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Abstract. A multi-group model is proposed to describe a general relapse
phenomenon of infectious diseases in heterogeneous populations. In each group,
the population is divided into susceptible, exposed, infectious, and recovered
subclasses. A general nonlinear incidence rate is used in the model. The
results show that the global dynamics are completely determined by the basic
reproduction number R0. In particular, a matrix-theoretic method is used to
prove the global stability of the disease-free equilibrium when R0 ≤ 1, while
a new combinatorial identity (Theorem 3.3 in Shuai and van den Driessche
[29]) in graph theory is applied to prove the global stability of the endemic
equilibrium when R0 > 1. We would like to mention that by applying the new
combinatorial identity, a graph of 3n (or 2n+m) vertices can be converted into
a graph of n vertices in order to deal with the global stability of the endemic
equilibrium in this paper.

1. Introduction. In most deterministic epidemic models, the host population is
often divided into susceptible, infective and recovered subclasses. For some epidemic
diseases, infected individuals can experience incubation before showing symptoms,
for example rabies [9, 38], malaria [10], West Nile virus [13], HIV/AIDS [22]. There-
fore, it is reasonable to include a latent (or exposed) subclass in the host population.
After surviving the latent period, these individuals progress into the infective class,
and then recover into the recovered class. However, clinical diagnosis indicates that
there may be a recurrence of symptoms for some diseases. Some patients have a re-
mission after treatment during the recovery period, but then, due to the pathogens
in the tissue reproduce to certain degree, the early symptoms appeared again - this
is called a relapse. Hepatitis B virus relapsed after surgery with a 5-year and 8-year
actuarial rate of recurrence of 8% and 21%, respectively. After liver transplantation
hepatitis B recurred in 9% treated only with immune globulins and lamivudine [24].
A recurrence of tuberculosis is a second episode of tuberculosis occurring after a
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first episode had been considered cured [17]. The 2-year incidence of recurrence af-
ter treatment of pulmonary tuberculosis with rifampicin-containing regimens ranges
from 0-27% [11, 31]. The study results also show a high incidence (24%) of recurrent
Hepatitis C virus (HCV) viremia in HIV-1-coinfected participants with initial con-
trol of HCV, even in some who had previously maintained HCV control for almost
two years of observation [14]. In general, there are several reasons about recur-
rence: (1) Incomplete treatment. Many patients with symptoms will be somewhat
better stop treatment because they are afraid of bearing the heavy burden of their
expensive medical bills. (2) Resistant. Clinics commonly used some drug for a long
time, which causes virus mutations that results in drug resistance. (3) Unhealthy
lifestyle habits. Some recovered individuals, once their status became better, will
not pay attention to healthy eating, such as overeating, drinking and smoking. (4)
Overwork including mental work and physical work. Excessive fatigue will lead to
low immunity, then cause infection again.

Van den Driessche et al. [35] in 2007 proposed a mathematical model for a
disease with a general exposed distribution and the possibility of relapse. The
global attractivity of the disease-free equilibrium (DFE) is proved when the basic
reproduction number is less than one. Moreover, assuming that the probability
of remaining in the exposed class P (t) is a step-function, they have proved that
the system is uniformly persistent and the endemic equilibrium (EE) is locally
asymptotically stable (LAS) if the basic reproduction number is larger than one. In
particular, they pointed out in the discussion and conclusions section that numerical
simulations suggest that the EE is GAS, but no analytic proof is given. Liu et al.
[23] extended the above model with a more general nonlinear incidence rate. More
importantly, the open problem in [35] was resolved and the result in [23] confirms
that the EE is GAS.

Recently, multigroup models have been proposed in the literature to describe
the transmission dynamics of some infectious diseases in heterogeneous host pop-
ulations, such as gonorrhea [3, 16], sexually transmitted diseases [4] and vector
borne diseases such as malaria [10], West-Nile disease [13] and cholera [6, 27, 33].
Heterogeneity in host population may be caused by many factors. Groups can be
geographical such as communities, cities, and countries, or epidemiological, to in-
corporate differential infectivity or co-infection of multiple strains of the disease
agent. There has been much research on multigroup epidemic models, for example,
see [6, 15, 20, 25, 28, 32, 26] and references therein. The question of global stability
in higher dimensions models is always a challenging and difficult task. Fortunately,
some papers [12, 21, 26, 27, 28, 29] have shown that a graph-theoretic approach may
be effective in constructing Lyapunov functions, in particular, the global stability
of the unique endemic equilibrium in multigroup models.

The purpose of this paper is to investigate a SEIR model with a general nonlin-
ear incidence rate and relapse in heterogeneous populations. We will carry out a
complete mathematical analysis of the model and study its global dynamics. The
basic reproduction number R0 is calculated. Under some biologically reasonable
assumptions, it is proved that when R0 ≤ 1 the DFE is globally asymptotically
stable by using a matrix-theoretic method and applying the Perron eigenvector,
and when R0 > 1 the EE is globally asymptotic stability by combining Kirchhoff’s
matrix tree theorem and a new combinatorial identity.

