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Abstract. Allee effects make populations more vulnerable to extinction, espe-
cially under severe harvesting or predation. Using a delay-differential equation

modeling the evolution of a single-species population subject to constant ef-

fort harvesting, we show that the interplay between harvest strength and Allee
effects leads not only to collapses due to overexploitation; large delays can

interact with Allee effects to produce extinction at population densities that

would survive for smaller time delays. In case of bistability, our estimations on
the basins of attraction of the two coexisting attractors improve some recent

results in this direction. Moreover, we show that the persistent attractor can

exhibit bubbling: a stable equilibrium loses its stability as harvesting effort in-
creases, giving rise to sustained oscillations, but higher mortality rates stabilize

the equilibrium again.

1. Introduction. The difficulty of finding mates, genetic inbreeding, demographic
stochasticity, or predation processes have been identified as biological causes of
the commonly known Allee effect, see [3, 4, 27]. This effect is manifested in a re-
duction of individual fitness at low levels of population, which produces in many
cases a strong Allee effect, characterized by the existence of a critical density (Allee
threshold) below which the population declines and goes extinct. Such a thresh-
old results in deep implications for conservation and management, especially for
exploited populations. For instance, De Roos and Persson [5] show that the de-
pletion of cod Ganus Morhua population in the west Atlantic is a consequence of
an overexploitation and the strong Allee effect. Specifically, a high harvesting in
the past has doomed the cod population to very low density levels, below the Allee
threshold. At this moment, although there is a ban on fishing cod populations for
the last years, the population does not display a substantial increment of size.

In this paper, we aim to contribute to a better understanding of the interplay
between exploitation or predation and the Allee effect, using a particular model for
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single-species populations. To be more precise, we investigate the dynamics of the
scalar delay-differential equation

x′(t) = −dx(t) + f(x(t− τ)), (1.1)

where d > 0 is the exploitation or predation rate, f : [0,∞) → [0,∞) is the
recruitment function exhibiting a strong Allee effect, and τ > 0 is a constant delay
in the birth process. As in most models in the ecological literature involving a
strong Allee effect, equation (1.1) typically possesses three equilibria 0 < N1 < N2,
where N1 is the Allee threshold and N2 usually stands for the carrying capacity;
see, e.g., [4] for several examples of these functions.

The model (1.1) with τ = 0 has already been considered in the framework of
exploited populations with Allee effects (see, for example [4, p. 76]). As we empha-
size in the present paper, the introduction of a delay term τ > 0 makes the role of
exploitation or predation in the evolution of (1.1) much subtler than merely an in-
stantaneous population reduction. Indeed, the qualitative behavior of the solutions
of equation (1.1) with τ = 0 is very simple: initial conditions below N1 converge to
zero, and initial conditions greater than N1 converge to N2. Increasing exploitation
does not change the dynamics but increases the corresponding Allee threshold N1

–making the Allee effect stronger– until it collides with the stable positive equilib-
rium at some critical rate d∗. For d > d∗, all solutions converge to zero. For τ > 0,
the situation is substantially different and new phenomena arise: on the one hand,
an increasing effort in exploitation or predation may both destabilize and stabilize
the equilibrium, giving rise to a bubble in the bifurcation diagram (cf. [15]). Thus,
the stable trivial equilibrium coexists with a nontrivial attractor, that switches from
an attracting equilibrium to a periodic orbit and then to an attracting equilibrium
again. On the other hand, an increasing delay may induce extinction, that is, for
the same initial function it can happen that the corresponding solution of (1.1)
converge to a positive equilibrium for small values of the delay, and to zero when τ
takes larger values.

