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Abstract. In this note we explain by an example what we understand by a
balance situation and by a balance equation in terms of measures.

The latter ones are an attempt to start modelling of (not only) diffusion-

reaction or mass-conservation scenarios in terms of measures rather than by
derivatives and other rates.

By means of three examples this concept is extended to two-features (=

two-traits-) balance situations, which, e.g., combine features like aging and
physical motion in populations or physical motion and formation of polymers

by means of a single model equation.

1. Introduction. In this note we introduce

- a general balance formulation based on measures and
- the concept of two-feature models illustrated by three examples.

The basic concept of measures is very intuitive and can (basically) be directly
derived from our daily life experience. For example, it is (in most situations) clear,
how we can measure, e.g., the mass or volume of an object.

The derivations of balance equations and of the basic equations of continuum
mechanics very often rely on starting with using time-derivatives and other rates,
which are much less intuitive than measures, and where it is quite unclear how one
could actually measure those quantities in reality.

From a modeling point of view, it is important to rest the derivation of equations
on a basis which is both as intuitive as possible and easily accessible in reality. This
led us to study, as a very first attempt, the modeling of balance situations (for a
basic introduction see section 1.2.) on the foundation of measures.

From a more mathematical point of view (apart from the modeling, which is the
most important part for us in this paper), the derivation of equation (1) allows us
to catch a first (tiny) glimpse at what can be gained by modeling with measures:
If we make certain assumptions on two of the three terms in (5), we can gain more
knowledge of the regularity of the third term than possible by “usual” (by just
assuming the corresponding regularity) modeling techniques.

We focus our study at the modeling with two-feature measures (see section 1.2.)
to be able to describe two different kinds of “evolution” of objects at the same time.
For example (cf. section 2) we study the spatial evolution - the motion - of colloids
as well as their evolution in the sense of changing structure by flocculation.
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There are many interesting open questions concerning this modeling approach, a
most important and extensive one being under which natural conditions the math-
ematical assumptions allowing the modeling may actually be considered valid.

The rest of this introduction is structured as follows: In section 1.1 we introduce
some notation, and in section 1.2. we explain the concepts by means of an example.

1.1. Some notation and conventions. Let Ω ⊂ RN be a bounded domain with
Lipshitz boundary, S := (0, T ] - a time interval, a > 0, A := [0, a], M ∈ N, G ⊂ RM
- Lebesgue measurable, BM (G) - Borel-σ-algebra on G, λM - the corresponding
Lebesgue measure, p(K) - power set of K. We set

- AS := B1(S), AΩ := BN (Ω), AA := B1(A), AK := p(K), Aαβ := Aα ⊗ Aβ ,
α, β ∈ {S,Ω,K,A} , ASΩK := AS ⊗ AΩ ⊗ AK ,

- λS := λ1, λΩ := λN , λA := λ1 and λK := λc (counting measure, i.e. λc(K
′) :=

# of elements in K ′) are measures on their respective σ-algebras, λαβ := λα ⊗ λβ
are the product measures on Aαβ , α, β ∈ {S,Ω,K,A} . HN−1 stands for the (N−1)-
dimensional surface measure.

- Normals and surface measures: Let Ω′ ∈ BN (Ω) have a Lipshitz boundary ∂Ω′.
nΩ′(x) denotes the unit outward normal at x ∈ ∂Ω′. For any A′ = [p, q] ⊆ A we set
nA′(p) = −1, nA′(q) = 1, for p, q ∈ K ∩ N, K ′ = [p, q] ∩ N, we set nK′(p) = −1.
nK′(q) = 1. σ = σΩ′ stands for the surface measure on ∂Ω′. The “1D surface
measures” are σA′(y) := σK′(y) := 1 for y = p, q.

Convention: We will use the word “measure” as something which measures some-
thing (notation µ̂, e.g.) and as a “measure” in the measure-theoretic sense (then
we drop “̂”).

For a presentation of measure- and integration theory, we refer to the book [3].