The article is organized as follows. In section 2, our general model, which includes
relapse in heterogeneous populations, is formulated. The basic reproduction number
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Figure 1. Transfer diagram for model (1)

R0 is calculated and the stability of the disease-free equilibrium is considered in
section 3. In section 4, we study the global asymptotic stability of the endemic
equilibrium. A brief discussion is given in section 5.

2. Model formulation. In order to formulate a general multigroup disease model
with relapse, we partition the population into n distinct groups (n ≥ 1). For 1 ≤ i ≤
n, the i-th group is further divided into four compartments: susceptible, exposed,
infectious, and recovered, whose numbers of individuals at time t are denoted by
Si(t), Ei(t), Ii(t) and Ri(t), respectively. The disease incidence in the i-th group,
assuming a more general nonlinear incidence form, can be calculated as

n
∑

j=1

βijfij(Si, Ij),

where βij represents the transmission coefficient between compartments Si and Ij .
The matrix [βij ] is the contact matrix, where βij ≥ 0. Functions fij describe the
incidence for infections occurred among contacts of Si and Ij . Here, suppose the
form of fij is a nonlinear incidence

fij = φi(Si)ψj(Ij).

The new multigroup epidemic model with nonlinear incidence rates and relapse is
as follows:

S′
i = Λi −

n
∑

j=1

βijφi(Si)ψj(Ij)− dSi Si,

E′
i =

n
∑

j=1

βijφi(Si)ψj(Ij)− dEi Ei − εiEi,

I ′i = εiEi − (dIi + ri + αi)Ii + ηiRi,

R′
i = riIi − dRi Ri − ηiRi, i = 1, 2, . . . , n.

(1)
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Here Λi represents the influx of individuals into the i-th group, dSi , d
E
i , d

I
i and dRi

represent death rates of S,E, I and R populations in the i-th group, respectively. εi
represents the rate of becoming infectious after a latent period in the i-th group, ri
represents the recovery rate of infectious individuals in the i-th group, αi represents
disease-caused death rate in the i-th group and ηi represents the rate that recovered
individuals relapse and regain infectiousness in the i-th group. All parameter values
are assumed to be nonnegative and Λi, d

S
i , d

E
i > 0 for all i. Nonnegative functions

φi and ψi are assumed to be differentiable and have the following properties:
(H1) (nonnegativity) All nonnegative functions φi and ψi only vanish at 0.
(H2) (monotone)φi and ψi are monotonically nondecreasing.
(H3) (concavity) ψj(Ij)/Ij are monotonically nonincreasing.

Classes of φi(Si), ψj(Ij) that satisfy assumptions (H1), (H2) and (H3) include com-
mon incidence functions such as φi(Si) = Si, φi(Si) = Si/(1 + λiSi), ψj(Ij) =
Ipj (0 < p ≤ 1) and ψj(Ij) = Ij/(1 + αjIj).

Remark 2.1. If the function ψj(Ij) (j = 1, 2, · · · , n) satisfies that the second order
derivative ψ′′

j (Ij) exists and ψ
′′
j (Ij) ≤ 0 for all Ik ∈ [0,∞), then we can easily prove

that ψj(Ij)/Ij is monotonically decreasing on Ij ∈ (0,∞).

For biological considerations, we are interested in solutions that are nonnegative
and bounded. It can be easily proved that the solutions of model (1) with the initial
conditions

Si(0) > 0, Ei(0) > 0, Ii(0) > 0, Ri(0) > 0, i = 1, 2, · · · , n (2)

stay nonnegative for all t ≥ 0.
For each i, adding the four equations in (1) gives

(Si + Ei + Ii +Ri)
′ = Λi − dSi Si − dEi Ei − (dIi + αi)Ii − dRi Ri

≤ Λi − d∗i (Si + Ei + Ii +Ri),

where d∗i = min{dSi , d
E
i , d

I
i +αi, d

R
i }. Hence lim supt→∞(Si+Ei+ Ii+Ri) ≤ Λi/d

∗
i .

This indicates that the region

Γ = {(S1, E1, I1, R1, . . . , Sn, En, In, Rn) ∈ R
4n
+ : Si + Ei + Ii +Ri ≤

Λi

d∗i
} (3)

is positively invariant with respect to model (1) and the model is well posed. Let
Γ◦ denote the interior of Γ. Our results in this paper will be stated for model (1)
in Γ.