The structure of the paper is as follows: in Section 2, we state the hypotheses
on function f that will be assumed throughout the paper, and formulate a result
on the dynamics of an associated discrete equation which will be useful along our
analysis. In Section 3, we establish our main results in regard to equation (1.1); in
particular, we give a criterion for (local) asymptotic stability of the greatest positive
equilibrium, and find some basins of attraction, improving recent results in [10]. In
Section 4, we consider as a case study (1.1) with the modified Ricker map f(x) =
ax2e−x, a > 0 (see, e.g., [1, 7, 10, 31]). For that example, we plot the stability
regions and divide the parameter plane (dτ, aτ) into several parts depending on
the dynamics of the solutions to (1.1) corresponding to initial conditions in some
particular regions; for other initial conditions, we present some interesting dynamics
based on numerical simulations and the intuition provided by two limiting cases
(τ = 0 and τ →∞). Finally, in the last section we discuss the main biological and
practical implications of our results.

Although we shall restrict our study to equation (1.1), some results remain valid
if we replace the term dx(t) by h(x(t)), where h : [0,∞) → [0,∞) is a continuous
and increasing function with h(0) = 0 [11, 20]. Let us mention as well that other
delayed models with Allee effect have been studied in, for example, [16, 25].
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2. A related discrete model. In this section, we consider a discrete version of
(1.1), namely,

xn+1 = g(xn) := d−1f(xn), n = 0, 1, . . . (2.1)

Several authors have used discrete models in the context of exploited populations
with Allee effect; see, e.g., [26, 27] and their references. Our main interest in (2.1)
comes from the fact that its analysis provides us with useful information to study
the dynamics of (1.1). This idea has been recently exploited for this model in [10],
and previously for other models governed by DDEs (see [11, 12, 19, 20, 22, 24, 32]
and references therein). Concerning the recruitment function, we work with the
following hypotheses:

(H)
(H1) f : [0,∞) → [0,∞) is a C1-unimodal map, with a unique critical point

c > 0, such that f ′(x) > 0 for all x ∈ (0, c) and f ′(x) < 0 for all x ∈ (c,∞).
(H2) f(0) = f ′(0) = 0, and limx→∞ f(x) = 0.
(H3) f has three fixed points 0 < x1 < x2, so that f(x) < x for all x ∈

(0, x1) ∪ (x2,∞) and f(x) > x for all x ∈ (x1, x2).
(H4) There is a unique c0 ∈ (0, c) such that f ′′(c0) = 0.

If we further assume the following condition:

(S) f is three times differentiable, and (Sf)(x) < 0 whenever f ′(x) 6= 0, where
Sf denotes the Schwarzian derivative of f , defined by

(Sf)(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

then there are three generic possibilities for the dynamics of model (2.1) (see [27]):
extinction; bistability between extinction and (possibly complex) survival; and es-
sential extinction. Extinction occurs when 0 is the only fixed point of g = d−1f , that
is, f(x) < dx for all x > 0. Essential extinction means that for a randomly chosen
initial condition, extinction occurs with probability one; however, the set of initial
conditions that do not lead to extinction is nonempty and define a chaotic repeller.
This phenomenon occurs when g has two positive fixed points N1(d) < N2(d), and
g2(c) < N1(d). Notice that hypotheses (H) imply that there is a d∗ > 1 such that
g has two positive fixed points for d ∈ (0, d∗), one positive fixed point for d = d∗,
and no positive fixed points for d > d∗.

An increasing mortality rate d switches the dynamics between the three pos-
sibilities. The transition from essential extinction to bistability takes place via a
boundary collision, when the basin of attraction of the nontrivial attractor collides
with the basin of attraction of zero, whereas the transition from bistability to ex-
tinction occurs via a saddle–node bifurcation at d = d∗, when N1(d) and N2(d)
coincide [2, 17, 26, 27]. See Figure 1.

We also remark that condition (S), together with (H2) and (H3), imply (H4).
This fact is a consequence of Rolle’s theorem and Property 3 in [28, p. 141]. Con-
dition (S) is satisfied by many common population models [27, 30].

The following summary result will be useful. By g−1(N1) we mean the only point
A > N1 such that g(A) = N1. For an attracting fixed point N∗ of g, we define
its immediate basin of attraction as the largest interval I∗ containing N∗ such that
limn→∞ gn(x) = N∗ for all x ∈ I∗.