1.2. Measure formulation of a balance situation. We illustrate this concept
via an example - an (alternative) way to derive the diffusion equation: Consider
a fluid filled body Ω ⊂ R3 in which a substance X is dissolved. For simplicity we
assume the fluid at rest and that there are no temperature changes. The substance
X is allowed to move by diffusion. Reactions might contribute to a change of the
amount of X in Ω over time t ∈ S. S stands for a basic and fixed time interval.
“Amount”can be measured in a variety of ways, so let us assume the concentration
of X in x ∈ Ω at time t ∈ S, c(t, x), is measured in mol/l.

The standard diffusion-reaction equation is of the form

∂c(t, x)

∂t
= f(t, x) + divx(−j(t, x)), t ∈ intS, x ∈ Ω. (1)

A widely used example for the flux-density j is

j = −D∇xc (Fick’s law). (2)

f might stem from a mass-action law ansatz (involving c) or something else. For
the following we need only the Lebesgue integrability of f, divx j and c(t, ·). We
introduce the

• amount measure (for X) at time t : µ(t,Ω′) :=
∫

Ω′ cX(t, x)dx,

• Flux-measure (for X): µF (S′ × Ω′) =
∫
S′

∫
Ω′ −j(τ, x)dxdτ,

• Inner-production measure (for X): µP (S′ × Ω′) =
∫
S′

∫
Ω′ f(τ, x)dxdτ.

µ(t,Ω′) measures the amount of X in Ω′ at time t, µF (S′×Ω′) describes the net
gain or loss of X in Ω′ over the time span S′ due to fluxes (here: diffusion from the
outside of Ω′ into Ω′ through ∂Ω′ or vice versa), µP (S′×Ω′) describes the net gain
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or loss of X over S′ due to reasons located IN Ω′ (that’s why the name! Here it is
a reaction).
µ(t, ·), µξ(S′ × ·) and µξ(· × Ω′), ξ = P, F, are measures on their respective σ-

algebra for all fixed Ω′ ∈ B3(Ω), S′ ∈ B1(S) and t ∈ S. By a well-known extension
pocedure from Lebesgue integration theory µP and µF can be extended to the
product σ-algebra ASΩ. Denote by λt,x the time-space measure on ASΩ. Radon-
Nikodym’s theorem implies for all t ∈ S

f =
dµP
dλt,x

, divx j =
dµF
dλt,x

, c(t, ·) =
dµ(t, ·)
λ3

. (3)

Integration of (1) over arbitrary Ω′ ∈ B3(Ω), S′ ∈ B1(S) yields∫
S′
µ(τ,Ω′)dτ = µP (S′ × Ω′) + µF (S′ × Ω′).

For the particular time spans S′ := (t, t+ h] ⊂ S we obtain, what we call a

Measure formulation of a balance situation

Change of X in Ω′ during S′ = Sum of inner production and production by flux

µ(t+ h,Ω′)− µ(t,Ω′) = µP (S′ × Ω′) + µF (S′ × Ω′).
(4)

Note that the left-hand side does not only stand “for” the change - it is the
change. Moreover all participants of this equation can - in principle and on appro-
priate subsets Ω′ and S′ - be measured as opposed to the expressions in (1) which
are rates and, thus, not directly measurable.

(Practical) situations leading to equations like (4) we refer to as balance situ-
ations. They include energy balance, heat balance, mass conservation (with the
corresponding µP being zero), even continuum mechanical forumulations of New-
ton’s law and much more ([2]).

We note that (4) can be made the point of origin for balance situations with
appropriate interpretations of µP and µF . That is what we will do below.

In order to arrive at a pde like the one in (1) the quantities c and f can be ax-
iomatically introduced via (3), supposed one postulates the corresponding absolute-
continuity assumptions on the measures. The latter one is a non-physical assump-
tion expressed in mathematical terms. The passage from (4) to (1) requires an
additional assumption and goes as follows: Division of both sides of the equation
in (4) by h and employment of (3) yield for all x ∈ Ω

c(t+ h, x)− c(t, x)

h
=

1

h

∫ t+h

t

f(τ, x)− divx j(τ, x)dτ. (5)

