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Abstract. We study a quasilinear hierarchically size-structured population

model presented in [4]. In this model the growth, mortality and reproduction

rates are assumed to depend on a function of the population density. In [4]
we showed that solutions to this model can become singular (measure-valued)

in finite time even if all the individual parameters are smooth. Therefore, in
this paper we develop a first order finite difference scheme to compute these

measure-valued solutions. Convergence analysis for this method is provided.

We also develop a high resolution second order scheme to compute the measure-
valued solution of the model and perform a comparative study between the two

schemes.

1. Introduction. In this paper we study the following model that describes the
dynamics of a size-structured population with hierarchy between individuals:

ut + (g(x,Q(t, x))u)x +m(x,Q(t, x))u = 0, (t, x) ∈ (0, T )× (0, 1),

g(0, Q(t, 0))u(t, 0) = C(t) +

∫ 1

0

β(y,Q(t, y))u(t, y)dy, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ [0, 1].
(1.1)

Here, x ∈ [0, 1], t ∈ [0, T ], and u(t, x) is the density of individuals of size x at time

t. That is,

∫ b

a

u(t, x)dx represents the number of individuals having sizes between

a and b at time t. The function g represents the growth rate of an individual of size
x, while m represents the mortality rate of an individual of size x. The function
β is the reproduction rate of an individual of size x and C(t) is the inflow of the
smallest size individuals by an external source (for example, in a population of trees
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C(t) represents the rate at which seeds carried by the wind enter the population).
The function Q is given by

Q(t, x) = α

∫ x

0

u(t, y)dy +

∫ 1

x

u(t, y)dy, 0 ≤ α < 1, (1.2)

which is referred to thereafter as the environment. The value of the constant α rep-
resents the relative competition effect of lower ranks on the individual (in particular,
α = 0 implies that individuals with lower ranks do not have any competition effect
on individuals with higher ranks and as α increases the effect of such competition
increases). For example, in a population of trees competing for sunlight, taller trees
have an advantage over shorter ones.

An age-structured (i.e., g = 1) version of (1.1) was proposed in [9]. Existence-
uniqueness and asymptotic behavior of solutions to this age-structured model was
studied in [9, 13]. In [5, 14], the existence and uniqueness results were extended to
the size-structured populations, while the asymptotic behavior for the size struc-
tured model with rates that do not depend on size x was studied in [6]. To
investigate the asymptotic behavior of solutions, in these articles the nonlocal
partial differential equation is transformed into a local one by means of variable
change. Then an ordinary differential equation is obtained for the total population

P (t) =

∫ b

a

u(t, y)dy. This treatment provides a way to study the asymptotic behav-

ior of the total population P (t) and, in turn, of the solution u(t, x) (see [6, 9, 13]).
The above mentioned analytical methods are difficult to apply to the case where the
rates depend explicitly on size x. Thus, numerical methodology remains a valuable
tool for understanding the dynamics of such complex structured models.

In [2] it was shown that if ∂Qg(x,Q) ≤ 0 then a bounded variation weak solution,
u, to model (1.1)-(1.2) exists globally in time. However, such a condition is restric-
tive from the biological point of view as it does not include growth rates exhibiting
an Allee effect [1]. But, without this monotonicity condition on the growth rate
g, one can argue (e.g., [2, 14]) that the environment Q become discontinuous in
finite time even if all the individual vital rates and the initial data are very smooth,
and each discontinuity in Q corresponds to a Dirac measure in u. Therefore, to ex-
tend the solution beyond this time, measure-valued solutions have to be considered.
Measure-valued solutions for structured models with Q = Q(t) (i.e., no hierarchy
α = 1) have been studied [7, 10, 12] and convergence of numerical approximations
have been established [8, 11]. We point out that there is a key difference between
the scrambled competition case α = 1 and the contest competition (hierarchy) case
0 ≤ α < 1. In particular, in the scrambled case the solutions tend to be smooth
and have bounded total variation [3] when the model ingredients are smooth, while
in the contest case the solutions will develop singularities (point measures) [14, 2]
even if the model parameters are smooth. This difference presents a mathematical
difficulty that usually requires one to rely on totally different techniques to answer
the desired question be it related to existence-uniqueness, asymptotic behavior or
convergence of approximations. In [4], a vanishing viscosity approach was used
to establish the existence of measure-valued solutions for the general model (1.1)-
(1.2). This is the only result we know of that treats measure-valued solutions for
the general environment Q(t, x) given in (1.2).

The main focus of this paper is the development of finite-difference approxima-
tions to compute solutions of the model (1.1)-(1.2). In Section 2 we propose a first
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order implicit approximation which extends that developed in [3] for the case α = 1.
In Section 3 we establish convergence of this scheme to the unique measure-valued
solution of the model (1.1)-(1.2) in the weak-star topology. In Section 4 we develop
a slightly modified high-order finite-difference approximation similar to that pre-
sented in [16] to approximate the measure valued solutions. In Section 5 we present
extensive numerical results comparing the two schemes. Concluding remarks are
presented in Section 6.

2. A first-order finite-difference scheme. The following regularity conditions
will be imposed on our model parameters throughout the paper:

(H1) u0(x) is a non-negative function with bounded total variation.
(H2) m(x,Q) is non-negative twice continuously differentiable with respect to x

and continuously differentiable with respect to Q on [0, 1)× [0,∞).
(H3) β(x,Q) is non-negative twice continuously differentiable with respect to x and

continuously differentiable with respect to Q on [0, 1)× [0,∞).
(H4) g(x,Q) is twice continuously differentiable function with respect to x and

continuously differentiable with respect to Q, g(x,Q) > 0, x ∈ [0, 1) and
g(1, Q) = 0 for Q ∈ [0,∞).

(H5) C(t) is a non-negative continuously differentiable function on [0,T].

The following notation will be used throughout this paper: ∆x =
1

N
and

∆t =
T

M
denote the spatial and time mesh size respectively. For xj = j∆x,

j = 0, 1, 2, · · · , N and tk = k∆t, k = 0, 1, 2, · · · ,M , we denote by ukj and Qkj the
difference approximations of u(tk, xj) and Q(tk, xj) and we define

gkj = g(xj , Q
k
j ), βkj = β(xj , Q

k
j ), mk

j = m(xj , Q
k
j ), and Ck = C(tk).

We define the difference operator

D−h u
k
j =

ukj − ukj−1

∆x
, 1 ≤ j ≤ N,

and the `1 norm by

‖uk‖1 =

N∑
j=1

|ukj |∆x .

The implicit scheme we propose is given by

uk+1
j − ukj

∆t
+
gkj u

k+1
j − gkj−1u

k+1
j−1

∆x
+mk

ju
k+1
j = 0, 1 ≤ j ≤ N, 0 ≤ k ≤M − 1,

gk0u
k+1
0 = Ck +

N∑
i=1

βki u
k+1
i ∆x, 0 ≤ k ≤M − 1,

(2.1)

where

Qkj = α

j∑
i=1

uki ∆x+

N∑
i=j+1

uki ∆x, 1 ≤ j ≤ N. (2.2)

In (2.2), Qk0 =

N∑
i=1

uki ∆x and QkN = α

N∑
i=1

uki ∆x = αQk0 .



236 AZMY S. ACKLEH, VINODH K. CHELLAMUTHU AND KAZUFUMI ITO

2.1. Constructing a difference scheme for Q: A simple case. For the sake
of illustration and convenience to the reader we first assume that the parameters
satisfy the following: α = 0, m(x,Q) = m(Q) and β(x,Q) = β(Q). Hence

Qkj =

N∑
i=j+1

uki ∆x, (2.3)

and QkN = 0. Multiplying the first equation of (2.1) by ∆x and summing over
i = j + 1, . . . , N and using gkN = 0, we obtain

Qk+1
j −Qkj

∆t
+ g(xj , Q

k
j )

(Qk+1
j −Qk+1

j−1)

∆x
+

N∑
i=j+1

mk
i u

k+1
i ∆x = 0, 1 ≤ j ≤ N.