Proposition 1. Let f be a function meeting conditions (H), and g = d−1f for
some d > 0. Define I = [g2(c), g(c)], J = (N1, g

−1(N1)), where c is the unique
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Figure 1. Bifurcation diagram of the Allee effect model (2.1) with
a modified Ricker map f(x) = 3x2e−x, using the mortality rate d
as the bifurcation parameter. The positive equilibria are plotted
only for d > d∗ ≈ 0.1528, for which a boundary collision occurs.
Red dashed lines indicate that the equilibrium is unstable. At
d = d∗ = 3e−1 ≈ 1.1036, N1(d) and N2(d) collide and disappear.

critical point of g, and N1 = N1(d) and N2 = N2(d) are the positive fixed points of
g, whenever they exist. Then:

1. (Extinction) If 0 is the only fixed point of g then all solutions of (2.1) converge
to 0.

2. (Semi-stability) If N1 = N2 then N2 is semi-stable, with immediate basin of
attraction J , and 0 is asymptotically stable with immediate basin of attraction
[0, N1).

3. (Bistability) If 0 < N1 < N2 and g2(c) > N1, then:
(a) 0 is asymptotically stable and its immediate basin of attraction is the

interval [0, N1).
(b) If g′(N2) ≥ 0, then N2 is asymptotically stable and attracts J .
(c) If g′(N2) < 0, then the interval I is invariant and attracts J .
(d) If (S) holds, and g′(N2) ≥ −1, then N2 is asymptotically stable and its

immediate basin of attraction is J .
4. (Essential extinction) If g2(c) < N1 then almost every solution (in the sense

of Lebesgue measure) of (2.1) converge to 0.

Proof. For all items except 3.(d), see [26, Theorem 1] and [27, Appendix]. Since
g2(c) > N1 implies that g(J) ⊂ J and N2 is the unique fixed point of g in J , the
proof of 3.(d) is a consequence of Singer’s results [30]; see [21, Proposition 3.3] for
a precise statement and its proof.

A prototype of the map g together with the significant intervals I and J are
shown in Figure 2.

Remark 1. In hypothesis (H2), it is possible to weaken the condition f ′(0) =
0 to f ′(0) ∈ [0, 1). If f ′(0) > 0 then the conclusions of Proposition 1 remain
essentially the same. The main difference is that the map g has a unique positive
fixed point for 0 < d < f ′(0), changing the strong Allee effect into a weak one (cf.
[4, Section 5.2.1]). In this case, essential extinction might not be observed because
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Figure 2. Graph y = g(x) of a map g modeling an Allee effect,
together with the intervals J = (N1, g

−1(N1)) and I = [g2(c), g(c)]
that play an important role in the statement of Proposition 1. The
straight line is the graph of y = x.

the Allee threshold is destroyed in a transcritical bifurcation when d = f ′(0), before
a boundary collision can occur.

3. Main results for the continuous model. In this section, we investigate the
dynamics of equation (1.1), with f satisfying (H). We are only interested in initial
conditions ϕ ∈ C+ = C([−τ, 0],R+). Standard arguments show that this set is
invariant, that is, if ϕ ∈ C+, then for all t > 0 the segment xt(ϕ) ∈ C+, where, as
usual, xt(ϕ)(s) = x(t + s, ϕ) for all s ∈ [−τ, 0], and x(t, ϕ) denotes the solution of
(1.1) with initial condition ϕ. Whenever it is not necessary to specify the initial
condition, we simply denote x(t) = x(t, ϕ).

First of all, we notice that the set of equilibria for equations (1.1) and (2.1)
coincide. Hence, under hypotheses (H), there is a d∗ > 1 such that (1.1) has two
positive equilibria for d ∈ (0, d∗), exactly one positive equilibrium for d = d∗, and 0
is the unique equilibrium point for d > d∗.

Combining Proposition 1 and some known results on invariance and attraction for
DDEs (see, e.g., [12, Theorems 2.1, 2.2, and 2.3]), we easily arrive at the following
result.