If

x 7→ f(τ, x)− divx j(τ, x) is continuous for all τ , (6)

then the localisation theorem implies the existence of

lim
h→0

1

h

∫ t+h

t

f(τ, x)− divx f(t, x)dτ = f(t, x)− divx j(t, x) for all x ∈ Ω

and (1) holds. Note: Modelling assumptions like (6) are difficult to motivate by
arguments in terms of assumptions on the underlying measures.
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In order to postulate “meaningful” assumptions on µF , we note, that our moti-
vating example yields

µF (S′ × Ω′) =

∫
S′

∫
∂Ω′
−j(τ, x) · n(x)dσdτ (7)

for all S′ ∈ B1(S) and all Ω′ ∈Madm (set of “admitted” Ω′ ’s). Madm is the subset
of all Ω′ ∈ B3(Ω) for which the divergence theorem holds. (7) is the motivating
origin for most approaches dealing with the derivation of the existence of flux-
vector fields j(t, ·) : Ω → R3 for appropriately given measures µF . A study of the
connections between j and µF is not in the focus of this note - rather we will assume
the existence of such a j for given flux measures.

The idea to start modeling of balance situations by means of measures is - prob-
ably - not new. Nevertheless we have not been able to produce any reference which
presents a comprehensive model of this subject. Related material geared at parts of
such a balance formulation can be found in [9], [10] (“mass measure”, e.g.). A par-
ticular part - the “fluxes” (or “Cauchy interactions”, “Cauchy flows”) - is subject
of intensive studies (cf. [5], [7], [3], [6] among several (but not many others.))

The situations mentioned above cover only one “feature”1 - the amount of X,
of energy, of heat, of mass or of momentum. The main intention of this paper is
an introduction of the concept of two-feature models based on two-feature counter
pieces of (4). In biology “two features” are the same as “two traits”. Our three
examples deal with the two features “motion” and “evolution” (section 2), “mo-
tion” and “group formation” (section 3) and age-group formation (= “motion on
an age scale”) and spatial motion (section 4). The first two examples include some
discrete modeling, the third one is entirely non-discrete. Another typical example
for two-feature pde’s from physics is supplied by the transport equations dealing
with impulse and velocity of many-particle systems (cf. [1]) and could easily be put
in the framework of a formulation in terms of measures.

2. Motion and evolution of colloidal particles (flocculation). Flocculation
is the “reversible formation of aggregates in which the particles are not in physical
contact” (cf. [11]). This process plays an important role in the physico-chemistry
of (not only) groundwater modeling (cf. e.g. [4] or [5]).

The setting is as follows: Let S := (0, T ) be a time interval. Colloids of different
sizes k ∈ K := {1, 2, ...,M} - where the “size-threshold“ M is fixed - move (by
diffusion, advection, dispersion) in a fluid occupying a container Ω - a Lipschitz-
domain ⊆ RN , N = 2, 3 - break up or get larger by adding (parts of) other colloids.

In the following, we will use the term “k-colloid” to denote a colloid of size k ∈ K.
Furthermore, for any subset K ′ ⊆ K we say that a colloid belongs to the class K ′

if it has size k ∈ K ′.
The domain Ω might represent the fluid-filled pore space of a porous medium or

it might be a free fluid-filled space.
We consider the evolution of the different colloid sizes over time and begin with

introducing, for t ∈ S, Ω′ ∈ AΩ, K ′ ∈ AK , the

amount measure µ̂(t,Ω′ ×K ′)
:= amount of colloids in Ω′ belonging to the size class K ′ at time t.

1Time t is considered as a parameter and doesn’t count as an additional feature.
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The “amount” can be measured in numbers, mol or gramm, e.g., where “num-
bers” and “mols” might be non-integers. By the nature of the definition of this
quantity, the maps

AΩ 3 Ω′ 7→ µ̂(t,Ω′ ×K ′) ∈ R, K ′ ∈ AK fixed,

AK 3 K ′ 7→ µ̂(t,Ω′ ×K ′) ∈ R, Ω′ ∈ AΩ fixed

are additive. By assuming them to be σ-additive, we obtain measures µ̂(t, · ×K ′)
and µ̂(t,Ω′ × ·), resp. Mimicking the usual construction of λ2 by means of λ1 we
extend µ̂(t, · × ·) to a measure µ(t, ·) on AΩK - the two-features amount measure.