3. Basic reproduction number and DFE. Model (1) always has the disease-
free equilibrium

P0 = (S0
1 , 0, 0, 0, S

0
2 , 0, 0, 0, . . . , S

0
n, 0, 0, 0)

with S0
i = Λi/d

S
i . Following the next generation matrix approach [5, 34] with disesae

compartments x = (E1, E2, . . . , En, I1, I2, . . . , In, R1, R2, . . . , Rn)
T and nondisease

compartments y = (S1, . . . , Sn)
T , define two 3n× 3n matrices F and V :

F =









0 F1 0

0 0 0

0 0 0









, V =









V1 0 0

−V2 V3 −V4

0 −V5 V6









with F1 = [βijφi(S
0
i )ψ

′
j(0)], V1 = diag{dE1 +ε1, . . . , d

E
n +εn}, V2 = diag{ε1, . . . , εn},

V3 = diag{dI1+r1+α1, . . . , d
I
n+rn+αn}, V4 = diag{η1, . . . , ηn}, V5 = diag{r1, . . . ,
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rn}, and V6 = diag{dR1 +η1, . . . , d
n
1+ηn}. By the inverse operation of block matrices,

we can obtain

V−1 =








V −1
1 0 0

V −1
3 V4H

−1V5V
−1
3 V2V

−1
1 + V −1

3 V2V
−1
1 V −1

3 V4H
−1V5V

−1
3 + V −1

3 V −1
3 V4H

−1

H−1V5V
−1
3 V2V

−1
1 H−1V5V

−1
3 H−1









with H = −V5V
−1
3 V4 + V6. Substituting Vi(i = 1, . . . , 6) into V −1, we have

V−1 =









A 0 0

B C D

E F G









where

A = V −1
1 = diag{1/dE1 + ε1, . . . , 1/d

E
n + εn},

B = diag{l1, l2 . . . , ln},

C = diag{m1,m2, . . . ,mn},

D = diag{n1, n2 . . . , nn},

E = diag{r1ε1/
{

[(dR1 + η1)(d
I
1 + α1) + dR1 r1][d

E
1 + ε1]

}

, . . . ,

rnεn/
{

[(dRn + ηn)(d
I
n + αn) + dRn rn][d

E
n + εn]

}

},

F = diag{r1/
[

(dR1 + η1)(d
I
1 + α1) + dR1 r1

]

, . . . , rn/
[

(dRn + ηn)(d
I
n + α1) + dRn rn

]

},

G = diag{dI1 + r1 + α1/
[

(dR1 + η1)(d
I
1 + α1) + dR1 r1

]

, . . . ,

dIn + rn + αn/
[

(dRn + ηn)(d
I
n + α1) + dRn rn

]

},

in which

li =
εi(d

R
i + ηi)

[(dRi + ηi)(dIi + αi) + dRi ri][d
E
i + εi]

,

mi =
(dRi + ηi)

(dRi + ηi)(dIi + αi) + dRi ri
,

ni =
ηi

(dRi + ηi)(dIi + αi) + dRi ri
,

and i = 1, 2, . . . , n. Thus the basic reproduction number can be calculated as

R0 = ρ(FV −1) = ρ(F1B) = ρ([βijφi(S
0
i )ψ

′
j(0)lj ]) (4)

and ρ denotes the spectral radius (see [5, 34]).

Remark 3.1. Here R0 is the spectral radius of the matrix [βijφi(S
0
i )ψ

′
j(0)lj]n×n.

From the epidemiological point of view, each entry of this matrix can be interpreted
as the product of the adequate contact rate βijψ

′
j(0), with the susceptible φi(S

0
i )

at the i-th group, and the death-adjusted mean time

εj(d
R
j + ηj)

[(dRj + ηj)(dIj + αj) + dRj rj ][d
E
j + εj]
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in the infective class at the j-th group on multiple passes. Note that a fraction of
the last expression is given by the sum of the geometric series

1

dIj + rj + αj

(

1 +
rj

dIj + rj + αj

ηj
dRj + ηj

+
rj

2

(dIj + rj + αj)2
ηj

2

(dRj + ηj)2
+ · · ·

)

,

where 1/(dIj + rj + αj) is the average time in the infective class on the first pass,

rj/(d
I
j + rj + αj) is the probability of surviving this class, and ηj/(d

R
j + ηj) is the

probability of surviving the recovered class.

Theorem 3.2. Suppose that the contact matrix [βij ] is irreducible and assumptions
(H1)− (H3) hold. Then the following results hold for model (1).

(1) If R0 ≤ 1, then the DFE P0 is globally asymptotically stable in Γ.
(2) If R0 > 1, then the DFE P0 is unstable.

Proof. Since x′ = (F − V )x− f(x, y) with

f(x, y) =
(

n
∑

j=1

β1j(φ1(S1)ψj(Ij)− φ1(S
0
1)ψ

′
j(0)Ij), . . . ,

n
∑

j=1

βnj(φn(Sn)ψj(Ij)− φn(S
0
n)ψ

′
j(0)Ij), 0, . . . , 0, 0, . . . , 0

)T

.

Since [βij ] is irreducible, it follows that the matrix BF1 is also irreducible. Using
the Perron-Frobenius theorem [1], the nonnegative matrix BF1 has a positive left
eigenvector (υ1, υ2, . . . , υn) corresponding to the spectral radius ρ(F1B) = R0 > 0.

Motivated by [25, 29, 26], consider a Lyapunov function for model (1)

L =

n
∑

i=1

υiliEi +

n
∑

i=1

υimiIi +

n
∑

i=1

υiniRi.