Theorem 3.1. Let the interval J be as in the statement of Proposition 1. Then:

1. If 0 is the only fixed point of g then all solutions of (1.1) converge to 0.
2. If N1 = N2 then all solutions x(t, ϕ) of (1.1) such that ϕ ∈ C([−τ, 0], J) con-

verge to N2. On the other hand, 0 attracts all solutions with initial condition
ϕ ∈ C([−τ, 0], [0, N1)).

3. If 0 < N1 < N2 then:
(a) 0 attracts all solutions x(t, ϕ) of (1.1) such that ϕ ∈ C([−τ, 0], [0, N1)).
(b) If g′(N2) ≥ 0, then N2 attracts all solutions with initial condition ϕ ∈
C([−τ, 0], J).

(c) If g′(N2) < 0 and g2(c) > N1, then all solutions x(t, ϕ) of (1.1) with
ϕ ∈ C([−τ, 0], J) satisfy

g2(c) ≤ lim inf
t→∞

x(t, ϕ) ≤ lim sup
t→∞

x(t, ϕ) ≤ g(c).
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(d) If g′(N2) ≥ −1 and (S) holds, then N2 attracts all solutions with initial
condition ϕ ∈ C([−τ, 0], J).

The results in Theorem 3.1 concerning convergence to zero can be derived from
[23, Theorem 1]. On the other hand, some of the conclusions of Theorem 3.1 have
been obtained in the recent paper [10] in a somehow more general setting. However,
the basin of attraction of the greatest positive equilibrium N2 is estimated only when
N2 ≤ c, that is, when g′(N2) ≥ 0. We recall that condition g′(N2) ≥ −1 required
in 3.(d) is the sharpest absolute (delay independent) condition for the asymptotic
stability of N2. In the next section, we revisit as a case study the example studied
in [10].

In addition, we can establish a sharp delay-dependent condition under which
N2 attracts all solutions x(t, ϕ) of (1.1) with ϕ ∈ C([−τ, 0], J). Indeed, after a
simple change of variables, and using item 3.(c) in Theorem 3.1, Corollary 2.3 in
[18] applies to prove the following result:

Theorem 3.2. Assume that (H) and (S) hold, and g2(c) > N1. As before, let
J = (N1, g

−1(N1)). The largest positive equilibrium N2 attracts all solutions x(t, ϕ)
of (1.1) with ϕ ∈ C([−τ, 0], J) if either g′(N2) ≥ −1 or g′(N2) < −1 and

e−dτ > −g′(N2) ln

(
(g′(N2))2 − g′(N2)

(g′(N2))2 + 1

)
. (3.1)

The exact condition for the local asymptotic stability of N2 is also well known
(see, e.g., [6]).

Proposition 2. The positive equilibrium N2 of (1.1) is asymptotically stable if
either g′(N2) ≥ −1 or g′(N2) < −1 and

arccos (1/g′(N2)) > dτ
√
−1 + (g′(N2))2. (3.2)

We emphasize that, with the exception of 3.(a) in Theorem 3.1, we cannot deduce
any result for the dynamics of (1.1) from the discrete equation (2.1) in the case of
essential extinction, that is, when g2(c) < N1. An interesting question is whether
or not essential extinction is possible in the continuous model (1.1). Of course, it
is not possible when N2 is asymptotically stable, in particular, by Proposition 2,
when τ is small enough.

4. The interplay between delay and exploitation: A case study. In this
section, we apply our results to the following equation:

x′(t) = −dx(t) + ax2(t− τ)e−x(t−τ), (4.1)

where d, a and τ are positive constants. This equation has the form of (1.1) with
f(x) = ax2e−x, and has been recently considered in [10]. Actually, the authors in
that reference work with f(N) = a1N

2e−a2N , but the change of variables x(t) =
a2N(t) transforms their model into (4.1) with a = a1/a2.