Assuming the regularity condition2

µ(t, ·)� λΩK for all t ∈ S (8)

Radon-Nikodym’s theorem provides, for all t ∈ S, a concentration

c(t, ·) ∈ L1
+(Ω×K,AΩK , λΩK) (9)

such that

µ(t, Q′)

=

∫
Q′
c(t, q)dλΩK(q)

in the special case Q′=Ω′×K′

=

∫
Ω′

∫
K′
c(t, x, k)dλΩ(x)dλK(k).

(10)

Furthermore we introduce the production quantities / (signed)(pre-)measures

µ̂P± (S′ × Ω′ ×K ′) := amount of colloids which are

added to /substracted from Ω′ ×K ′ during the intervall S′

(with additivity properties similar to those above) and

µ̂P := µ̂P+ − µ̂P−.
Using a similar procedure as above, we obtain (signed) measures

µP+, µP−, µP

on the σ-algebra ASΩK .
“Addition” to Ω′×K ′, modeled by µP+ can happen by addition inside of Ω′×K ′

as well as by fluxes into Ω′×K ′. A similar remark applies to subtraction and µP−.
Thus we have the net-production (signed)(pre-)measures (again assuming addi-

tivity)

µ̂int(S′ × Ω′ ×K ′) := µ̂int+ (S′ × Ω′ ×K ′)− µ̂int− (S′ × Ω′ ×K ′),

µ̂flux(S′ × Ω′ ×K ′) := µ̂flux+ (S′ × Ω′ ×K ′)− µ̂flux− (S′ × Ω′ ×K ′)

which, by the same procedure as above, yield the signed measures µint and µflux

on ASΩK . Note, that in the given context,

µP := µint + µflux.

The regularity assumption
µint � λSΩK

2The measure on the right hand side is sometimes called a “comparison measure”.
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excludes the production of colloids on sets of λSΩK-measure zero. Moreover it
assures the existence of the Radon-Nikodym density of the internal production

f int :=
dµint

dλSΩK
.

In order to get a reasonable idea for a representation of the flux measure we
consider the special case Q′ = Ω′ ×K ′ with, say, K ′ = {a, a+ 1, . . . , b} ∈ AK .

The boundary “surface“

F := (Ω′ × {a}) ∪ (Ω′ × {b+ 1}) ∪ (∂Ω×K ′)

is the location of any interaction with the outside of Q′ 3.
We distinguish two locations on F to enter or leave Q′ - one via F1 = (Ω′ × {a})∪

(Ω′ × {b+ 1}), the other one through F2 := ∂Ω×K ′.
Flux through F2 is physical flux due to the motion of colloids of class K ′ into or

out of Ω′ through ∂Ω.
Flux through F1 is flux through the “class boundary”, independently of motion

or collisions of colloids. This means that (parts of) colloids leave the classes {a} or
{b} into the adjacent classes {a − 1} or {b + 1} respectively or (parts of) colloids
from classes {a− 1} or {b+ 1} enter the classes {a} or {b} respectively.

The only possible reason for this flux is the break-off of one particle of a certain
colloid, since this is the only scenario in which there is an exchange of parts of
colloids between adjacent classes without physical motion.

Note that we do not include the formation of k-colloids due to collision of (k−1)-
and 1-colloids into the flux, as such a collision requires physical motion

The unit-outward normal field n = n(x, k) on F can be split into two orthogonal
components (visualising the set ∂Ω×K ′ as a cylinder with base Ω), n = nΩ + nK ,
nΩ = (nΩ, 0), nK = (0, nK) respectively, where nK(x, a) = −1, nK(x, b) = +1 and
nΩ = nΩ(x, k) is the unit-outward normal on ∂Ω.

Borrowing from the theory of Cauchy interactions4, we obtain5 for all t ∈ S the
existence of two vector fields

jΩ(t, ·) : Ω×K → RN ,
jK(t, ·) : Ω×K → R,

where we agree on the convention that the flux entering class k from class k − 1
is given by jK(t, x, k) and that the flux leaving class k to class k + 1 is given
by jK(t, x, k + 1). From this definition it immediately follows that jK(t, x, 1) =
jK(t, x,M + 1) = 0, since the maximal colloid size is given by M .