Observing from (2.3) that uk+1
i ∆x = −(Qk+1

i −Qk+1
i−1 ) we get

Qk+1
j −Qkj

∆t
+ g(xj , Q

k
j )

(Qk+1
j −Qk+1

j−1)

∆x
−

N∑
i=j+1

mk
i (Qk+1

i −Qk+1
i−1 ) = 0,

1 ≤ j ≤ N − 1,

Qk+1
0 −Qk0

∆t
= Ck −

N∑
i=1

(βki −mk
i ) (Qk+1

i −Qk+1
i−1 ).

(2.4)

In this specific case, (2.4) is a first-order implicit upwind scheme for

Qt + g(x,Q)Qx +M(Q) = 0,

d

dt
Q(t, 0) = C(t) +B(Q(t, 0))−M(Q(t, 0)),

(2.5)

where

M(Q) =

∫ Q

0

m(s)ds, B(Q) =

∫ Q

0

β(s)ds. (2.6)

Clearly solutions to (2.5) could develop a discontinuity in a finite time and thus
the corresponding density u = −Qx becomes singular.

2.2. Constructing a difference scheme for Q: The general case. For the
general case, where we assume that our model parameters satisfy our assumptions
(H1)-(H5). Consider

Qkj = α

j∑
i=1

uki ∆x+

N∑
i=j+1

uki ∆x, 0 ≤ α < 1, (2.7)

with QkN = αQk0 = α

N∑
i=1

uki ∆x.

Multiplying the first equation of (2.1) by α ∆x and summing over i = 1, 2..., j
and multiplying the same equation by ∆x and summing over i = j + 1, ..., N we
readily see that Qkj satisfies

Qk+1
j −Qkj

∆t
+ g(xj , Q

k
j )

(Qk+1
j −Qk+1

j−1)

∆x

−
N∑

i=j+1

mk
i

(Qk+1
i −Qk+1

i−1 )

∆x
∆x = α

Qk+1
0 −Qk0

∆t
, 1 ≤ j ≤ N − 1,
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Qk+1
0 −Qk0

∆t
= Ck − 1

1− α

N∑
i=1

(βki −mk
i ) (Qk+1

i −Qk+1
i−1 ), 0 ≤ k ≤M − 1.

(2.8)
In this general case, (2.8) is a first-order implicit upwind scheme for

Qt + g(x,Q)Qx +M(x,Q)−M(1, Q) +

∫ 1

x

Ms(s,Q)ds = α
d

dt
Q(t, 0),

d

dt
Q(t, 0) = C(t) +

1

1− α
[
B(0, Q(t, 0))−B(1, Q(t, 1))−M(0, Q(t, 0))

+M(1, Q(t, 1)) +

∫ 1

0

(Bs(s,Q)−Ms(s,Q))ds
]
,

(2.9)

where

M(x,Q) =

∫ Q

0

m(x, s)ds, B(x,Q) =

∫ Q

0

β(x, s)ds. (2.10)

3. Convergence analysis. If we define

ckj = 1 +
∆t

∆x
gkj + ∆tmk

j , 1 ≤ j ≤ N

then (2.1) is equivalently written as the following system of linear equation for

~uk+1 = [uk+1
0 , uk+1

1 , . . . , uk+1
N ]T ∈ RN+1

Ak~uk+1 = ~fk

where
~fk = [Ck, uk1 , u

k
2 , . . . , u

k
N ]T

and

Ak =



gk0 −∆xβk1 −∆xβk2 · · · −∆xβkN

−∆t

∆x
gk0 ck1 0 · · · 0

0 −∆t

∆x
gk1 ck2 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 −∆t

∆x
gkN−1 ckN


.

Since, ai,i > 0, i = 0, 1, 2, · · · , N , ai,j ≤ 0, i 6= j, i, j = 1, 2, · · · , N , u0
j ≥ 0,

j = 0, . . . , N and Ck ≥ 0, k = 0, . . . ,M it was shown in [3] that ukj ≥ 0 for
k = 1, . . . ,M provided that

∆x
βkj
gk0

+
∆t

∆x
gkj (1 +

∆t

∆x
gkj+1 + ∆tmk

j+1)−1 < 1 0 ≤ j ≤ N − 1

∆x
βkN
gk0

< 1.

(3.1)

Thus, for the remainder of this section we assume that (3.1) holds. Note that (3.1)
holds, for example, if ∆x and ∆t are chosen sufficiently small such that

∆x
βkj
gk0

< L1 and
∆t

∆x
gkj ≤ 1− L1

for 0 ≤ j ≤ N and a fixed L1 ∈ (0, 1).
We assume that

β(x,Q)−m(x,Q) ≤ L2.
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Lemma 3.1. Assume that L2∆t < 1. We have the following estimate

‖uk‖1 ≤ Qmax =

(
1

1− L2∆t

)M
‖u0‖1 +

∑M
i=1

(
1

1− L2∆t

)M+1−i

|Ci−1|∆t.

Thus, 0 ≤ Qkj ≤ Qmax for 1 ≤ j ≤ N .

Proof. Since uk+1
j ≥ 0 and β(x,Q) − m(x,Q) ≤ L2, it follows from the second

equation of (2.4) that

0 ≤ Qk+1
0 ≤ Qk0 + ∆t (Ck + L2Q

k+1
0 )

and thus Qk+1
0 ≤ Qmax. By (2.7) and 0 ≤ α < 1 we have Qk+1

j ≤ Qmax.
Without assuming the positivity of solutions Lemma 3.1 still holds under the

assumption that |β(x,Q) −m(x,Q)| ≤ L2. In fact, multiplying the first equation

of (2.1) by ∆x sgn(uk+1
j ) and summing over the indices, j = 1, 2, · · · , N , we obtain

‖uk+1‖1 − ‖uk‖1
∆t

≤ |Ck|+
∑N
j=1 (βkj −mk

j ) |uk+1
j |∆x ≤ L2 ‖uk+1‖1 + |Ck|

where we used the fact that∑N
j=1(gkj u

k+1
j − gkj−1u

k+1
j−1) sgn(uk+1

j )

= gkN |uk+1
N | − gk0uk+1

0 sgn(uk+1
1 ) +

∑
j∈Jump 2gkj |uk+1

j |

≥ −gk0 |uk+1
0 |

and the index set Jump is defined by

Jump = {1 ≤ j < N : uk+1
j+1u

k+1
j < 0}.�

Define Mk
j =

N∑
i=j+1

mk
i u

k+1
i . Clearly,

Mk
j ≤

N∑
i=1

mk
i u

k+1
i ≤ max

(x,Q)∈[0,1]×[0,Qmax]
m(x,Q)‖uk+1‖1 ≤ L3

for some positive constant L3.
To this end we have

N∑
j=1

|Qkj −Qkj−1| ≤
N∑
j=1

|(α− 1)ukj ∆x| ≤ L4,

for some positive constant L4. Thus {Qkj } has bounded total variation. Observe
that by the smoothness assumptions on g and m there exists a fixed constant ζ such
that

sup
(x,Q)∈[0,1]×[0,Qmax]

|g(x,Q)| ≤ ζ sup
(x,Q)∈[0,1]×[0,Qmax]

|m(x,Q)| ≤ ζ. (3.2)

Lemma 3.2. There exists an L5 > 0, independent of ∆x,∆t, such that for any
m > p ≥ 0, we have ∑N

j=1|
Qmj −Q

p
j

∆t
|∆x ≤ L5(m− p).
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Proof. Using the second equation of (2.8) and Lemma 3.1, we have

|Q
k+1
0 −Qk0

∆t
| ≤ |Ck|+ L2|Qk+1

0 | ≤ |Ck|+ L2Qmax ≤ ω,

for some positive constant ω.
Thus,

∑N
j=1|

Qk+1
j −Qkj

∆t
|∆x =

∑N
j=1|(1− α) gkj u

k+1
j + (α− 1)Mk+1

j + α
Qk+1

0 −Qk0
∆t

|∆x

≤ sup
j
gkj ‖uk+1

j ‖1 + L3 + αω ≤ L5

since gkj = g(xj , Q
k
j ) and Qkj ≤ Qmax. Hence,

∑N
j=1|

Qmj −Q
p
j

∆t
|∆x ≤

∑m−1
k=p

∑N
j=1|

Qk+1
j −Qkj

∆t
|∆x ≤ L5(m− p).