Differentiating L along the solutions of the equation x′ = (F − V )x − f(x, y), we
have

L′ =

n
∑

i=1

υiliĖi +

n
∑

i=1

υimiİi +

n
∑

i=1

υiniṘi

=
n
∑

i=1

υili

{

− (dEi + εi)Ei +
n
∑

j=1

βijφi(S
0
i )ψ

′
j(0)Ij

+

n
∑

j=1

βijφi(S
0
i )Ij(

φi(Si)ψj(Ij)

φi(S0
i )Ij

− ψ′
j(0))

}

+

n
∑

i=1

υimi

{

εiEi − (dIi + ri + αi)Ii + ηiRi

}

+

n
∑

i=1

υini

{

riIi − (dRi + ηi)Ri

}

=

n
∑

i=1

υili

n
∑

j=1

βijφi(S
0
i )Ij(

φi(Si)ψj(Ij)

φi(S0
i )Ij

− ψ′
j(0))

+
n
∑

i=1

υili

n
∑

j=1

βijφi(S
0
i )ψ

′
j(0)Ij −

n
∑

i=1

υiIi
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=

n
∑

i=1

υili

n
∑

j=1

βijφi(S
0
i )Ij(

φi(Si)ψj(Ij)

φi(S0
i )Ij

− ψ′
j(0))

+

n
∑

j=1

Ij

n
∑

i=1

βijφi(S
0
i )ψ

′
j(0)υili −

n
∑

i=1

υiIi

=

n
∑

i=1

υili

n
∑

j=1

βijφi(S
0
i )Ij(

φi(Si)ψj(Ij)

φi(S0
i )Ij

− ψ′
j(0)) +

n
∑

i=1

(R0 − 1)υiIi

≤ 0 if R0 ≤ 1.

(5)

Let

M = {(S1, E1, I1, R1, . . . , Sn, En, In, Rn) | L
′ = 0}.

If R0 < 1, from the last equality of (5) and υi > 0, L′ = 0 implies that Ii = 0 for
all 1 ≤ i ≤ n and t ≥ 0. It can be verified that the largest invariant set in M is the
singleton {P0}.

If R0 = 1, then

L′ =

n
∑

i=1

υili

n
∑

j=1

βijφi(Si)ψj(Ij)−

n
∑

i=1

υiIi

=
n
∑

j=1

Ij

n
∑

i=1

υiliβijφi(Si)
ψj(Ij)

Ij
−

n
∑

j=1

υjIj .

Since in Γ, it holds that 0 ≤ Si ≤ S0
i , ψi(Ii) ≤ ψ′

i(0)Ii for i = 1, 2, · · · , n. Let

Q̃ = [βijφi(Si)ψj(Ij)li/Ij ], Q = F1B = [βijφi(S
0
i )ψ

′
j(0)lj ], we have 0 ≤ Q̃ ≤ Q.

Since [βij ] is irreducible, we obtain that Q̃ and Q are also irreducible. Therefore,

ρ(Q̃) < ρ(Q) = 1, provided Si 6= S0
i for all i = 1, 2, · · · , n. Moreover, denote

I = (I1, I2, . . . , In)
T , we know that Q̃I = I only has the trivial solution I = 0 if

ρ(Q̃) < 1. Furthermore, we have L′ = (υ1, υ2, . . . , υn)(Q̃I − I). Therefore, L′ = 0
implies that I = 0 or Si = S0

i for i = 1, 2, · · · , n. The same result holds that the
largest invariant set in M is the singleton {P0} provided R0 = 1. By LaSalle’s
Invariance Principle [18], P0 is globally asymptotically stable in Γ if R0 ≤ 1.

If R0 > 1 and I 6= 0, it follows that
∑n

i=1(R0 − 1)υiIi > 0, which implies that
by continuity L′ > 0 in a small enough neighborhood of P0 in Γ◦. Therefore, P0 is
unstable when R0 > 1.

Using the uniform persistence result from [7] and a similar argument as in the
proof of Proposition 3.3 of [19], we can show that, when R0 > 1, the instability of
P0 implies uniform persistence of model (1).

Remark 3.3. Uniform persistence of model (1), together with the positive invari-
ance of compact set Γ, implies that the existence of an equilibrium of model (1) in
Γ◦ (see Theorem 2.8.6 in [2] or Theorem D.3 in [30]).

Furthermore, we have the following result for model (1).

Theorem 3.4. Suppose that the contact matrix [βij ] is irreducible and assumptions
(H1)− (H3) hold. If R0 > 1, then model (1) is uniformly persistent in Γ◦ and there
exists at least one endemic equilibrium for model (1) in Γ◦.
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4. Global stability of EE. By Theorem 3.4, an endemic equilibrium P ∗ = (S∗
1 ,

E∗
1 , I

∗
1 , R

∗
1, S

∗
2 , E

∗
2 , I

∗
2 , R

∗
1, . . . , S

∗
n, E

∗
n, I

∗
n, R

∗
n) exists. Here S∗

i > 0, E∗
i > 0, I∗i >

0, R∗
i > 0 (i = 1, 2, . . . , n) and it satisfies the following equilibrium equations:

Λi −

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )− dSi S

∗
i = 0,

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )− (dEi + εi)E

∗
i = 0,

εiE
∗
i − (dIi + ri + αi)I

∗
i + ηiR

∗
i = 0,

riI
∗
i − dRi R

∗
i − ηiR

∗
i = 0, i = 1, 2, . . . , n.