We also obtain signed measures µfluxΩ and µfluxK such that

µflux = µfluxΩ + µfluxK

3The definition of the boundary surface corresponds to the idea that class k lies between the

numbers k and k + 1.
4We abstain from presenting any such theory and refer to [10], [6] and [8], e.g. The settings

in all these approaches differ slightly from each other. The crucial assumptions center around

assumptions re. estimates for F flux
Ω . Translated into the given situation they read as: There is

a constant c0 > 0 such that |FΩ(S′ × ∂Ω′ ×K′)| ≤ c0 |S′|HN−1(∂Ω′) for all admitted Ω′, all
K′ ⊆ K and all intervals S′ ⊆ S. “admitted” means that Ω′ is of finite perimeter or a Lipshitz

domain. The crucial point is that these theories assure the existence of a flux density jΩ.
5With respect to the preceding footnote one could, more precisely, say “we assume“.
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and

µfluxΩ (S′ × Ω′ ×K ′) =

∫
S′

∫
F2

−jΩ(t, x, k) · nΩ(x, k)dλK(k)dσ∂Ω(x)dλS(t),

µfluxK (S′ × Ω′ ×K ′) =

∫
S′

∫
F1

−jK(t, x, k)nK(x, k)dλK(k)dλΩ(x)dλS(t)

for all S′ ∈ AS and Ω′ ∈ AΩ, where σ∂Ω is the surface measure on ∂Ω.
The physical meaning of these measures is the net-production of colloids in

Ω′ × K ′ during the time-set (not necessarily an intervall) S′ via fluxes through
the boundaries F2 respectively F1.

Introducing the discrete partial derivative (with respect to the class size)

∂dCSjK(t, x, k) := jK(t, x, k + 1)− jK(t, x, k), k ∈ K

we calculate∫
S′

∫
Q′
−∂dCSjK(t, x, k)dλK(k)dλΩ(x)dλS(t)

=

∫
S′

∫
Ω′

∫
K′
−∂dCSjK(t, x, k)dλK(k)dλΩ(x)dλS(t)

=

∫
S′

∫
Ω′

b∑
n=a

−∂dCSjK(t, x, n)dλΩ(x)dλS(t)

=

∫
S′

∫
Ω′

b∑
n=a

(jK(t, x, n)− jK(t, x, n+ 1)) dλΩ(x)dλS(t)

=

∫
S′

∫
Ω′

(jK(t, x, a)− jK(t, x, b+ 1)) dλΩ(x)dλS(t).

Using the outward unit vectors nK(x, a) = −1 and nK(x, b+ 1) = +1 we can write∫
S′

∫
Q′
−∂dCSjK(t, x, k)dλK(k)dλΩ(x)dλS(t)

=

∫
S′

∫
Ω′

(−jK(t, x, a)nK(x, a)− jK(t, x, b+ 1)nK(x, b+ 1)) dλΩ(x)dλS(t)

=

∫
S′

∫
Ω′

∫
{a,b+1}

−jK(t, x, k)nK(x, k)dλK(k)dλΩ(x)dλS(t)

=

∫
S′

∫
F1

−jK(t, x, k)nK(x, k)dλK(k)dλΩ(x)dλS(t).

Recalling the definitions µflux = µfluxΩ + µfluxK , F2 := ∂Ω×K ′ we can now - using
the divergence theorem of Gauss in the integral over F2 - write

µflux (S′ ×Q′) =

∫
S′

∫
Q′
−divx jΩ(t, x, k)dλK(k)dλΩ(x)dλS(t)

+

∫
S′

∫
Q′
−∂dCSjK(t, x, k)dλK(k)dλΩ(x)dλS(t). (11)

We formulate the following intuitive “Balance principle”:

µ (t+ h,Ω′ ×K ′)− µ (t,Ω′ ×K ′) = µP ((t, t+ h)× Ω′ ×K ′) ,
∀t, t+ h ∈ S,∀Ω′,∀K ′.