First of all, we notice that conditions (H) and (S) hold if a > e, with c = 2 and

c0 = 2−
√

2.
It is easy to check that 0 is an asymptotically stable equilibrium of (4.1). More-

over, (4.1) has no positive equilibrium if and only if d > ae−1; exactly one positive
equilibrium if d = ae−1; and two positive equilibria N1 < N2 if d < ae−1. While
N1 is always unstable, the stability properties of N2 depend on the three involved
parameters. If we write, as before, g(x) = d−1f(x) = (a/d)x2e−x, it is clear that
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g′(N2) = 2−N2, where N2 is the greatest solution of equation xe−x = d/a. Thus,
we get the following consequence of Proposition 2:

Proposition 3. The positive equilibrium N2 of (4.1) is asymptotically stable if
either

e <
a

d
≤ e3

3
, (4.2)

or a/d > e3/3 and

arccos (1/(2−N2)) > dτ
√
−1 + (2−N2)2. (4.3)

The stability region of (4.1) is shown in Figure 3 in the plane (dτ, aτ).
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Figure 3. The white region is the stability region of the greatest
positive equilibrium N2 of (4.1) in the plane (dτ, aτ). Shaded re-
gions correspond to the region of instability of N2, and the region
where N2 does not exist, that is, when a < de.

Our next result is a consequence of Theorems 3.1 and 3.2, and deals with bista-
bility in equation (4.1), that is to say, when a trivial attractor x = 0 coexists with
a nontrivial attractor, which is bounded away from zero. In other words, depend-
ing on the initial conditions, the population either is driven to extinction or it can
persists indefinitely. In this case, it is possible to give estimations on the basins
of attraction whenever there is no essential extinction in the associated discrete
equation (2.1), that is, when g2(2) > N1.

Theorem 4.1. Assume that d < ae−1, and let N1 < N2 be the positive equilibria
of (4.1). As before, denote by J = (N1, g

−1(N1)), where g(x) = (a/d)x2e−x, and
suppose that g(c) ∈ J , that is, g2(2) > N1. Then the following statements hold:

1. 0 attracts all solutions x(t, ϕ) of (4.1) such that ϕ ∈ C([−τ, 0], [0, N1)).
2. If a/d > e3/3 then all solutions x(t, ϕ) of (4.1) with ϕ ∈ C([−τ, 0], J) satisfy

g2(2) ≤ lim inf
t→∞

x(t, ϕ) ≤ lim sup
t→∞

x(t, ϕ) ≤ g(2).
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3. If either a/d ≤ e3/3, or a/d > e3/3 and

e−dτ > −(2−N2) ln

(
(2−N2)2 − (2−N2)

(2−N2)2 + 1

)
, (4.4)

then N2 attracts all solutions of (4.1) with initial condition ϕ ∈ C([−τ, 0], J).

In Figure 4, we show eight different regions in the plane (dτ, aτ) based on the
results of Proposition 3 and Theorem 4.1. We point out how the attractivity con-
ditions of N2 for initial data belonging to J improve those previously established in
[10, Theorem 4.2].
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Figure 4. We show eight different regions in the plane (dτ, aτ)
associated to (4.1). The thick red dashed line represents the solu-
tions to the implicit equation g2(c) = N1, so in regions (7) and (8)
the discrete equation (2.1) exhibits essential extinction. Region (1)
is defined by a/d < e, where the unique equilibrium is 0, and it is
a global attractor; region (2) is defined by e2/2 ≥ a/d > e, and has
been studied in [10]; region (3) is defined by e3/3 ≥ a/d > e2/2,
and the union of (2) and (3) is the sharpest region of absolute
stability of N2; region (4) is a delay-dependent stability region, for
which we can ensure, as in regions (2) and (3), that N2 attracts the
interval J = (N1, g

−1(N1)); in regions (5) and (7), the equilibrium
N2 is still asymptotically stable, but we do not have an estimate
of its basin of attraction; in regions (6) and (8), N2 is unstable. In
regions (5) and (6), we know that the interval I = [g(g(2)), g(2)] is
invariant and attracts J .