Define a family of functions {Q∆t,∆x} by

Q∆t,∆x(t, x) = Qkj for x ∈ [xj−1, xj), t ∈ [tk−1, tk).

Then, the set of functions {Q∆t,∆x} is compact in the topology of L1((0, T )×(0, 1))
and we have the following theorem.

Theorem 3.3. There exists a subsequence {Q∆ti,∆xi
} ⊂ {Q∆t,∆x} which converges

to a BV ([0, T ]× [0, 1]) function Q(t, x) in the sense that for all t > 0∫ 1

0

|Q∆ti,∆xi
(t, x)−Q(t, x)| dx→ 0,

and ∫ T

0

∫ 1

0

|Q∆ti,∆xi(t, x)−Q(t, x)| dx dt→ 0,

as i → ∞. Furthermore, the limit function satisfies ‖Q‖BV ([0,T ]×[0,1]) ≤ c(|u0|1,
|C|∞).

Proof. Using the results of Lemmas 3.1 - 3.2 together with the proof of Lemma 16.7
in [18] page 276 establishes the result.

Let

M(x,Q) =

∫ Q

0

m(x, s) ds,B(x,Q) =

∫ Q

0

β(x, s) ds, and G(x,Q) =

∫ Q

0

g(x, s) ds.

Definition 3.4. A function Q ∈ BV ([0, T ]× [0, 1]) is called a weak solution of (2.9)
if it satisfies∫ t

0

∫ 1

0

(
−Qψs −Gψx + [−Gx +M(x,Q)−M(1, Q(s, 1))

+

∫ 1

x

My(y,Q(s, y))dy]ψ(s, x)

)
dxds+

∫ 1

0

[
Q(t, x)ψ(t, x)−Q(0, x)ψ(0, x)

]
dx
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= α

∫ t

0

∫ 1

0

(
d

ds
Q(s, 0)

)
ψ(s, x)dxds,

d

dt
Q(t, 0) = C(t) +

1

1− α
[
B(0, Q(t, 0))−B(1, Q(t, 1))−M(0, Q(t, 0))

+M(1, Q(t, 1)) +

∫ 1

0

(Bs(s,Q)−Ms(s,Q))ds
]
,

(3.3)

for every test function ψ ∈ C1 ([0, T ]× [0, 1]) with ψ(t, 0) = ψ(t, 1) = 0 and t ∈
[0, T ].

Remark. Following a similar argument used in the proof of Lemma 16.9 on page
280 of [18], it can be shown that the limit of the difference approximations in
Theorem 3.3 is a weak solution to problem (2.9).

Next we define entropy solution in the sense of [15]. To this end, we define

sign0(x) =

{
sign(x) x 6= 0,
0 x = 0.

(3.4)

Definition 3.5. A bounded measurable function Q(t, x) is an entropy solution
to (2.9) if for c ∈ R and φ ∈ C∞0 ((0, T )× (0, 1)) with φ(t, x) ≥ 0,∫ T

0

∫ 1

0

{
− |Q− c|φt − sign0(Q− c)

[
(G(x,Q)−G(x, c))φx

−(Gx(x,Q)−Gx(x, c))φ+ (M(x,Q)−M(1, Q(t, 1)))φ

+(

∫ 1

x

Ms(s,Q) ds)φ − α d
dt
Q(t, 0)φ

]}
dx dt ≤ 0,

and if there exists a measure zero subset E of [0, T ] such that for all t ∈ [0, T ] \ E
the function x→ Q(t, x) is defined a.e. and

lim
t→0+, t∈[0,T ]\E

∫ 1

0

|Q(t, x)−Q(0, x)| dx = 0,

where

d

dt
Q(t, 0) = C(t) +

1

1− α
[
B(0, Q(t, 0))−B(1, Q(t, 1))−M(0, Q(t, 0))

+M(1, Q(t, 1)) +

∫ 1

0

(Bs(s,Q)−Ms(s,Q))ds
]
.

In Lemma 3.6 and Theorem 3.7 below we restrict the arguments to the subse-
quence in Theorem 3.3, i.e., for simplicity of notation we let Q∆t,∆x = Q∆ti,∆xi in
these arguments. In order to establish that the limit obtained in Theorem 3.3 is an
entropy solution we first prove the following auxiliary lemma.

Lemma 3.6. The following holds:

M−1∑
k=0

N∑
j=1

|Qk+1
j −Qkj |2 ∆x+

M−1∑
k=0

N∑
j=1

gkj |Qk+1
j −Qk+1

j−1 |
2 ∆t → 0,

as ∆x,∆t → 0.
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Proof. Using the fact that

(Qk+1
j −Qkj )Qk+1

j =
1

2

(
|Qk+1

j |2 − |Qkj |2 + |Qk+1
j −Qkj |2

)
,

multiplying the first equation in (2.8) on both sides by Qk+1
j ∆x∆t and summing

over j = 1, · · · , N and k = 0, · · · ,M − 1 we can get

1

2

N∑
j=1

(|QMj |2 − |Q0
j |2)∆x+

1

2

M−1∑
k=0

N∑
j=1

|Qk+1
j −Qkj |2∆x

+
1

2

M−1∑
k=0

N∑
j=1

gkj |Qk+1
j −Qk+1

j−1 |
2 ∆t+

1

2

M−1∑
k=0

(
gkN |Qk+1

N |2 − gk0 |Qk+1
0 |2

)
∆t

−1

2

M−1∑
k=0

N∑
j=1

(gkj − gkj−1)|Qk+1
j−1 |

2∆t−
M−1∑
k=0

N∑
j=1

Qk+1
j

N∑
i=j+1

mk
i

Qk+1
i −Qk+1

i−1

∆x
∆x∆x∆t

= α

M−1∑
k=0

N∑
j=1

Qk+1
j

Qk+1
0 −Qk0

∆t
∆x∆t.

(3.5)
By Lemma 3.1 and Theorem 3.3 one can easily verify that the sequence Q∆t,∆x(t,

x) constructed via the difference scheme (2.1) converges (subsequentially) to the
weak solution Q(t, x) established in Theorem 3.3 in L2 norm. From this fact and
assumption (H4) one can argue that

1

2

N∑
j=1

(
|QMj |2 − |Q0

j |2
)

∆x+
1

2

M−1∑
k=0

(
gkN |Qk+1

N |2 − gk0 |Qk+1
0 |2

)
∆t

−
M−1∑
k=0

N∑
j=1

1

2
(gkj − gkj−1)|Qk+1

j−1 |
2∆t

=
1

2

∫ 1

0

(
|Q∆t,∆x(T, x)|2 − |Q∆t,∆x(0, x)|2

)
dx

+
1

2

∫ T

0

(
g(1, Q∆t,∆x)(t, 1)|Q∆t,∆x(t, 1)|2 − g(0, Q∆t,∆x)(t, 0)|Q∆t,∆x(t, 0)|2

)
dt

+δ1 −
1

2

∫ T

0

∫ 1

0

|Q∆t,∆x(t, x)|2 d (g(x,Q∆t,∆x(t, x))) dt+ δ2

→ 1

2

∫ 1

0

(|Q(T, x)|2 − |Q(0, x)|2) dx+
1

2

∫ T

0

(g(1, Q(t, 1))|Q(t, 1)|2

−g(0, Q(t, 0))|Q(t, 0)|2) dt− 1

2

∫ T

0

∫ 1

0

|Q(t, x)|2 d (g(x,Q(t, x))) dt,

(3.6)
since δ1, δ2 → 0 as ∆x,∆t → 0.