(12)
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Using the integral representations in the balance principle (12) and Fubini’s the-
orem yields for all Q′ = Ω′ ×K ′ that∫

Q′
c(t+ h, q)−

∫
Q′
c(t, q)dλΩK(q) =

∫ t+h

t

∫
Q′
f int(τ, q)dλΩK(q)dλS(τ)

+

∫ t+h

t

∫
Q′
−divx jΩ(t, x, k)dλK(k)dλΩ(x)dλS(t)

+

∫ t+h

t

∫
Q′
−∂dCSjK(t, x, k)dλK(k)dλΩ(x)dλS(t).

By multiplying by 1
h and passing to the limit h→ 0 we can now deduce the following

equation (the classical continuity equation with a slightly different interpretation of
the entries)

∂c

∂t
(t, x, k) +

(
divxjΩ(t, x, k) + ∂dCSjK(t, x, k)

)
= f int(t, x, k).

We identify the terms as follows (motivated by the coagulation-fragmentation equa-
tion, see e.g [5, p.4]):

Let bk be the fragmentation rate of k-colloids and let furthermore dki be the
breakage distribution which describes the mass-fraction of k-colloids due to breakage
of i-colloids. Then

∂dCSjK(t, x, k) = dk−1,kbkc(t, x, k)− dk,k+1bk+1c(t, x, k + 1)

and

f int(t, x, k) =
1

2

∑
i+j=k,1≤i,j≤M

βijc(t, x, i)c(t, x, j)

−
M∑
i=1

βkic(t, x, k)c(t, x, i) +

M∑
i>k+1

dkibic(t, x, i)−
∑

1≤i<k−1

dikbkc(t, x, k)

where βij is the “connection-rate” of colliding colloids of sizes i and j.

3. Dynamic group formation and -dissolution in a population. In this sec-
tion we look into the following social-interaction scenario6: Let M ∈ N be given. A
very large number of people moves in a room Ω, a bounded domain in R2, and forms
groups of size k (“k-groups”), k ∈ K := {1, 2, 3, ...,M − 1,M} . The “formations”
are supposed to happen by groups joining or group splitting. We restrict ourselves
to the following special case: At any given time and location a change of group size
is assumed to be accomplishable only by either a single member leaving the group
or an outsider joing a group. In the first case a k-group turns into two groups - a
(k − 1)-group and a 1-group. In the second one two groups form one larger group,
resp.

Let k ∈ K ′ ⊆ K. We say “a person belongs to a K ′-group”, if it is a member of
a k-group.

Following the lines of section 2, let t ∈ S, Ω′ ∈ AΩ and K ′ ∈ AK and introduce

µ̂(t,Ω′ ×K ′) := number of people in Ω′ which belong at time t
to the K ′-group.

(13)

6Also cf. [7] in which there is far more information on the underlying evacuation problem (on
which the present setting is based on).
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By nature of their definition, the maps Ω′ 7→ µ̂(t,Ω′ ×K ′) and K ′ 7→ µ̂(t,Ω′ ×K ′)
are additive and non-negative. Postulating/assuming them to be σ-additive, the
extension procedure indicated in section 2 yields a measure µ(t, ·) on AΩK for all
t ∈ S.

By requiring

µ(t, ·)� λΩK for all t ∈ S, (14)

we obtain a non-negative Radon-Nikodym density c(t, ·) := dµ(t,·)
dλΩK

and exclude pop-
ulation concentrations on sets of measure zero.

For the special case Q′ := Ω′ ×K ′ ∈ AΩ × AK we have

µ(t, Q′) =

∫
Ω′×K′

c(t, x, k)dλΩK . (15)

In the given context the motion of the people as well as the change of group size
by joining and dissolution are the contributing factors to a change of c(t, ·, ·). This
gives rise to the introduction of production measures µP , µP± on Y := S ×Ω×K :
Let

Y ′ := S′ × Ω′ ×K ′ ∈ ASΩK . (16)

“Positive production” is modelled by

µP+(Y ′) := number of people which are added
to Ω′ ×K ′ during S′,

(17)

“negative production”, µP−, is introduced in analogy and the “net production” is

µP := µP+ − µP−. (18)

We specify µP by introducing two “production measures” - a flux measure µflux

and an inner-production measure µint such that

µP = µint + µflux. (19)

We begin with µflux: Let Ω′ ×K ′ ∈ AΩ × AK and denote the “physical flux into
Ω′” by “physical” or “spatial motion” of the people by

F fluxΩ+ = F fluxΩ+ (S′ × ∂Ω′ ×K ′) := number of people belonging
to the K ′-group and crossing through ∂Ω′ into Ω′ during S′.