Apart from the third statement in Theorem 4.1, the delay is harmless in the
previous results. From now on, we discuss how the introduction of the delay term
in (4.1) is capable of altering its dynamical behavior. First, the stability region
depicted in Figure 3 suggests that if we fix values of a and τ such that aτ is big
enough, then an increasing exploitation rate d produces two Hopf bifurcations. In
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the first one, N2 loses its asymptotic stability, and in the second one it becomes
asymptotically stable again. This fact leads to a bubble in the bifurcation diagram
for initial conditions close to N2. For example, we choose a = 3, τ = 10, and initial
condition ϕ(t) = 2, t ∈ [−τ, 0] in (4.1) to produce Figure 5. Similar pictures have
been obtained for other models governed by DDEs [15], and for a discrete model
closely related to (4.1) [31]. In the bistability region, the trivial attractor coexists
with a nontrivial attractor. Our simulations show that the behavior of x(t, ϕ) for
parameter values d ∈ (0.0485, 0.3929) inside the bubble is simple (it converges to
a slowly oscillating periodic orbit), but the dynamics become complex for larger
values of τ , as it is usually observed in similar DDEs with unimodal feedback (see,
e.g., [14]).
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Figure 5. The solid blue lines correspond to the bifurcation di-
agram of equation (4.1) with a = 3, τ = 10, and initial condi-
tion ϕ(t) = 2, t ∈ [−τ, 0], using d as the bifurcation parameter.
The minimum and the maximum values of the solution x(t, ϕ) be-
tween t = 400 and t = 450 are plotted. Dashed thick lines cor-
respond to unstable equilibria. The vertical dashed lines divide
the figure into four strips. Region (A), defined by the inequality
0 < d < d∗ ≈ 0.1528, is the region of essential extinction for the
discrete model in Figure 1. In regions (B) and (C), we get some
information on the basins of attraction from Theorem 4.1; notice
that, for each value of d, the interval J is delimited by N1 (lower
thick dashed line) and g−1(N1) (thick black line), while the interval
I is defined by g2(c) and g(c) (the red solid lines). In region (B),
defined by d∗ < d < 9e−3 ≈ 0.448, the interval I is a bound for the
nontrivial attractor, which attracts all initial functions with values
in J ; in region (C), defined by 9e−3 < d < d∗ = 3e−1 ≈ 1.1036,
N2 attracts J (actually, condition (4.4) improves the lower bound
to 0.4408). At d = d∗, N1 and N2 collide and annihilate each
other; thus 0 is the unique equilibrium in the extinction region (D)
(defined by d > d∗).

An interesting problem not covered by the previous results is the behavior of
the solutions of (4.1) for initial conditions ϕ such that ϕ(t) > g−1(N1) for all
t ∈ [−τ, 0]. For example, if ϕ is a constant x0 > g−1(N1), then the corresponding
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solution of (4.1) for τ = 0 converges to N2, while for the discrete equation (2.1),
limn→∞ gn(x0) = 0 for all x0 > g−1(N1). These facts suggest that the delay
parameter τ induces extinction (we recall that (2.1) can be formally obtained as
a limit case of (1.1) as τ → ∞ [12]). Numerical simulations for (4.1) with d = 1,
a = 3, and initial condition ϕ(t) = 6, t ∈ [−τ, 0] for different values of τ illustrate
this situation, showing that the behavior of the solutions is considerably affected
by τ . See Figure 6.
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Figure 6. Solutions of equation (4.1) with d = 1, a = 3, and
initial condition ϕ(t) = 6, t ∈ [−τ, 0] for different values of τ : rapid
convergence to N2 for τ = 2 (left), convergence to N2, but after
long oscillatory transients for τ = 6 (center), and convergence to 0
for τ = 6.5 (right).