Note that Qki −Qki−1 = (α− 1)uki ∆x. Thus

N∑
i=j+1

mk
i

Qk+1
i −Qk+1

i−1

∆x
=

N∑
i=j+1

(α−

1)mk
i u

k+1
i .
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Also, since [M ]x = Mx +MQQx and Qx = (α− 1)u, we formally have∫ 1

x

(α− 1))m(y,Q)u(y, t)dy = −[M(x,Q)−M(1, Q) +

∫ 1

x

Ms(s,Q)ds].

Therefore,

−
M−1∑
k=0

N∑
j=1

Qk+1
j

N∑
i=j+1

mk
i

Qk+1
i −Qk+1

i−1

∆x
∆x∆x∆t

=

∫ T

0

∫ 1

0

[
M(x,Q∆t,∆x(t, x))−M(1, Q∆t,∆x(t, 1))

+

∫ 1

x

Ms(s,Q∆t,∆x(t, s)) ds)
]
Q∆t,∆x(t, x) dxdt+ δ3

→
∫ T

0

∫ 1

0

[
M(x,Q)−M(1, Q) +

∫ 1

x

Ms(s,Q) ds)
]
Q(t, x) dxdt,

(3.7)

since δ3 → 0 as ∆x,∆t → 0.
Similarly one can verify that

M−1∑
k=0

N∑
j=1

Qk+1
j

Qk+1
0 −Qk0

∆t
∆x∆t

=

M−1∑
k=0

N∑
j=1

Qk+1
j

(
Ck − 1

1− α

N∑
i=1

(βki −mk
i ) (Qk+1

i −Qk+1
i−1 )

)
∆x∆t

=

∫ T

0

∫ 1

0

(
C(t) +

1

1− α
[
B(0, Q∆t,∆x(t, 0))−B(1, Q∆t,∆x(t, 1))

−M(0, Q∆t,∆x(t, 0)) +M(1, Q∆t,∆x(t, 1)) +

∫ 1

0

(Bs(s,Q∆t,∆x)

−Ms(s,Q∆t,∆x))ds
])
Q∆t,∆x(t, x) dxdt+ δ4,

→
∫ T

0

∫ 1

0

d

dt
Q(t, 0)Q(t, x) dxdt,

(3.8)

since δ4 → 0 as ∆x,∆t → 0.
Using the weak solution definition of (2.9) (by taking ψ = Qε ∈ C1 ([0, T ]× [0, 1])

satisfying Qε(t, 0) = Qε(t, 1) = 0, a smooth approximation of Q such that Qε → Q
in L∞(0, T ;L2(0, 1)), and using techniques similar to those in [4]) one can argue
that

1

2

∫ 1

0

(
|Q(T, x)|2 − |Q(0, x)|2

)
dx+

1

2

∫ T

0

(
g(1, Q)|Q(t, 1)|2 − g(0, Q)|Q(t, 0)|2

)
dt

−1

2

∫ T

0

∫ 1

0

|Q(t, x)|2 d (g(x,Q(t, x))) dt+

∫ T

0

∫ 1

0

(
M(x,Q)−M(1, Q)

+

∫ 1

x

Ms(s,Q) ds
)
Q(t, x) dxdt− α

∫ T

0

∫ 1

0

[
d

dt
Q(t, 0)]Q(t, x) dxdt = 0.

(3.9)
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Therefore by combining (3.5)-(3.9) one can obtain

M−1∑
k=0

N∑
j=1

|Qk+1
j −Qkj |2∆x+

M−1∑
k=0

N∑
j=1

gkj |Qk+1
j −Qk+1

j−1 |
2∆t→ 0,

as ∆x,∆t → 0.

The next theorem shows that the limit function Q(t, x) defined in Theorem 3.3
is an entropy solution of (2.9).

Theorem 3.7. The limit function Q(t, x) defined in Theorem 3.3 is an entropy
solution of (2.9).

Proof. For φ ∈ C∞0 ([0, T ] × [0, 1]) satisfying φ ≥ 0 denote φ(tk, xj) by φkj . Multi-

plying the first equation of (2.8) by sign0(Qk+1
j − c)φkj∆x∆t, and summing over

j = 1, . . . , N and k = 0, . . . ,M − 1, we obtain

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)

Qk+1
j −Qkj

∆t
φkj∆x∆t

+

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)g(xj , Q

k
j )

(Qk+1
j −Qk+1

j−1)

∆x
φkj∆x∆t

−
M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)(

N∑
i=j+1

mk
i (Qk+1

i −Qk+1
i−1 ))φkj∆x∆t

= α

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)Q

k+1
0 −Qk0

∆t
φkj∆x∆t, 1 ≤ j ≤ N − 1.

(3.10)
We consider each term of (3.10) separately. The first term on the left-hand side of
(3.10) satisfies

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)

Qk+1
j −Qkj

∆t
φkj∆x∆t

≥ 1

∆t

N∑
j=1

M−1∑
k=0

[sign0(Qk+1
j − c)(Qk+1

j − c)φkj

−sign0(Qkj − c)(Qkj − c)φkj ]∆t∆x

=
1

∆t

N∑
j=1

M−1∑
k=0

[(|Qk+1
j − c| − |Qkj − c|)φkj ]∆t∆x

=

N∑
j=1

(|QMj − c|φMj − |Q0
j − c|φ0

j )∆x

−
N∑
j=1

M−1∑
k=0

|Qk+1
j − c|(

φk+1
j − φkj

∆t
)∆t∆x
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≥ −
N∑
j=1

M−1∑
k=0

|Qk+1
j − c|(

φk+1
j − φkj

∆t
)∆t∆x

(3.11)

where we used the summation by parts formula given by

M−1∑
k=0

(gk+1 − gk)fk = gMfM − g0f0 −
M−1∑
k=0

gk+1(fk+1 − fk).

As for the second term on the left-hand side of (3.10) using Taylor’s series ex-

pansion on G(xj , Q
k+1
j )−G(xj−1, Q

k+1
j−1) we obtain

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)g(xj , Q

k
j )
Qk+1
j −Qk+1

j−1

∆x
φkj ∆x∆t

=

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)

(
G(xj , Q

k+1
j )−G(xj−1, Q

k+1
j−1)−Gx(xj , Q

k+1
j )∆x

∆x

+ε̃k+1
j

)
φkj ∆x∆t,

(3.12)
where

ε̃k+1
j = Gxx(x̄j , Q̄

k+1
j )

∆x

2
+GQQ(x̄j , Q̄

k+1
j )

(Qk+1
j −Qk+1

j−1)2

2∆x

+GxQ(x̄j , Q̄
k+1
j )(Qk+1

j −Qk+1
j−1) +

GQQ(xj , Q̃
k+1
j )(Qkj −Q

k+1
j )(Qk+1

j −Qk+1
j−1)

∆x
.

(3.13)

Here x̄j ∈ [xj−1, xj ], Q̄
k+1
j is between Qk+1

j−1 and Qk+1
j , and Q̃k+1

j is between Qkj
and Qk+1

j .
Note that

|ε̃k+1
j | ≤ L6

(
|∆x|+

(Qk+1
j −Qk+1

j−1)2

∆x
+ |Qk+1

j −Qk+1
j−1 |

+
|Qk+1

j −Qk+1
j−1 ||Q

k+1
j −Qkj |

∆x

)
for some positive constant L6.