(6)

In this section, we prove that the endemic equilibrium P ∗ is globally asymp-
totically stable when R0 > 1. In particular, this result implies that the endemic
equilibrium is unique in the interior of Ω when it exists.

Theorem 4.1. Suppose that the contact matrix [βij ] is irreducible and assumptions
(H1) − (H3) hold. Then, when R0 > 1, the endemic equilibrium P ∗ is globally
asymptotically stable in the interior of Ω.

Proof. For the convenience of discussion, let us consider three special cases of system
(1).

Case 1. ηi > 0 for all i = 1, 2, . . . , n. Let

Di =

∫ Si

S∗

i

φi(z)− φi(S
∗
i )

φi(z)
dz + Ei − E∗

i − E∗
i ln

Ei

E∗
i

,

Dn+i = Ii − I∗i − I∗i ln
Ii
I∗i
,

D2n+i = Ri −R∗
i −R∗

i ln
Ri

R∗
i

, i = 1, 2, . . . .n.

For i = 1, 2 . . . , n, differentiating Di, Dn+i and D2n+i along the solutions of model
(1), by the equilibrium equations (6) we obtain

D′
i = (1−

φi(S
∗
i )

φi(Si)
)

{

− dSi (Si − S∗
i ) +

n
∑

j=1

βij

(

φi(S
∗
i )ψj(I

∗
j )− φi(Si)ψj(Ij)

)

}

+(1−
E∗

i

Ei

)

{

n
∑

j=1

βijφi(Si)ψj(Ij)− dEi Ei − εiEi

}

≤

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )
(

1−
φi(S

∗
i )

φi(Si)

)(

1−
φi(Si)ψj(Ij)

φi(S∗
i )ψj(I∗j )

)

+

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )
( φi(Si)ψj(Ij)

φi(S∗
i )ψj(I∗j )

−
Ei

E∗
i

)(

1−
E∗

i

Ei

)

=

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )
(

2−
Ei

E∗
i

−
φi(S

∗
i )

φi(Si)
−
φi(Si)ψj(Ij)E

∗
i

φi(S∗
i )ψj(I∗j )Ei

+
ψj(Ij)

ψj(I∗j )

)

≤

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )
(

ln
ψj(I

∗
j )

ψj(Ij)
+ ln

Ei

E∗
i

−
Ei

E∗
i

+
ψj(Ij)

ψj(I∗j )

)
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≤

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )

{

(

1−
ψj(I

∗
j )Ij

ψj(Ij)I∗j

)(ψj(Ij)

ψj(I∗j )
− 1

)

+
Ij
I∗j

− ln
Ij
I∗j

−
Ei

E∗
i

+ ln
Ei

E∗
i

}

≤

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

−
Ei

E∗
i

+ ln
Ei

E∗
i

)

=:

n
∑

j=1

ai,n+jGi,n+j ,

D′
n+i =

(

1−
I∗i
Ii

){

εiEi − (dIi + ri + αi)Ii + ηiRi

}

= εiE
∗
i

(Ei

E∗
i

−
Ii
I∗i

)(

1−
I∗i
Ii

)

+ ηiR
∗
i

(Ri

R∗
i

−
Ii
I∗i

)(

1−
I∗i
Ii

)

≤ εiE
∗
i

(Ei

E∗
i

−
Ii
I∗i

− ln
Ei

E∗
i

+ ln
Ii
I∗i

)

+ ηiR
∗
i

(Ri

R∗
i

−
Ii
I∗i

− ln
Ri

R∗
i

+ ln
Ii
I∗i

)

=: an+i,iGn+i,i + an+i,2n+iGn+i,2n+i,

and

D′
2n+i =

(

1−
R∗

i

Ri

){

riIi − dRi Ri − ηiRi

}

= riI
∗
i

( Ii
I∗i

−
Ri

R∗
i

)(

1−
R∗

i

Ri

)

≤ riI
∗
i

( Ii
I∗i

−
Ri

R∗
i

− ln
Ii
I∗i

+ ln
Ri

R∗
i

)

=: a2n+i,n+iG2n+i,n+i.