Another situation not included in our results is the behavior of a solution of (4.1)
when the initial condition ϕ crosses N1 on [−τ, 0]; we illustrate this situation with
an example. Consider (4.1) with d = 1, a = 3. A change of variables transforms
this equation into

1

τ
x′(t) = −x(t) + 3x2(t− 1)e−x(t−1), (4.5)

and therefore its limit case as τ → ∞ is the difference equation with continuous
argument

x(t) = 3x2(t− 1)e−x(t−1) , t ∈ [0,∞). (4.6)

Denote by f(x) = 3x2e−x. To have a continuous solution of (4.6), we need a con-
tinuous initial function ϕ : [−1, 0] → R satisfying the consistency condition ϕ(0) =
f(ϕ(−1)) [29]. We choose the polynomial of degree two such that ϕ(−1) = 0.1,
ϕ(0) = f(0.1), and ϕ(−1/2) = 1. We know that limn→∞ fn(x) = 0 for all
x ∈ (0, N1) and limn→∞ fn(x) = N2 for all x ∈ (N1, N2) ≈ (0.619, 1.512). On
the other hand, function ϕ crosses the level N1 twice, that is, there are two points
a1 ≈ −0.828, a2 ≈ −0.19 such that ϕ(t) ∈ (0, N1) for all t ∈ [−1, a1) ∪ (a2, 0], and
ϕ(t) ∈ (N1, N2) for all t ∈ (a1, a2). Hence, the solution x(t, ϕ) to (4.6) satisfies

lim
n→∞

x(t+ n, ϕ) =


0, if t ∈ [−1, a1) ∪ (a2, 0];

N1, if t = a1 or t = a2;

N2, if t ∈ (a1, a2).

Thus, the profile of x(t, ϕ) approaches to a “square wave” with floor at 0 and
ceiling at N2, see Figure 7. This solution belongs to the family of relaxation type
solutions [12, 29], which are characterized by the fact that their oscillation frequency
is constant on each segment [n, n+ 1), n ∈ N.
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Figure 7. Solution of the difference equation with continuous ar-
gument (4.6) with an initial condition crossing the level x = N1

twice.

Denote by xτ (t, ϕ) the solution of (4.5) for a given value of τ . Since ϕ(0) ∈
(0, N1), it is natural to expect that, for small values of τ , xτ (t, ϕ) will converge to
zero. This is indeed what we see in our simulations, see Figure 8.
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Figure 8. Convergence to 0 of the solutions xτ (t, ϕ) of (4.5) with
τ = 3 (left) and τ = 6 (right).

Larger values of τ seem to revert the situation, and the solution xτ (t, ϕ) converges
to N2 after some oscillatory transients. This is probably due to the fact that the
basin of attraction of N2 is larger than the basin of attraction of 0. The existence
of an attractor of f with large basin of attraction typically makes solutions of (4.5)
to gradually damp out in amplitude in the long run [12]. However, as τ becomes
larger, we observe long transients before the solution goes to N2, see Figure 9.

For even larger values of τ , the transients are very long, so the observable behavior
is very similar to that of the limit case (4.6), see Figure 10. Actually, Theorem 3.2
in [29, Chapter 3] ensures that for all T > 0 and ε > 0, there is a τ1 > 0 such that
|x(t, ϕ)− xτ (t, ϕ)| < ε for all t ∈ [0, T ] and τ > τ1 (see also [12, Section 3]).

For practical purposes, we must emphasize that it is very difficult that a pop-
ulation with this behavior can survive: spending some time at levels very close to
zero, any perturbation would lead the population to extinction.

As a final remark, we notice that the condition for global extinction in equation
(4.1) (convergence of all solutions to zero) is independent of the delay, and it can be
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Figure 9. Convergence to N2 of the solutions xτ (t, ϕ) of (4.5)
with τ = 7 (left) and τ = 18 (right).
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Figure 10. Solution xτ (t, ϕ) of (4.5) with τ = 50. On the left, the
range for t is [0, 30]; on the right, we plot only x(t) for t ∈ [30, 35]
to emphasize the “square wave” shape.