Adding and subtracting G(xj , c) and G(xj−1, c) in (3.12) we get

M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)g(xj , Q

k
j )
Qk+1

j −Qk+1
j−1

∆x
φ
k
j ∆x∆t

=

M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)

(G(xj , Q
k+1
j )−G(xj , c)− (G(xj−1, Q

k+1
j−1)−G(xj−1, c)))φ

k
j

∆x
∆x∆t

−
M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)

Gx(xj , Q
k+1
j )∆x− (G(xj , c)−G(xj−1, c))

∆x
− ε̃k+1

j

φ
k
j ∆x∆t.

(3.14)

Now adding and subtracting sign0(Qk+1
j − c)

(G(xj−1, Q
k+1
j−1)−G(xj−1, c))φ

k
j−1

∆x
to (3.14) we get

= −
M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)(G(xj−1, Q

k+1
j−1)−G(xj−1, c))

φk
j − φ

k
j−1

∆x
∆x∆t
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+

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)((G(xj , Q

k+1
j )−G(xj , c))φ

k
j − (G(xj−1, Q

k+1
j−1)−G(xj−1, c))φ

k
j−1)

∆x
∆x∆t

−
M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)

Gx(xj , Q
k+1
j )∆x− (G(xj , c)−G(xj−1, c))

∆x
− ε̃k+1

j

φ
k
j ∆x∆t

≥ −
M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)(G(xj−1, Q

k+1
j−1)−G(xj−1, c))

φk
j − φ

k
j−1

∆x
∆x∆t

−
M−1∑
k=0

N∑
j=1

sign0(Q
k+1
j − c)

Gx(xj , Q
k+1
j )∆x− (G(xj , c)−G(xj−1, c))

∆x
− ε̃k+1

j

φ
k
j ∆x∆t,

(3.15)

since

N∑
j=1

sign0(Qk+1
j − c)((G(xj , Q

k+1
j )−G(xj , c))φ

k
j − (G(xj−1, Q

k+1
j−1)−G(xj−1, c))φ

k
j−1)

= GQ(xN , Q̂
k+1
N )|Qk+1

N − c|φkN −GQ(x0, Q̂
k+1
0 )sign0(Qk+1

1 − c)(Qk+1
0 − c)φk0

+
∑

j∈ Jump1

2(GQ(xj , Q̂
k+1
j ))|Qk+1

j − c|φkj ≥ 0.

Here the index set Jump1 is defined by

Jump1 = {1 ≤ j < N : (Qk+1
j−1 − c)(Q

k+1
j − c) < 0}.

We also use the fact that g(x,Q) > 0 and φ has compact support to get the in-
equality in the entropy solution.

Next we consider the third term on the left hand side of (3.10)

−
M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)(

N∑
i=j+1

mk
i (Qk+1

i −Qk+1
i−1 ))φkj∆x∆t

=

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)(M(xj , Q

k+1
j )−M(xN , Q

k+1
N )

+

N∑
i=j+1

Mx(xi, Q
k+1
i )∆x+ δk+1

j )φkj∆x∆t

(3.16)

Here, we used the fact

M(xi, Q
k+1
i )−M(xi−1, Q

k+1
i−1 )

= Mx(xi, Q
k+1
i )∆x+MQ(xi, Q

k+1
i )(Qk+1

i −Qk+1
i−1 )

−Mxx( ¯̄xi,
¯̄Qk+1
i )

∆x2

2
−MQQ( ¯̄xi,

¯̄Qk+1
i )

(Qk+1
i −Qk+1

i−1 )2

2

−MxQ( ¯̄xi,
¯̄Qk+1
i )(Qk+1

i −Qk+1
i−1 )∆x

(3.17)
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where

δk+1
j = −

N∑
i=j+1

(Mxx( ¯̄xi,
¯̄Qk+1
i )

∆x2

2
+MQQ( ¯̄xi,

¯̄Qk+1
i )

(Qk+1
i −Qk+1

i−1 )2

2

+MxQ( ¯̄xi,
¯̄Qk+1
i )(Qk+1

i −Qk+1
i−1 )∆x

−MQQ(xi,
˜̃Qk+1
i )(Qk+1

i −Qki )(Qk+1
i −Qk+1

i−1 )).

(3.18)

Here ¯̄xi ∈ [xi−1, xi],
¯̄Qk+1
i is between Qk+1

i−1 and Qk+1
i , and ˜̃Qk+1

i is between Qki and

Qk+1
i .
Consider the right hand term of (3.10),

α

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)Q

k+1
0 −Qk0

∆t
φkj∆x∆t (3.19)

we have from the second equation of (2.8)

Qk+1
0 −Qk0

∆t
= Ck +

N∑
i=1

(βki −mk
i )uk+1

i ∆x

= Ck +

N∑
i=1

βki u
k+1
i ∆x−

N∑
i=1

mk
i u

k+1
i ∆x.

Here we used the fact that

Qk+1
i −Qk+1

i−1

∆x
= α

i∑
j=1

uk+1
j +

N∑
j=i+1

uk+1
j − α

i−1∑
j=1

uk+1
j −

N∑
j=i

uk+1
j

= (α− 1)uk+1
i .

Hence,

Qk+1
0 −Qk0

∆t
= Ck − 1

1− α

N∑
i=1

βki (Qk+1
i −Qk+1

i−1 ) +
1

1− α

N∑
i=1

mk
i (Qk+1

i −Qk+1
i−1 ).

(3.20)
Note that,

B(xi, Q
k+1
i )−B(xi−1, Q

k+1
i−1 )

= Bx(xi, Q
k+1
i ) ∆x+BQ (xi, Q

k+1
i )(Qk+1

i −Qk+1
i−1 )−Bxx(˜̂xi,

˜̂
Qk+1
i )

∆x2

2

−BQQ(˜̂xi,
˜̂
Qk+1
i )

(Qk+1
i −Qk+1

i−1 )2

2
−BxQ(˜̂xi,

˜̂
Qk+1
i ) (Qk+1

i −Qk+1
i−1 )∆x.

Summing over i = 1, · · · , N , we have

N∑
i=1

(B(xi, Q
k+1
i )−B(xi−1, Q

k+1
i−1 )) =

N∑
i=1

Bx(xi, Q
k+1
i ) ∆x

+

N∑
i=1

BQ(xi, Q
k
i ) (Qk+1

i −Qk+1
i−1 ) + γk+1

i .
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Thus,

−
N∑
i=1

β(xi, Q
k
i ) (Qki −Qki−1) = (B(x0, Q

k
0)−B(xN , Q

k
N ))

+

N∑
i=1

Bx(xi, Q
k+1
i ) ∆x+ γk+1

i

(3.21)

where

γk+1
i = −

N∑
i=1

(Bxx(˜̂xi,
˜̂
Qk+1
i )

∆x2

2
+BQQ(˜̂xi,

˜̂
Qk+1
i )

(Qk+1
i −Qk+1

i−1 )2

2

+BxQ(˜̂xi,
˜̂
Qk+1
i ) (Qk+1

i −Qk+1
i−1 )∆x

−BQQ(xi,
ˆ̂
Qk+1
i ) (Qk+1

i −Qk+1
i−1 )(Qk+1

i −Qki ))

(3.22)

with ˜̂xi ∈ [xi−1, xi],
˜̂
Qk+1
i is between Qk+1

i−1 and Qk+1
i , and

ˆ̂
Qk+1
i is between Qki and

Qk+1
i .
Similarly,

−
N∑
i=1

m(xi, Q
k
i ) (Qki −Qki−1) = (M(x0, Q

k
0)−M(xN , Q

k
N ))

+

N∑
i=1

Mx(xi, Q
k+1
i ) ∆x+ τk+1

i

(3.23)

where

τk+1
i = −

N∑
i=1

(Mxx(˜̂xi,
˜̂
Qk+1
i )

∆x2

2
+MQQ(˜̂xi,

˜̂
Qk+1
i )

(Qk+1
i −Qk+1

i−1 )2

2

+MxQ(˜̂xi,
˜̂
Qk+1
i ) (Qk+1

i −Qk+1
i−1 )∆x

−MQQ(xi,
ˆ̂
Qk+1
i ) (Qk+1

i −Qk+1
i−1 )(Qk+1

i −Qki )).