Define the weighted digraph (G, A) here with entries of matrix A given above, and
let ci be the cofactor of the i-th diagonal element of the Laplacian matrix of (G, A).
The out-degree d+(i) is the number of arcs whose initial vertex is i. Since d+(2n+
i) = 1 for each i (see Figure 2), by Theorem A.3 in the Appendix, cn+ian+i,2n+i =
c2n+ia2n+i,n+i. Since d

+(i) = 1 for each i (see Figure 2), by Theorem A.3 in the
Appendix, cn+ian+i,i =

∑n

j=1 ciai,n+j . Thus

i n + i 2n + i

j n + j 2n + j

ai,n+i

an+i,i

an+i,2n+i

a2n+i,n+i

aj,n+iai,n+j

an+j,j

aj,n+j

a2n+j,n+j

an+j,2n+j

Figure 2. The weight digraph (G, A) constructed for model (1) with three groups.
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D =

n
∑

i=1

ciDi +

n
∑

i=1

cn+iDn+i +

n
∑

i=1

cn+ian+i,2n+i

D2n+i

a2n+i,n+i

. (7)

Since Gn+i,2n+i +G2n+i,n+i = 0 and

Gi,n+j +Gn+i,i =
Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i
,

it follows that

D′ ≤

n
∑

i=1

n
∑

j=1

ciai,n+jGi,n+j +

n
∑

i=1

cn+i

(

an+i,iGn+i,i + an+i,2n+iGn+i,2n+i

)

+
n
∑

i=1

cn+ian+i,2n+i

D2n+i

a2n+i,n+i

≤

n
∑

i=1

n
∑

j=1

ciai,n+jGi,n+j +

n
∑

i=1

cn+ian+i,iGn+i,i

+

n
∑

i=1

cn+ian+i,2n+iGn+i,2n+i +

n
∑

i=1

cn+ian+i,2n+iG2n+i,n+i

=

n
∑

i=1

n
∑

j=1

ciai,n+jGi,n+j +

n
∑

i=1

n
∑

j=1

ciai,n+jGn+i,i

=

n
∑

i=1

n
∑

j=1

ciai,n+j

( Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i

)

.

(8)

Let c̃i, i = 1, 2, . . . , n, be given as in Proposition A.1 in the Appendix with (G̃, Ã),

where the entry of the n× n matrix Ã = [ãij ] is defined as ãij = ai,n+j . Let

c̃n+i =
n
∑

j=1

c̃i
ai,n+j

an+i,i

and

c̃2n+i = c̃n+i

an+i,2n+i

a2n+i,n+i

.

Now, we claim that

D̃ =

n
∑

i=1

c̃iDi +

n
∑

i=1

c̃n+iDn+i +

n
∑

i=1

c̃2n+iD2n+i

is a Lyapunov function for model (1). In fact, replacing all ci by c̃i in the calculation
of (7) yields

D̃′ ≤
n
∑

i=1

n
∑

j=1

c̃iãi,n+j

( Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i

)

.

Furthermore, by Theorem A.2 in the Appendix, we can obtain that

n
∑

i=1

n
∑

j=1

c̃iãi,n+j

( Ii
I∗i

− ln
Ii
I∗i

)

=
n
∑

i=1

n
∑

j=1

c̃iãi,n+j

( Ij
I∗j

− ln
Ij
I∗j

)

.
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Then

D̃′ ≤

n
∑

i=1

n
∑

j=1

c̃iãi,n+j

( Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i

)

=

n
∑

i=1

n
∑

j=1

c̃iãi,n+j

( Ij
I∗j

− ln
Ij
I∗j

)

−

n
∑

i=1

n
∑

j=1

c̃iãi,n+j

( Ii
I∗i

− ln
Ii
I∗i

)

= 0.

It can be verified that the largest invariant set where D̃′ = 0 is the singleton {P ∗}.
Therefore, by LaSalle’s invariance principle, P ∗ is GAS in the interior of Ω.

Case 2. ηi = 0 for all i = 1, 2, . . . , n. Then model (1) becomes the following model

S′
i = Λi −

n
∑

j=1

βijφi(Si)ψj(Ij)− dSi Si,

E′
i =

n
∑

j=1

βijφi(Si)ψj(Ij)− dEi Ei − εiEi,

I ′i = εiEi − (dIi + ri + αi)Ii,

R′
i = riIi − dRi Ri, i = 1, 2, . . . , n.

(9)

It may be readily seen that the first 3n equations in (9) are independent of the
variable Ri. Thus, the model can be reduced to the following multi-group system

S′
i = Λi −

n
∑

j=1

βijφi(Si)ψj(Ij)− dSi Si,

E′
i =

n
∑

j=1

βijφi(Si)ψj(Ij)− dEi Ei − εiEi,

I ′i = εiEi − (dIi + ri + αi)Ii, i = 1, 2, . . . , n.

(10)

Let

Di =

∫ Si

S∗

i

φi(z)− φi(S
∗
i )

φi(z)
dz + Ei − E∗

i − E∗
i ln

Ei

E∗
i

+
di + εi
εi

(Ii − I∗i − I∗i ln
Ii
I∗i

).

For i = 1, 2, . . . , n, differentiating Di along the solutions of model (10), by a similar
calculation, we have

D′
i

∣

∣

(10)
≤

n
∑

j=1

βijφi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i

)

=:
n
∑

j=1

aij

( Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i

)

with aij = βijφi(S
∗
i )ψj(I

∗
j ). A weighted digraph G can be constructed to associate

with the weighted matrix A = [aij ]. Obviously, the irreducibility of [βij ] shows
that this weighted digraph (G, A) is strongly connected. Furthermore, for ci, i =
1, 2, . . . , n, given as in Proposition A.1 in the Appendix, (G, A) is positive by using
the Kirchhoff’s matrix tree theorem. Thus, we can construct a Lyapunov function
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D =
∑n

i=1 ciDi, through the similar analysis of (8), it can be proved that P ∗ is
GAS in the interior of Ω.