(20)

Analogoulsy we introduce F fluxΩ− = F fluxΩ− (S′ × ∂Ω′ ×K ′) as the corresponding loss
to Ω′×K ′. Such fluxes might be given as some sort of a diffusion or advection flux,
e.g. Finally we introduce the

total Ω-flux measure F fluxΩ := F fluxΩ+ − F fluxΩ− . (21)

Borrowing again from theories of Cauchy interactions we obtain for all t ∈ S and
k ∈ K a flux density

jΩ(t, ·, k) : Ω→ RN (22)

such that for all intervalls S′ ⊆ S, Ω′ ∈ AΩ with Lipshitz boundary and all K ′ ⊆ K :

µfluxΩ (S′ × Ω′ ×K ′) := F fluxΩ (S′ × ∂Ω′ ×K ′)
=
∫
S′

∫
Ω′

∫
∂K′ −jΩ(t, x, k) · nΩdσΩdλΩdλS .

(23)

A second flux is introduced along the group-size scale K in the following way
(and very reminiscent to the flux in the colloid setting in section 2): Let

p, q ∈ N, K ′ := [p, q] ∩ N (24)
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and set

µfluxK+ (S′ × Ω′ ×K ′) := F fluxΩ+ (S′ × Ω′ × {p})
:= increase during S′ of the number of people in Ω′ belonging

to the K ′-group by joining of a (p− 1)-group with a 1-group (in Ω′).

(25)

Analogously we introduce

µfluxK− (S′ × Ω′ ×K ′) := F fluxΩ− (S′ × Ω′ × {q})
:= decrease during S′of the number of people in Ω′ belonging

to the K ′-group by splitting of a q-group into a 1-group
and a (q − 1)-group (in Ω′).

(26)

Finally we introduce the

total -K-flux measure µfluxK := µfluxK+ − µ
flux
K− .

Let K ′ be as in (24). We call (p, q) the ordered discrete boundary of K ′ (notation:
∂odK

′). Moreover, the discrete partial derivative ∂dGSjK is introduced as in section
2. Also as in section 2 we introduce a flux density, the K-flux density

jK(t, ·, ·) : Ω×K → R

such that

µfluxK (S′ × Ω′ ×K ′) =
∫
S′

∫
Ω′

∫
∂odK′ −jK(t, x, k)nK′(k)dσKdλΩdλS

=
∫
S′

∫
Ω′

∫
K′−{q}−∂

d
GSjK(t, x, k)dλKdλΩdλS .

(27)

As in section 2: (27) does also hold for arbitrary K ′ ⊆ K.
Often one has an

integral representation for µint :
µint(Y ′) =

∫
Y ′ f

int(t, x, y)dλSΩK for all Y ′ ∈ ASΩA.
(28)

The motivations leading to (28) are similar to the corresponding ones in section 2.
Also along the lines of section 2 we see: If c, jΩ and jK are sufficiently smooth,

then one has
∂c
∂t +

[
divx jΩ + ∂dGSjK

]
= f int in Y. (29)

We conclude this section with a specification of jΩ, jK and f int. Since there is
an almost total analogy to section 2, we keep this short: Set

f int(t, x, 1) := −
M−1∑
i=1

βic(t, x, i)c(t, x, 1)− β1c(t, x, 1)c(t, x, 1) +

M∑
i=3

αici(t, x, i),

f int(t, x, k) := −βkc(t, x, k)c(t, x, 1) + βk−1c(t, x, k − 1)c(t, x, 1)

for k = 2, . . . ,M − 1,

f int(t, x,M) := +βM−1c(t, x,M − 1)c(t, x, 1).