(3.24)

To this end, we define γ̃k+1
i = γk+1

i + τk+1
i . Using (3.20),(3.21) and (3.23) in

(3.19) we have

α

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)Q

k+1
0 −Qk0

∆t
φkj∆x∆t

= α

M−1∑
k=0

N∑
j=1

sign0(Qk+1
j − c)[Ck +

1

1− α
(B(x0, Q

k
0)−B(xN , Q

k
N )

−(M(x0, Q
k
0)−M(xN , Q

k
N )) +

N∑
i=1

(Bx(xi, Q
k
i )−Mx(xi, Q

k
i )) ∆x) + γ̃ki ]φkj∆x∆t.

(3.25)
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Then by (3.11), (3.15), (3.16) and (3.25), we have the following inequality

M−1∑
k=0

N∑
j=1

[−|Qk+1
j − c|

φk+1
j − φkj

∆t

−sign0(Qk+1
j − c)(G(xj−1, Q

k
j−1)−G(xj−1, c))

φkj − φkj−1

∆x

−sign0(Qk+1
j − c)

(
Gx(xj , Q

k+1
j )∆x− (G(xj , c)−G(xj−1, c))

∆x
− ε̃k+1

j

)
φkj

+sign0(Qk+1
j − c)(M(xi, Q

k+1
i )−M(xN , Q

k+1
N )

+

N∑
i=j+1

Mx(xi, Q
k+1
i )∆x+ δk+1

j )φkj

−α sign0(Qk+1
j − c)(Ck +

1

1− α
(B(x0, Q

k
0)−B(xN , Q

k
N )− (M(x0, Q

k
0)

−M(xN , Q
k
N )) +

N∑
i=1

(Bx(xi, Q
k
i )−Mx(xi, Q

k
i )) ∆x) + γ̃k+1

i )φkj ]∆x∆t ≤ 0.

Using Lemma 3.6 one can show that

M−1∑
k=0

N∑
j=1

(|ε̃k+1
j |+ |δk+1

j |+ |γ̃k+1
i |) ∆x∆t→ 0

as ∆t, ∆x→ 0+.
Using similar techniques as in the proof of Lemma 16.10 page 279 in [18] we can

show that the subsequence Q∆t,∆x satisfies∫ T

0

∫ 1

0

[−|Q∆t,∆x − c|φt − sign0(Q∆t,∆x − c)((G(x,Q∆t,∆x)−G(x, c))φx

−sign0(Q∆t,∆x − c)(Gx(x,Q∆t,∆x)−Gx(x, c))φ

+sign0(Q∆t,∆x − c)(M(x,Q∆t,∆x)−M(1, Q∆t,∆x(t, 1))

+

∫ 1

x

Ms(s,Q∆t,∆x) ds)φ

−α sign0(Q∆t,∆x − c)(C(t) +
1

1− α
(B(0, Q∆t,∆x(t, 0))−B(1, Q∆t,∆x(t, 1))

−(M(0, Q∆t,∆x(t, 0))−M(1, Q∆t,∆x(t, 1)))

+

∫ 1

0

(Bx(x,Q∆t,∆x(t, x))−Mx(x,Q∆t,∆x(t, x))) dx)φ)] dx dt+ ε1 ≤ 0

(3.26)
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for t ∈ [0, T ] and every test function φ ∈ C1([0, T ]× [0, 1]). Here ε1 → 0 as ∆t and
∆x→ 0.

By the bounded convergence theorem as ∆t, ∆x → 0+ the limit Q for any
convergent subsequence defined in Theorem 3.3, satisfies the inequality in Definition
3.5.

Similarly, from (2.8)

Qk+1
0 −Qk0

∆t
= Ck +

1

1− α
(B(0, Qk+1

0 )−B(1, Qk+1
N )

−(M(0, Qk+1
0 )−M(1, Qk+1

N )) +

N∑
j=1

(Bx(xj , Q
k+1
j )−Mx(xj , Q

k+1
j ))∆x+ γ̃k+1

i )

where Qk+1
N = αQk+1

0 and |γ̃k+1
i | → 0 as ∆x, ∆t → 0+. From this it follows that

the limit Q satisfies Definition 3.5 and hence is an entropy solution.
Combining Theorem 3.7 and the uniqueness of the entropy solution for (2.9)

established in [4], we obtain the following theorem:

Theorem 3.8. The sequence Q∆t,∆x(t, x) constructed via the difference scheme
(2.1) converges to the unique entropy solution Q(t, x) of (2.9).

3.1. Weak star convergence. Our goal for this section is to show that the ap-
proximations u∆t,∆x converges in weak* topology to a unique limit u and establish
the relation (1.2) between the limits Q(t, x) and u(t, x). To this end, define a family
of functions {u∆t,∆x} by

u∆t,∆x(t, x) = ukj ,

for x ∈ [xj−1, xj), t ∈ [tk−1, tk), j = 1, 2, . . . , N, k = 1, 2, . . . ,M .

Theorem 3.9. The sequence u∆t,∆x(t, x) constructed via our difference scheme
converges in weak* topology to a unique limit u(t, x) which satisfies

Q(t, x) =

∫ 1

x

u(t, ξ) dξ + α

∫ x

0

u(t, ξ) dξ, 0 ≤ α < 1. (3.27)

Proof. First we will establish the uniqueness of the measure valued limit u. Since
Q(t, x) is unique, suppose that u(t, x) and û(t, x) are two finite radon measures
satisfying (3.27), i.e.,

Q(t, x) =

∫ 1

x

u(t, ξ) dξ + α

∫ x

0

u(t, ξ) dξ, 0 ≤ α < 1 (3.28)

and

Q(t, x) =

∫ 1

x

û(t, ξ) dξ + α

∫ x

0

û(t, ξ) dξ, 0 ≤ α < 1. (3.29)

Subtracting (3.28) and (3.29), we have

0 =

∫ 1

x

(u− û) dξ + α

∫ x

0

(u− û) dξ, 0 ≤ α < 1. (3.30)

The equation (3.30) is true if and only if u = û, since any two such measures
agree on all compact sets of the interval [0, 1]. So we conclude that u(t, x) is unique.

Clearly, ∫ 1

0

u∆t,∆x(t, x) dx =

N∑
j=1

∫ xj

xj−1

u∆t,∆x(t, x) dx =

N∑
j=1

ukj ∆x.
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Thus, using Lemma 3.1, we obtain by the Banach-Alaoglu-Bourbaki Theorem that
there exist a subsequence {u∆tr,∆xr} of {u∆t,∆x} and a limit u such that as r →∞
(i.e., as ∆tr,∆xr → 0) the following hold:
{u∆tr,∆xr

} converges to u in C[0, 1]∗ uniformly in t, i.e.,∫ 1

0

u∆tr,∆xr (t, x)φ(x) dx→
∫ 1

0

u(t, x)φ(x) dx for all t ∈ [0, T ] (3.31)

and for all φ ∈ C[0, 1].
Next we will prove the relation between Q(t, x) and u(t, x). To this end,

Q∆tr,∆xr =

N∑
i=j+1

uki ∆x+ α

j∑
i=1

uki ∆x, 0 ≤ α < 1. (3.32)

From the definition of the family of functions {u∆tr,∆xr
}, we have

Q∆tr,∆xr
=

N∑
i=j+1

uki ∆x + α

j∑
i=1

uki ∆x

=

∫ 1

x

u∆tr,∆xr (t, ξ) dξ + α

∫ x

0

u∆tr,∆xr (t, ξ) dξ, 0 ≤ α < 1.

