)‖∗BL2 .
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5. ρg(IIb2) = |IIb2[g]| → 0 Indeed, let

hn(s) =

∫
Q

βN (q̂, ζ(s))(∆N,s,tn,ζ(·;un,γn)(q̂)−∆N,s,t,ζ(·;u,γ)(q̂))[g]ζA(s;un, γn)(dq̂).

Now IIb2[g] =
∫ t
0
hn(s)ds and

|hn(s)| ≤
∫
Q

|β(q̂, ζ(s))||(∆N,s,tn,ζ(·;un,γn)(q̂)−∆N,s,t,ζ(·;u,γ)(q̂))[g]|ζA(s;un, γn)(dq̂)

≤ C1‖βN‖∞(‖µN‖BL + ‖fN‖BL)
∫ t
s
‖ζ(τ ;un, γn)− ζ(τ ;u, γ)‖∗BL2dτ

+ C1‖βN‖BL(‖µN‖BL + ‖fN‖BL)|tn − t|
+ C1‖βN‖BL|

∫
Q
e−

∫ t
s
[µN+fN ](q,ζ(τ ;u,γ))dτg(q)[γn(q̂)−γ(q̂)](dq)| using Lemma

4.3 3(b).
Using the fact that ζ is continuous along with Dominated Convergence,

and the fact that e−
∫ t
s
[µN+fN ](q,ζ(τ ;u,γ))dτg(q) is a continuous function of q we

see that hn → 0.
6. ρg(IIb3) = |IIb3[g]| → 0. Indeed,

|IIb3[g]| =

|
∫ t

0

∫
Q

βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g][ζA(s;un, γn)− ζA(s;u, γ)](dq̂)ds|

For fixed s, βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g] is continuous in q̂. Hence if

hn(s) =

∫
Q

βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)[g]
(
ζA(s;un, γn)− ζA(s;u, γ)

)
(dq̂),

then by hypothesis hn → 0 pointwise. Hence our result follows by Dominated
Convergence.

Now for the contraction we have the following. We need to find a constant

0 < K < 1 such that if ζ, ξ ∈M(N3 , b,
−→
0 ), then ||Sζ − Sξ||S ≤ K||ζ − ξ||S . Now

||Sζ − Sξ||S = ||[(Sζ)L − (Sξ)L, (Sζ)A − (Sξ)A]||S
= sup

(t;u,γ)

‖(Sζ)L(t;u, γ)− (Sξ)L(t;u, γ)‖V +

sup
(t;u,γ)

‖(Sζ)A(t;u, γ)− (Sξ)A(t;u, γ)‖V

= ||(Sζ)L − (Sξ)L||S + ||(Sζ)A − (Sξ)A||S
If

I = <
∫

[e−
∫ t
0
[µN+fN ](q,ζ(τ)(Q))dτ − e−

∫ t
0
[µN+fN ](q,ξ(τ)(Q))dτ ]duL, · >

II =
∫ t
0

∫
Q
βN (q̂, ξ(s)(Q))∆N,s,t,ξ(·;u,γ)(q̂)[·](ζA − ξA)(s)(dq̂)ds,

III =
∫ t
0

∫
Q

{
βN (q̂, ζ(s)(Q))∆N,s,t,ζ(·;u,γ)(q̂)− βN (q̂, ξ(s)(Q))

∆N,s,t,ξ(·;u,γ)(q̂)
}

[·]ζA(s)(dq̂)ds,

then

(Sζ)L − (Sξ)L = I + II + III,

and

|
(
(Sζ)L − (Sξ)L

)
[g]| ≤ |I[g]|+ |II[g]|+ |III[g]|.

Now
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1. |I[g]| ≤
∫
Q
|e−

∫ t
0
[µN+fN ](q,ζ(τ ;u,γ)(Q))dτ − e−

∫ t
0
[µN+fN ](q,ξ(τ ;u,γ)(Q))dτ |duL ≤

(‖µN‖BL + ‖fN‖BL)bC1||ζ − ξ||S using Lemma 4.3 2(a).
2. |II[g]| ≤ ‖βN‖∞b||ζ − ξ||S
3. |III[g]| ≤ bC1(‖βN‖BL+b‖βN‖∞(‖µN‖BL+‖fN‖BL))||ζ−ξ||S using Lemma

4.3 4(a).