Case 3. ηi > 0 for all i = 1, 2, . . . ,m and ηj = 0 for all i = m + 1,m + 2, . . . , n
(1 ≤ m < n). Model (1) becomes the following system

S′
i = Λi −

n
∑

j=1

βijφi(Si)ψj(Ij)− dSi Si,

E′
i =

n
∑

j=1

βijφi(Si)ψj(Ij)− dEi Ei − εiEi,

I ′i = εiEi − (dIi + ri + αi)Ii + ηiRi,

R′
i = riIi − dRi Ri − ηiRi, i = 1, 2, . . . ,m,

S′
i = Λi −

n
∑

j=1

βijφi(Si)ψj(Ij)− dSi Si,

E′
i =

n
∑

j=1

βijφi(Si)ψj(Ij)− dEi Ei − εiEi,

I ′i = εiEi − (dIi + ri + αi)Ii, i = m+ 1,m+ 2, . . . , n.

(11)

Let

Di =

∫ Si

S∗

i

φi(z)− φi(S
∗
i )

φi(z)
dz + Ei − E∗

i − E∗
i ln

Ei

E∗
i

,

Dn+i = Ii − I∗i − I∗i ln
Ii
I∗i
, i = 1, 2, . . . , n.

and

D2n+i = Ri −R∗
i −R∗

i ln
Ri

R∗
i

, i = 1, 2, . . . ,m.

By similar calculations in the previous cases, we have the following inequalities:

D′
i ≤

( Ij
I∗j

− ln
Ij
I∗j

−
Ei

E∗
i

+ ln
Ei

E∗
i

)

=:

n
∑

j=1

ai,n+jGi,n+j ,

for all i = 1, 2, . . . , n, and

D′
n+i ≤ εiE

∗
i

(Ei

E∗
i

−
Ii
I∗i

− ln
Ei

E∗
i

+ ln
Ii
I∗i

)

+ ηiR
∗
i

(Ri

R∗
i

−
Ii
I∗i

− ln
Ri

R∗
i

+ ln
Ii
I∗i

)

=: an+i,iGn+i,i + an+i,2n+iGn+i,2n+i,

D′
2n+i ≤ riI

∗
i

( Ii
I∗i

−
Ri

R∗
i

− ln
Ii
I∗i

+ ln
Ri

R∗
i

)

=: a2n+i,n+iG2n+i,n+i,

for all i = 1, 2, . . . ,m, and

D′
n+i ≤ εiE

∗
i

( Ei

E∗
i

−
Ii
I∗i

− ln
Ei

E∗
i

+ ln
Ii
I∗i

)

=: an+i,iGn+i,i,

for all i = m+ 1,m+ 2, . . . , n. Define a weighted graph (G, A) associated with the
weight matrix A = [aij ], it can be easily obtained that this directed graph G consists
of 2n + m vertices (see Figure 3). From Figure 3, we can find that this directed
graph G is strongly connected. Thus, ci > 0 for all i = 1, 2, . . . , (2n+m) by using
the Kirchhoff’s matrix tree theorem.
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Constructing the following Lyapunov function

D =

n
∑

i=1

ciDi +

n
∑

i=1

cn+iDn+i +

m
∑

i=1

c2n+iD2n+i. (12)

From Figure 3, we can find that d+(2n + i) = 1 for each i = 1, 2, . . . ,m and
d+(i) = 1 for each i = 1, 2, . . . , n. Applying Theorem A.3 in the Appendix, we
have cn+ian+i,2n+i = c2n+ia2n+i,n+i for each i = 1, 2, . . . ,m and cn+ian+i,i =
∑n

j=1 ciai,n+j for each i = 1, 2, . . . , n.

1 2 m m + 1 m + 2 n

n + 1 n + 2 n + m n+m+ 1 n +m+ 2 2n

2n + 1 2n + 2 2n + m

Figure 3. The weight digraph (G, A) constructed for model (11).

Differentiating D along the solutions of model (11) and following the proofs of
Cases 1 and 2, we obtain:

D′|(11) =

n
∑

i=1

ciD
′
i +

m
∑

i=1

cn+iD
′
n+i +

n
∑

i=m+1

cn+iD
′
n+i +

m
∑

i=1

c2n+iD
′
2n+i

≤

n
∑

i=1

n
∑

j=1

ciai,n+jGi,n+j +

m
∑

i=1

cn+i(an+i,iGn+i,i + an+i,2n+iGn+i,2n+i)

+
n
∑

i=m+1

cn+ian+i,iGn+i,i +
m
∑

i=1

cn+ian+i,2n+i

a2n+i,n+i

a2n+i,n+iG2n+i,n+i

=

n
∑

i=1

n
∑

j=1

ciai,n+j

( Ij
I∗j

− ln
Ij
I∗j

−
Ii
I∗i

+ ln
Ii
I∗i

)

.