(3.33)

taking the limit as r →∞ in (3.33) we obtain

Q(t, x) =

∫ 1

x

u(t, ξ) dξ + α

∫ x

0

u(t, ξ) dξ, 0 ≤ α < 1.

From the theory of distributions we have Qx(t, ·) = −(1− α)u(t, ·) and thus dQ =
−(1− α)du(t, ·) in C[0, 1]∗. �

4. A second order explicit finite-difference scheme. To approximate the
measure valued solutions, in this section we will develop a second order finite-
difference approximation similar to that presented in [16]. The following notation

will be used throughout this section: ∆x =
1

N
and ∆t =

T

M
denote the spatial

and time mesh size respectively. For xj = j∆x, j = 0, 1, 2, · · · , N and tk = k∆t,

k = 0, 1, 2, · · · ,M , we will denote by ukj and Qkj the difference approximations of
u(tk, xj) and Q(tk, xj) and we define

gkj = g(xj , Q
k
j ), βkj = β(xj , Q

k
j ), mk

j = m(xj , Q
k
j ) and Ck = C(tk).

We define the finite difference operators

∆+u
k
j = ukj+1 − ukj , 0 ≤ j ≤ N − 1, ∆−u

k
j = ukj − ukj−1, 1 ≤ j ≤ N,

and the `1 norm by

‖uk‖1 =

N∑
j=1

|ukj |∆x .

We discretize the first equation of the model (1.1) using the following second-
order explicit high-resolution finite difference approximation

uk+1
i − uki

∆t
+
f̂k
i+ 1

2

− f̂k
i− 1

2

∆x
+mk

i u
k
i = 0, 1 ≤ i ≤ N, 0 ≤ k ≤M − 1, (4.1)
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where the numerical flux is defined by

f̂kj+ 1
2

=


gkj u

k
j +

1

2
(gkj+1 − gkj )ukj +

1

2
gkj mm(∆+u

k
j ,∆−u

k
j ), j = 2, . . . , N − 2,

gkj u
k
j , j = 0, 1, N − 1, N,

(4.2)
and the minmod function mm is defined by

mm(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).

Notice that

0 ≤ mm(a, b)

a
≤ 1, 0 ≤ mm(a, b)

b
≤ 1, ∀ a, b 6= 0.

This finite difference scheme is second-order accurate in space except at the bound-
ary (first and last two grid intervals), where it is first-order accurate. But this
provides second-order accuracy in the global L1 norm. The integral in the bound-
ary condition of the model (1.1) (second equation of (1.1)) is implemented by a
second order composite trapezoid rule, except at the first interval which is com-
puted by a first order method using the right-hand point. That is,

gk+1
0 uk+1

0 = Ck+1 +
3

2
βk+1

1 uk+1
1 ∆x+

1

2
βk+1
N uk+1

N ∆x+

N−1∑
j=2

βk+1
j uk+1

j ∆x,

0 ≤ k ≤M − 1.
A similar technique can be used to compute Qkj for 0 ≤ j ≤ N as

Qk0 = uk1∆x+
1

2
uk1∆x+

1

2
ukN∆x+

N−1∑
j=2

ukj∆x

Qk1 = αuk1∆x+
1

2
uk1∆x+

1

2
ukN∆x+

N−1∑
j=2

ukj∆x

Qkj = αuk1∆x+
α

2
uk1∆x+

α

2
ukj∆x+ α

j−1∑
l=2

ukl ∆x

+
1

2
ukj∆x+

1

2
ukN∆x+

N−1∑
l=j+1

ukl ∆x, 2 ≤ j ≤ N.

We now rewrite the scheme (4.1) together with the initial and boundary condi-
tions as the following system of equations:

uk+1
i = uki −

∆t

∆x
(f̂ki+ 1

2
− f̂ki− 1

2
)−mk

i u
k
i ∆t, 1 ≤ i ≤ N, 0 ≤ k ≤M − 1

gk+1
0 uk+1

0 = Ck+1 +
3

2
βk+1

1 uk+1
1 ∆x+

1

2
βk+1
N uk+1

N ∆x+

N−1∑
j=2

βk+1
j uk+1

j ∆x,

0 ≤ k ≤M − 1,
u0
j = u0(xj), j = 0, 1, . . . , N.

(4.3)
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We set

Aki =



1

2

(
gki+1 + gki + gki

mm(∆+u
k
i ,∆−u

k
i )

∆−uki

−gki−1

mm(∆−u
k
i ,∆−u

k
i−1)

∆−uki

)
i = 3, . . . , N − 2,

1

2

(
gki+1 + gki + gki

mm(∆+u
k
i ,∆−u

k
i )

∆−uki

)
i = 2,

1

2

(
2gki − gki−1

mm(∆−u
k
i ,∆−u

k
i−1)

∆−uki

)
i = N − 1,

gki i = 1, N,

and

Bki =



1

2

(
∆+g

k
i + ∆−g

k
i

)
i = 3, . . . , N − 2,

1

2
∆+g

k
i i = 2,

1

2
∆−g

k
i i = N − 1,

∆−g
k
i i = 1, N.

It can be easily shown that

|Aki | ≤
3

2
sup
D
|g(x,Q)| ≤ 3

2
ζ,

where D = [0, 1]× [0, Qmax].
Notice that

2(Aki −Bki ) =



gki

(
1 +

mm(∆+u
k
i ,∆−u

k
i )

∆−uki

)
+gki−1

(
1−

mm(∆−u
k
i ,∆−u

k
i−1)

∆−uki

)
i = 3, . . . , N − 2,

gki

(
2 +

mm(∆+u
k
i ,∆−u

k
i )

∆−uki

)
i = 2,

gki + gki−1

(
1−

mm(∆−u
k
i ,∆−u

k
i−1)

∆−uki

)
i = N − 1,

2gki−1 i = 1, N.

Thus,

Aki −Bki ≥ 0, 1 ≤ i ≤ N.
We now impose the following CFL type condition concerning ∆x and ∆t :

ζ

(
3

2

∆t

∆x
+ ∆t

)
≤ 1 (4.4)

where ζ is defined in (3.2).
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Rewriting equation (4.3) as

uk+1
i =

(
1− ∆t

∆x
Aki −∆tmk

i

)
uki +

∆t

∆x
(Aki −Bki )uki−1,

1 ≤ i ≤ N, 0 ≤ k ≤M − 1,

one can see that the scheme is positivity preserving under the condition (4.4).
Note that the scheme (4.3) is of second order in space (except at the boundary)

but only first order in time. We will use the following second order in time total
variation diminishing Runge-Kutta time discretization [17]: Let

u
(1)
i = uki −

∆t

∆x
(f̂ki+ 1

2
− f̂ki− 1

2
)−mk

i u
k
i ∆t, 1 ≤ i ≤ N,

g
(1)
0 u

(1)
0 = Ck+1 +

3

2
β

(1)
1 u

(1)
1 ∆x+

1

2
β

(1)
N u

(1)
N ∆x+

N−1∑
j=2

β
(1)
j u

(1)
j ∆x,

(4.5)

Q
(1)
0 = u

(1)
1 ∆x+

1

2
u

(1)
1 ∆x+

1

2
u

(1)
N ∆x+

N−1∑
j=2

u
(1)
j ∆x

Q
(1)
1 = αu

(1)
1 ∆x+

1

2
u

(1)
1 ∆x+

1

2
u

(1)
N ∆x+

N−1∑
j=2

u
(1)
j ∆x

Q
(1)
j = αu

(1)
1 ∆x+

α

2
u

(1)
1 ∆x+

α

2
u

(1)
j ∆x+ α

j−1∑
l=2

u
(1)
l ∆x

+
1

2
u

(1)
j ∆x+

1

2
u

(1)
N ∆x+

N−1∑
l=j−1

u
(1)
l ∆x, 2 ≤ j ≤ N

(4.6)

and compute

uk+1
i =

1

2

(
uki + u

(1)
i −

∆t

∆x
(f̂

(1)

i+ 1
2

− f̂ (1)

i− 1
2

)−m(1)
i u

(1)
i ∆t

)
, 1 ≤ i ≤ N,

gk+1
0 uk+1

0 = Ck+1 +
3

2
βk+1

1 uk+1
1 ∆x+

1

2
βk+1
N uk+1

N ∆x+

N−1∑
j=2

βk+1
j uk+1

j ∆x,

(4.7)

where in (4.5) - (4.7) we use the notation β
(1)
j = β(xj , Q

(1)
j ). Similar notation is

used for the other functions g
(1)
j = g(xj , Q

(1)
j ), m

(1)
j = m(xj , Q

(1)
j ). As for f̂

(1)

i+ 1
2

,

it is same as f̂ki+ 1
2

with u
(1)
j replacing ukj and g(xj , Q

(1)
j ) replacing gkj = g(xj , Q

k
j ).