Hence ifKL = b
(
(‖µN‖BL+‖fN‖BL)C1+‖βN‖∞+C1‖βN‖BL+C1b‖βN‖∞(‖µN‖BL

+ ‖fN‖BL)
)
, then

||(Sζ)L − (Sξ)L||S ≤ KL||ζ − ξ||S .
Likewise, for (Sζ)A − (Sξ)A if

I = <
∫

[e−
∫ t
0
αN (q,ζ(τ ;u,γ)(Q))dτ − e−

∫ t
0
αN (q,ξ(τ ;u,γ)(Q))dτ ]duA, · >

II =
∫ t
0
<
∫
fN (q̂, ξ(s)(Q))e−

∫ t
s
αN (q,ξ(τ ;u,γ)(Q))dτ (ζL − ξL)(s)(dq̂), · > ds,

III =
∫ t
0
<
∫ {

fN (q̂, ζ(s)(Q))e−
∫ t
s
αN (q,ζ(τ ;u,γ)(Q))dτ−

fN (q̂, ξ(s)(Q))e−
∫ t
s
αN (q,ξ(τ ;u,γ)(Q))dτ

}
ζL(s)(dq̂), · > ds,

then
(Sζ)A − (Sξ)A = I + II + III,

and

1. |I[g]| ≤
∫
Q
|e−

∫ t
0
αN (q,ζ(τ ;u,γ)(Q))dτ − e−

∫ t
0
αN (q,ξ(τ ;u,γ)(Q))dτ |uL(dq)

≤ ‖αN‖BLbC1||ζ − ξ||S using Lemma 4.3 2(b).
2. |II[g]| ≤ ‖fN‖∞b||ζ − ξ||S .

3. |III[g]| ≤ bC1

(
‖fN‖BL + ‖fN‖∞‖αN‖BLb

)
||ζ − ξ||S using Lemma 4.3 4(b).

Hence if KA = b
(
‖αN‖BLC1 + ‖fN‖∞ + C1(‖fN‖BL + ‖fN‖∞‖αN‖BLb)

)
then

||(Sζ)A − (Sξ)A||S ≤ KA||ζ − ξ||S .
Hence, S is a contraction mapping. Therefore, S has a unique fixed point in

M(N3 , b,
−→
0 ).

We will denote this fixed point by ϕN .

Proposition 1. (Local Solution) For every N ∈ N, there is b = b(N) > 0 and

ϕN : [−b, b]× (BN
3

[0])+,w × (BN
3

[0])+,w ×C(Q;Pw)→ (B 2N
3

[0])+,w × (B 2N
3

[0])+,w

such that

1. ϕN is nonnegative and continuous.
2. The function ϕN satisfies

ϕNL(t;u, γ) =<

∫
e−

∫ t
0
[µN+fN ](q,ϕN (τ)(Q))dτuL(dq), · > +∫ t

0

∫
Q

∆N,s,t,ϕN (·;u,γ)(q̂)[·]βN (q̂, ϕN (s)(Q))ϕNA(s)(dq̂)ds

ϕNA(t;u, γ) =<

∫
e−

∫ t
0
αN (q,ϕN (τ)(Q))dτuA(dq), · > +∫ t

0

<

∫
e−

∫ t
s
αN (q,ϕN (τ)(Q))dτfN (q̂, ϕN (s)(Q))

ϕNL(s)(dq̂), · > ds

(24)
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3. It is a local solution to (9).

Proof. 1. This follows directly from Lemma 4.4.
2. This follows directly from Lemma 4.4.
3. We differentiate the integral representation (24) and show that it satisfies (9).

By Lemma 4.2, FN , is bounded and Lipschitz, hence the solution to (9) is
unique. So fix u, γ.