αk ∈ [0, 1] describes the likelihood under which a single member of a k-group
separates from his group. βkc(t, x, k)c(t, x, 1) models the density of the number
of people being removed from a k-group by interaction with a 1-group. Finally we
specify jK(t, x, ·) as

jK(t, x, 1) := α2c(t, x, 2),

jK(t, x, k) := −αkc(t, x, k) for k = 2, . . . ,M,

jK(t, x,M + 1) := 0.
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In [7] the spatial fluxes are Fickian diffusion fluxes, i.e.

jΩ(t, x, k) = −Dk∇xc(t, x, k).

If the crowd were driven by advection-type, attractive or repulsive fluxes, one needs
to choose jΩ appropriately.

Note: With ck(t, x) := c(t, x, k), fk(t, x) := f(t, x, k), jk(t, x) := jΩ(t, x, k) one
obtains a system of pde’s for ck with spatial fluxes jk and right-hand sides fk,
k = 1, ...,M.

4. Age-groups moving in a habitat. Much of the following is in almost complete
analogy to the preceding two sections with one exception: the second feature is not
discrete.

Let Ω be a habitat occupied by some population B, a > 0 an upper bound for
the realisable ages of the B′s (a = 180 years for humans, a = 2 days for the common
mayfly, a = 20 years for rabbits, e.g.), set A = [0, a], S := [0, T ] (time interval) and
assume Ω ⊆ RN to be bounded and measurable, N = 2, 3. The B′s get older and
they might move, for instance by advection or by a diffusion-like mechanism or they
might be driven by an attractant or repellant. The aging issue can be considered
as a flux from one age group to the “next” one whereas advection etc. constitutes
a flux in Ω. We introduce, for Ω′ ∈ BN (Ω), A′ ∈ B1(A), t ∈ S, the

age group population measure
µ̂(t,Ω′ ×A′) = amount of B′ in Ω′ belonging to the age group A′.

Following the arguments in section 2 we obtain a measure µ(t, ·) on AΩA:= BN (Ω)⊗
B1(A) for all t ∈ S. Set λA := λ1 on B1(A), λΩA := λΩ ⊗ λA and Q := Ω × A.
The regularity assumption µ(t, ·)� λΩA yields a Radon-Nikodym density c(t, ·) :=
dµ(t,·)
dλΩA

∈ L1
+(Q). We introduce µP := µflux+, where µint := µP−µflux and µflux :=

µfluxΩ + µfluxA . µint and µflux are introduced as in the previous section where K

gets replaced by A: In particular we set µfluxA = µfluxA+ − µfluxA− , where

µ̂fluxA± (S′ × Ω′ ×A′):= number of B′s in Ω′,
which enter/leave A′ during S′ from/to the outside of A′,

and

µ̂intA (S′ × Ω′ ×A′) := number of B′s in the age group A′ which are produced in
Ω′during S′.

A special case: Let A′ := [p, q] ⊆ A. Then

µ̂fluxA+ (S′ × Ω′ ×A′) := FA+(S′ × Ω′ × {p}) := number of B′s in Ω′

which pass during S′ the age p.

µ̂A− is analogously introduced. In analogy to the preceding examples we can intro-
duce (or obtain) flux-density vectors jΩ(t, ·) = jΩ(t, x, y) and jA(t, ·) = jA(t, x, y)
such that for all S′ × Ω′ ×A′ ∈ ASΩA

µfluxΩ (S′ × Ω′ ×A′) =
∫
S′×Ω′×A′ −divx jΩ(t, x, y)dλSΩA

and

µfluxA (S′ × Ω′ ×A′) =
∫
S′×Ω′×A′ −∂GSjA(t, x, y)dλSΩA.

jΩ(t, ·) models physical motion inside of Ω, jA(t, ·) stands for motion in A. “Getting
older” provides a natural example for the latter and is expressed by jA(t, x, y) :=
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1c(t, x, y) - a complete analogon of advection fluxes! With the (definition-/postul-
ate-)procedure indicated in section 2, µ̂fluxand µ̂intA can be extended to measures
µfluxand µintA on ASΩA, resp. Assuming (28) and assuming sufficient regularity of
the participating terms we arrive at

∂c

∂t
+ divxy jΩA = f int.

Note: Births are modelled by a boundary condition at a = 0 to be imposed on
jA(t, x, 0).
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