written as ln(a/d) < 1. As argued in some papers (see, e.g., [8]), if the delay τ has
a clear biological meaning, for example, the period of time that elapses between egg
laying and hatching in insect populations, then the population is expected to die if
this period is too long. Clearly, model (4.1) does not predict this fact. As suggested
in previous work (see, e.g., [8, 9]), in a more realistic model the production function
should account for juvenile mortality. Then one gets the following modification of
(4.1):

x′(t) = −dx(t) + ae−µτx2(t− τ)e−x(t−τ). (4.7)

where µ > 0 is a juvenile mortality rate or egg mortality, depending on the model.
Many aspects of the dynamics of (4.7) can be derived form our previous study,
replacing a by ae−µτ . The main difference is that we get a delay-dependent con-
dition for extinction. Specifically, all solutions of (4.7) converge to zero if either
ln(a/d) < 1, or ln(a/d) > 1 and τ > τ∗ = µ−1(ln(a/d) − 1). This means that
excessively large maturation periods cannot preserve the survival of the species.

5. Discussion. Systems exhibiting exploitation usually carry biological, economic,
and social behavioral components. These different perspectives have given rise to a
strong interest in the search of sound management strategies, and in the analysis of
the interplay between exploitation and intrinsic or environmental characteristics of
the population. In an attempt to approach this issue, in this paper we have studied
a single population model consisting of a decay in the absence of new recruitment
as a measure of the exploitation effect, and a delayed biological response given by a
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recruitment function generating a strong Allee effect. As emphasized in the recent
paper [13], the interplay between time delay and the Allee effect can be subtle and
rather counterintuitive. We affirm that the dynamics are even even richer in the
case of exploited populations, when the harvesting effort is a new parameter that
plays an important role in the model.

A simple analysis of the size of the equilibria of (1.1) shows that the Allee thresh-
old always increases in response to an increase in the exploitation effort, while the
carrying capacity decreases. Both equilibria collide and annihilate each other at a
certain critical value of the exploitation rate. In the absence of delay (i.e., τ = 0),
the impact of exploitation in the population is completely determined by this simple
observation, because the model exhibits trivial dynamics, that is, any solution of
(1.1) is attracted to one equilibrium in the long term. If we restrict our attention to
initial population sizes below the Allee threshold N1 or that are larger than N1 but
not too large, then Theorem 3.1 shows that the same analysis remains valid if the
associated discrete equation has trivial dynamics. In this direction, our conclusions
complement some recent results obtained by Röst [23] and Huang et al. [10].

However, our analysis reveals that a delayed feedback creates new phenomena
in (1.1). One of them is bubbling, which has been previously observed in related
models [15, 31], and implies that exploitation is capable of stabilizing the largest
equilibrium (carrying capacity) through a bubble bifurcation or reversal chaos; that
is, a stable attractor loses and regains its stability through two consecutive Hopf
bifurcations. A second phenomenon is the possibility of solutions with a profile
close to a square wave with floor at zero and ceiling at the carrying capacity. These
solutions come from the combination of large delays and an initial function that
crosses the Allee threshold.

It is well known that models with strong Allee effects often exhibit bistability:
this means that solutions approach different attractors depending on the initial
conditions. In this respect, our model exhibits a remarkable behavior: at large pop-
ulation densities, strong Allee effects and sufficiently large delays can work together
to yield extinction of a population that would persist and approach a nontrivial
attractor for smaller time delays. The same observation has been recently found
by Jankovic and Petrovskii in [13]. They suggest various models governed by de-
lay differential equations to study the interplay between time delay and the Allee
effect; although these equations are different to equation (1.1) considered here, in
some of them they found that a sufficiently large delay may lead the population to
extinction if subject to the strong Allee effect. We stress that it is expected that
extinction naturally follows for large delays, as we have noticed in the discussion on
equation (4.7). However, an interesting feature of our finding is that small changes
in the time delay might drive the population from a persistent stable behavior to
extinction in an abrupt way (see Fig 6). This type of dramatic changes are a typical
outcome of strong Allee effects [4, 27, 31].
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