If ϕNL(t) = µ1L(t) + µ2L(t), then ϕ′NL(t) = µ′1L(t) + µ′2L(t), where

µ1L(t)[g] =

∫
Q

e−
∫ t
0
[µN+fN ](q,ϕN (τ ;u,γ)(Q))dτg(q)uL(dq) (25)

µ2L(t)[g] =

∫ t

0

[

∫
Q

∆N,s,t,ϕN (·,u,γ)(q̂)[g]βN (q̂, ϕN (s)(Q))ϕNA(s)(dq̂)]ds (26)

Clearly

µ′1L(t)[g] =

∫
−[µN + fN ](q, ϕN (t)(Q))g(q)µ1L(t)(dq)

= µ1L(t)
[
−[µN + fN ](·, ϕN (t)(Q))g(·)

]
Since

µ2L(t)[g] =

∫ t

0

[∫
Q

βN (q̂, ϕN (s)(Q))

∫
Q

g(q)e−
∫ t
s
[µN+fN ](q,ϕN (τ)(Q))dτ

γ(q̂)(dq)ϕNA(s)(dq̂)

]
ds,

then using the Liebnitz rule for differentiation of the integral

µ′2L(t)[g] =

∫ t

0

[∫
Q

βN (q̂, ϕN (s)(Q))

∫
Q

g(q)(−[µN + fN ](q, ϕN (t)(Q))

e−
∫ t
s
[µN+fN ](q,ϕN (τ)(Q))dτγ(q̂)(dq)ϕNA(s)(dq̂)

]
ds +∫

Q

βN (q̂, ϕN (t)(Q))

∫
Q

g(q)γ(q̂)(dq)ϕNA(t)(dq̂)

=µ2L(t)
[
−[µN + fN ](·, ϕN (t)(Q))g(·)

]
+

∫
Q

βN (q̂, ϕN (t)(Q))γ(q̂)[g]

ϕNA(t)(dq̂)

(27)

Hence,

ϕ′NL(t)[g] =

∫
Q

βN (q̂, ϕN (t)(Q))γ(q̂)[g]ϕNA(t)(dq̂)−∫
[µN + fN ](q, ϕNL(t)(Q))ϕNL(t)(dq) = FN1(ϕN , γ)[g]

Using similar arguments we can show that

ϕ′NA(t)[g] =

∫
Q

fN (q, ϕN (t)(Q))g(q)ϕNL(dq)−
∫
Q

αN (q, ϕN (t)(Q))g(q)ϕNA(dq)

= FN2(ϕN , γ)[g]
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The next theorem is concerned with

x′ = f(t, x), x(t0) = x0, (28)

where f ∈ C[R+ × E,E], E being a Banach space.

Theorem 4.5. [19, pg. 454] Let J be an open interval (a, b) and let U be open
in E. Let f : J × U → E be a continuous map which is Lipschitz on U uniformly
for every compact subinterval of J . Let α be an integral curve of f , defined on a
maximal open subinterval (a0, b0) of J . Assume:

(i) There exists ε > 0 such that the closure

α((b0 − ε, b0))

is contained in U .
(ii) There exists a number C > 0 such that |f(t, α(t))| ≤ C for all t in (b0− ε, b0).

Then b0 = b.

4.2. Proof of Theorem 4.1. Let N ∈ N, be given and let ϕN be as in Proposition
1.

Claim. ϕN can be extended to a continuous function

ϕN : [0,∞)× (BN
3

[0])+,w × (BN
3

[0])+,w × C(Q;Pw)→M+,w ×M+,w.

Indeed, let b0, be maximal such that

ϕN : [0, b0)× (BN
3

[0])+,w × (BN
3

[0])+,w × C(Q;Pw)→M+,w ×M+,w

satisfies the 3 items in Proposition 1.
Now if N(t) = ‖ϕN (t;u, γ)‖V 2 , then N(t) is bounded on any finite interval.

Indeed,

N(t) = ‖ϕN (t;u, γ)‖V 2 = ϕNL(t;u, γ)(Q) + ϕNA(t;u, γ)(Q),

and

N ′(t) = ϕ′NL(t;u, γ)(Q) + ϕ′NA(t;u, γ)(Q).

N ′(t) =

∫
Q

β(q, ϕN (t)(Q))ϕNA(t)(dq)−
∫
Q

[µ(q, ϕN (t)(Q))]ϕNL(t)(dq)−∫
Q

α(q, ϕN (t)(Q))ϕNA(t)(dq) ≤
∫
Q

β(q, ϕN (t)(Q))ϕNA(t)(dq)

≤ ‖βN‖∞ϕNA(t;u, γ)(Q) ≤ ‖βN‖∞N(t). (29)

Hence N(t) ≤ N(0)e‖βN‖∞t and N(t) is bounded and hence so are ϕNL and ϕNA
on any finite interval.