This gives a second order scheme in both space and time.

5. Numerical simulations. In [2, 14], the condition gQ ≤ 0 for 0 < α < 1
is crucial for proving the existence of a global (in time) solution. It was shown
that if such a condition is not satisfied then measure valued solutions, includ-
ing point measures, evolve in finite time even if the initial condition and the
model parameters are all smooth functions [4]. In our first numerical experi-
ment, we let u0(x) = 3 exp(−170(x − 0.1)2) + 3 exp(−170(x − 0.6)2), g(x,Q) =
5(1 − x)Q2 exp(−2Q),m(x,Q) = 0.2x2 exp(0.2Q),β(x,Q) = 0.4x exp(−0.4Q),
C(t) = 0 and α = 0.2.
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In this case gQ = 10(1 − x)Q exp(−2Q)(1 − Q). Hence, gQ ≤ 0 for Q ≥ 1 and
gQ > 0 forQ ∈ [0, 1). In Figure 1 the function u(1.5, x) is plotted for several values of
N and M using the first-order semi-implicit (FOSI) and second-order explicit (SOE)
schemes. Figure 1 indicates that Dirac delta measures are forming at x ≈ 0.61 and
x ≈ 0.75. In Figure 2 the three dimensional dynamics of the solution approximated
using SOE scheme is presented (where N = 640, M = 6400). In Figure 3 (left)
the two dimensional distributions of Q(0, x) and Q(1.5, x) using the FOSI and SOE
scheme are presented (where N = 640, M = 6400). In Figure 3 (right) we zoom
on the values x ∈ [0.55, 0.8] in the distribution Q(1.5, x) to clearly demonstrate the
emerging discontinuities at x ≈ 0.61 and x ≈ 0.75. Since, u = −(1 − α)Qx, then
each discontinuity in Q(t, x) corresponds to a point measures in u, as was observed
from Figures 1 and 3. Figures 1 and 3 clearly demonstrate that SOE scheme is
superior to FOSI in capturing the singular solutions with high accuracy.

To further compare the performance of the SOE scheme and FOSI scheme, we
consider a test problem with initial condition u0(x) = exp(−x) and vital rates
g(x,Q) = 2−2 exp(x−1), β(x,Q) = 2, and m(x,Q) = 1. One can easily verify that
for this choice of parameters the equation (1.1) along with boundary condition has
an exact smooth solution u(t, x) = exp(t − x). In Table 1, we present errors and
order of convergence (in L1 norm) resulting from the FOSI scheme and the SOE

scheme. We compute the L1 norm of the error by

M∑
k=1

N∑
i=1

|uki − u(tk, xi)|∆x∆t.

We also calculated the CPU time required for each simulation. From Table 1, it is
clear that the SOE scheme requires significantly less computational time than the
FOSI scheme to achieve similar accuracy. In particular, we see that to compute an
approximate solution with the L1 norm of the error equal to 0.000087 the FOSI
scheme requires 2331.11 seconds, but using the SOE scheme we get better accuracy
in just 9.61 seconds; thus saving 99.4% of CPU time. In Figure 4 we plotted the
L1 norm of the errors in the FOSI and SOE schemes against the computation time
using logarithmic scales.
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Figure 1. Numerical solutions of u(1.5, x) obtained by the FOSI
and SOE schemes for various sets of values of N and M .
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Figure 2. The three dimensional distribution of u(t, x) approxi-
mated by the SOE scheme using N = 640 and M = 6400.
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Figure 3. The distributions of Q(0, x) and Q(1.5, x) approxi-
mated by the FOSI (circle) and SOE(diamond) schemes using
N = 640, M = 6400 (left). The distribution Q(1.5, x) zoomed
on the interval [0.55, 0.8] (right).

6. Concluding remarks. In this article we have developed a first-order semi-
implicit scheme for approximating the measure-valued solution of a hierarchically
size-structured population model. This approach provided not only existence of
solutions but also a numerical method for computing these measure-valued solu-
tions. Convergence of the first order finite difference approximations to a measure
valued solution is established. We also developed a second order high resolution
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Table 1. L1 errors, order of accuracy and computational time (in
seconds) for the FOSI and SOE schemes.

N M
FOSI SOE

L1 error Order Time(Seconds) L1 error Order Time(Seconds)

10 100 0.01167013 0.370353 0.00241405 0.689015

20 200 0.00553055 1.0773 0.680138 0.00062738 1.9440 1.217468

40 400 0.00272917 1.0189 2.029305 0.00016172 1.9557 2.988140

80 800 0.00136830 0.9960 6.147709 0.00004120 1.9728 9.615011

160 1600 0.00068933 0.9891 21.490582 0.00001041 1.9847 39.53220

320 3200 0.00034739 0.9886 84.149971 0.00000262 1.9919 187.714045

640 6400 0.00017486 0.9903 437.413729 0.00000065 1.9958 1163.62378

1280 12800 0.00008683 0.9924 2331.1086 0.00000016 1.9977 6217.76149
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Figure 4. The loglog plot of the L1 norm of the errors for the
FOSI and SOE schemes against the computational time.

explicit scheme for approximating the measure-valued solution. In our numerical
simulations, we showed that the scheme is non-oscillatory in the presence of discon-
tinuous (or singular) solutions. We compared the first order semi-implicit scheme
with the second order explicit scheme. The comparison of these two schemes sug-
gests that although the first order scheme captures the point measures, the second
order scheme yields similar accuracy with much less time and space grid points and
hence significantly less computational time.
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Our future efforts will focus on studying the convergence of the high resolution
second order explicit scheme developed in this paper. We think that the general
approach used here to study the convergence of first order scheme could be adapted
for the second order scheme. However, novel techniques may be needed to obtain
estimates analogous to those obtained in Section 3.

Finally, we point out that the analysis may be extended to a more general envi-
ronment than (1.2) given by

Q(t, x) = α

∫ x

0

w(x)u(t, y)dy +

∫ 1

x

w(x)u(t, y)dy, 0 ≤ α < 1,

where w(x) > 0 is continuously differentiable. In this case, if we introduce the
variable change

v(t, x) = w(x)u(t, x),

and define

m̃(x,Q) = m(x,Q)− g(x,Q)wx(x)/w(x), β̃(x,Q) = β(x,Q)/w(x),

we can show that v satisfies (6.1)-(6.2) given below
vt + (g(x,Q(t, x)) v)x + m̃(x,Q(t, x))v = 0

g(0, Q(t, 0)) v(t, 0) = C(t) +

∫ 1

0

β̃(y,Q(t, y))v(t, y)dy

v(0, x) = w(x)u0(x),

(6.1)

and

Q(t, x) = α

∫ x

0

v(t, y)dy +

∫ 1

x

v(t, y)dy, 0 ≤ α < 1. (6.2)

Clearly, (6.1)-(6.2) are of the form (1.1)-(1.2).
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