(13)
Comparing (8) and (13), we find that the same inequality holds. Therefore, it can
also be proved that P ∗ is GAS in the interior of Ω.

Remark 4.2. Biologically, Theorems 3.2 and 4.1 imply that if the basic repro-
duction number R0 ≤ 1, then the disease will be eradicated in all groups; if the
basic reproduction number R0 > 1, then the disease will break out and persist at
the unique endemic equilibrium level in all groups, independent of initial values.
Furthermore, Theorems 3.2 and 4.1 show that model (1) has the sharp threshold
property if the basic reproduction number R0 is given by (4).



112 XIAOMEI FENG, ZHIDONG TENG AND FENGQIN ZHANG

When n = 1, φ(S) = S, ψ(I) = I, and dS = dE = dI = dR = d, model (1)
reduces to a single-group SEIR model with relapse,

S = Λ− βSI − dS,

E = βSI − (d+ ε)E,

I = εE − (d+ r + α)I + ηR,

R = rI − (d+ η)R

(14)

According to (4), R0 reduces to

R0 = βS0 ε(dR + η)

[(dR + η)(dI + α) + dRr][dE + ε]
.

Applying Theorems 3.2 and 4.1, we have the following result.

Corollary 4.3. Consider model (14). If R0 ≤ 1, then the disease-free equilibrium
is GAS; If R0 > 1, then the endemic equilibrium is GAS.

Remark 4.4. Compared to results in section 5 of reference [29], Corollary 4.1 is
the same as Theorem 5.1 in [29].

5. Discussion. In this paper, we have proposed a general multi-group model to
capture the features of some infectious disease with latency and relapse in heteroge-
neous populations. The model can describe disease progression such as gonorrhea,
the co-infection of HIV and HCV, in which individuals can be divided into groups
according to distinct numbers of sexual partners.

We carried out a complete mathematical analysis of the model and established
its global dynamics. The basic reproduction number R0 was calculated. It is proved
that if R0 ≤ 1 then the disease-free equilibrium is globally asymptotically stable by
using a matrix-theoretic method and applying the Perron eigenvector, and if R0 > 1
then the endemic equilibrium is globally asymptotic stability by combining Kirch-
hoff’s matrix tree theorem and a new combinatorial identity. Our theoretical results
show that the disease either dies out or remains endemic completely depending on
the value of the basic reproduction number.

Some epidemic models with an arbitrarily distributed exposed stage have been
studied in the literature; see for example [35, 36]. It is thus of interest to investigate
multi-group models with relapse and a general exposed distribution. Therefore,
the following multi-group SEIR epidemic model with relapse and a general exposed
distribution

S′
i(t) = Λi −

n
∑

j=1

βijφi(Si(t))ψj(Ij(t)) − diSi(t),

E′
i(t) =

n
∑

j=1

βijφi(Si(t))ψj(Ij(t))− diEi(t)

+

n
∑

j=1

∫ t

0

βijφi(Si(u))ψj(Ij(u))e
−di(t−u)dtPi(t− u)du,

I ′i(t) = −
n
∑

j=1

∫ t

0

βijφi(Si(u))ψj(Ij(u))e
−di(t−u)dtPi(t− u)du

−(di + ri + αi)Ii(t) + ηiRi(t),

R′
i(t) = riIi(t)− diRi(t)− ηiRi(t), i = 1, 2, . . . , n.
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will be our further work. As noted in the introduction, a high incidence of HCV
relapse is also reported in HIV-1-coinfected patients. It also would be interesting
and worthwhile to set up multi-group models to investigate the effect of HIV on the
relapse rate in HCV.

Appendix. Some basic concepts from graph theory can be found in [8]. Let (G, H)
be a weighted digraph with n vertices, define the n × n weight matrix H = [hij ],
where hij > 0 if there exists an arc (j, i) from vertex j to vertex i, otherwise hij = 0.
Let ci be the cofactor of the i-th diagonal element of the Laplacian matrix of H
which is defined as

hij =

{

−hij for i 6= j
∑

k 6=i hik for i = j

[21]. The following result (Kirchhoff’s matrix tree theorem) gives the graph-theoretic
description of the cofactor ci.

Proposition A.1. [21] Assume n ≥ 2. Then

ci =
∑

T ∈Ti

w(T ), i = 1, 2, . . . , n,

where Ti is the set of all spanning trees T of (G,H) that are rooted at vertex i, and
w(T ) is the weight of T . In particular, if (G,H) is strongly connected, then ci > 0
for 1 ≤ i ≤ n.

Theorem A.2. [29] Assume n ≥ 2. Let ci be given as in Proposition A.1, and let
{Gi(z)

n
i=1} be any family of functions with z = (z1, z2, . . . , zm)T ∈ R

m. Then
n
∑

i,j=1

cihijGi(z) =

n
∑

i,j=1

cihijGj(z).

Theorem A.3. [29] Assume n ≥ 2. Let ci be given as in Proposition A.1. If hij > 0
and d+(j) = 1 for some i, j, then

cihij =
n
∑

k=1

cjhjk.
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