Let ϕ�N = supt∈[0,b0)N(t) and let M > ϕ�N . Then by Lemma 4.2

FN : R+ ×B2M [0]×B2M [0]× C(Q;Pw)→M

is bounded and Lipschitz and there is an ε > 0 such that ϕN (b0 − ε, b0) ∈ B2M [0]×
B2M [0] and ‖FN (ϕN (t))‖V ≤ C for some constant C. Hence by Theorem 4.5,
b0 =∞.

Likewise any nonnegative solution to (7) is bounded on any finite interval. In-
deed, if φ(t;u, γ) is a solution to (7) and M(t) = ‖φ(t;u, γ)‖V 2 = φL(t;u, γ)(Q) +
φA(t;u, γ)(Q), then

M ′(t) = φ′L(t;u, γ)(Q) + φ′A(t;u, γ)(Q).
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M ′(t) =

∫
Q

β(q, φ(t)(Q))φA(t)(dq)−
∫
Q

[µ(q, φ(t)(Q))]φL(t)(dq)−∫
Q

α(q, φ(t)(Q))φA(t)(dq) ≤
∫
Q

β(q, φ(t)(Q))φA(t)(dq)

≤ ‖β(·, 0, 0)‖∞φA(t;u, γ)(Q) ≤ ‖β(·, 0, 0)‖∞M(t).

(30)

Now for any N ∈ N, if b(N) is as in Proposition 1 then on [−b(N), b(N)], ϕN is
nonnegative and

FN (ϕN (t;u, γ), γ) = F (ϕN (t;u, γ), γ)

and hence ϕN is a solution for (7) for initial measures in (BN
3

[0])+,w.

So fix such an N and let φ(t;u, γ) be this local solution to (7), and let b0, be
maximal such that

φ : [0, b0)× (BN
3

[0])+,w × (BN
3

[0])+,w × C(Q;Pw)→M+,w ×M+,w

is continuous and satisfies the 3 items in Proposition 1.
So once again φ(t;u, γ) is bounded on [0, b0) and if φ� = supt∈[0,b0)M(t) and

M̃ > 2 max{N,φ�}, then on [0, b0)× (BN
3

[0])+,w × (BN
3

[0])+,w × C(Q;Pw)

φ′ = F (φ, γ) = F
M̃

(φ, γ)

ϕ′
M̃

= F
M̃

(ϕ
M̃
, γ).

(31)

From uniqueness of solution, we have φ = ϕ
M̃

. However, ϕ
M̃

is defined on all
of [0,∞) and F

M̃
(ϕ
M̃

(b0;u, γ), γ) = F (ϕ
M̃

(b0;u, γ), γ) since ‖ϕ
M̃

(b0;u, γ)‖V 2 =

limb→b0 ‖φ(b;u, γ)‖V 2 ≤ M̃
2 . If we replace 0 with b0 in Lemma 1, then we see that

we can extend φ unless b0 =∞.
Since (0,0 × 0) ∈ R+ ×M+ ×M+, and R+ ×M+,w ×M+w × C(Q,Pw) =⋃
N∈Z+

R+ × (BN
3

[0])w,+ × (BN
3

[0])w,+ × C(Q,Pw), we let ϕ =
⋃
N∈Z+

ϕN and

Theorem 4.1 is immediate.

5. Discrete and continuous models. Similar to the models in [1, 12, 3] this
model encompasses both discrete and continuous models. By choosing the right
combination of initial condition and mutation kernel we can reduce the abstract
model to a pure selection model, an absolutely continuous model or a system of
ode’s. For example, the pure selection model below :

m′L(t)(E) =

∫
E

β(q,m(t)(Q))mA(t)(dq)−
∫
E

[µ(q,m(t)(Q)) + f(q,m(t)(Q)]

mL(t)(dq)

m′A(t)(E) =

∫
E

f(q,m(t)(Q))mL(t)(dq)−
∫
E

α(q,m(t)(Q))

mA(t)(dq)

(32)

results from the selection of γ(q) = δq ∈ C(Q,Pw).
For the absolutely continuous and the discrete model formulations we direct the

reader to [12].

6. Uniform eventual boundedness. A system x′ = F (x) is called dissipative
and its solution uniformly eventually bounded, if all solutions exist for all forward
times and if there exists some c > 0 such that

lim sup
t→∞

||x(t)|| < c
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for all solutions x. We have the following which is essentially the argument in [25,
Chpt. 11, pg.155 ] for densities.

Theorem 6.1. Suppose infq∈Q µ(q, 0, 0) > 0 and for any q ∈ Q,

lim sup
A→∞

β(q, 0, A)

α(q, 0, A)
< 1. (33)

Then the solutions to (7) are uniformly eventually bounded.

Proof. Below if φ is a solution to (7), then L = φL(Q) and A = φA(Q). (33) implies
that there exists ε ∈ (0, 1) and some N ] > 0 such that

β(q, L,A)

α(q, L,A)
≤ 1− ε

whenever A ≥ N ], q ∈ Q. This implies that
(
β(q, L,A) − (1 − ε)α(q, L,A)

)
A ≤ 0

for A ≥ N ], q ∈ Q. So for some c > 0,
(
β(q, L,A)− (1− ε)α(q, L,A)

)
A ≤ c for all

A ≥ 0, q ∈ Q. Let

M(t) = ‖φ(t;u, γ)‖V 2 = φL(t;u, γ)(Q) + φA(t;u, γ)(Q) = L(t) +A(t),

then

M ′(t) = φ′L(t;u, γ)(Q) + φ′A(t;u, γ)(Q) = L′(t) +A′(t)

and

M ′(t) =

∫
Q

[β(q, φ(t)(Q))− α(q, φ(t)(Q))]φA(t)(dq)−
∫
Q

[µ(q, φ(t)(Q))]φL(t)(dq)

≤
∫
Q

[β(q, 0, 0)− α(q, 0, 0)]φA(t)(dq)− inf
q∈Q

µ(q, 0, 0)L(t)

≤ [‖β(·, 0, 0)− α(·, 0, 0)‖∞]A(t)− inf
q∈Q

µ(q, 0, 0)L(t)

≤ c− ε‖α(·, 0, 0)‖∞A(t)− inf
q∈Q

µ(q, 0, 0)L(t) ≤ c− δM(t) for some δ > 0.

(34)

Hence M(t) ≤ max{M(0), cδ} and lim supt→∞M(t) ≤ c
δ .

7. Conclusion. In this paper we have shown that one can form a basic two stage
juvenile adult model on the space of measures with parametric heterogeneity. It
is an extension of the model developed in [25, Chpt. 11, pg.152 ]. The [25, Chpt.
11, pg.152 ] model has been extended in that this measure theoretic model allows
for parameter heterogeneity and this model is phrased as an abstract game and
hence can be applied to any game where these dynamics serve as a model and not
just larvae and adult. It also encompasses both discrete and absolutely continuous
models, pure selection and mutation. This model also has a nonlinear mutation term
and it is continuous in this nonlinear term. The essential piece of the mutation
kernel, γ, is modeled as a continuous mapping from the strategy space into the
probability measures. It signifies the distribution of the offspring of a single strategy
amongst the totality of strategies. This extension of state space (to measures) and
the meaning and generalization of strategy (to any game strategy) and the mutation
term (to possibly nonlinear) are also an extension of the models found in [8, 9]. In
these references, the evolutionary strategy is maturation age and the populations
are modeled as densities. Asymptotically, under biologically natural hypotheses on
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the vital rates, this paper shows that there is a bounded attractor to which all
trajectories tend i.e. uniform eventual boundedness or point dissipativeness.

The main novelty of this work over the previous works [1, 12, 3] is the two stage
structuring. This model now takes values in a product of measure spaces. This
paper goes through the details of the differences that this causes. Mainly these
differences are shown in the topologies formed to deal with the extra structure and
the resulting estimates. Also this model is quite different from the abovementioned
from the standpoint of asymptotic analysis. For example, this model is not simply
evolving under Selection and Mutation, there is also the evolutionary force of Tran-
sition that must be taken into account. This will play a more vital role when I take
up the asymptotic behavior in future works. For example, the density dependent
net reproductive number is now:

R(q, L,A) =
β(q, L,A)

α(q, L,A)

f(q, L,A)

[µ+ f ](q, L,A)
.

The net reproductive number is essential in determining which strategy the model
is selecting upon. The next direction is to determine the asymptotic behavior of the
model for specific kernels, in particular, for pure selection. Pure selection results
from the choice of γ(q) = δq ∈ C(Q,Pw).
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