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Abstract. In this paper, we incorporate an extra logistic growth term for

uninfected CD4+ T-cells into an HIV-1 infection model with both intracellu-
lar delay and immune response delay which was studied by Pawelek et al. in

[26]. First, we proved that if the basic reproduction number R0 < 1, then

the infection-free steady state is globally asymptotically stable. Second, when
R0 > 1, then the system is uniformly persistent, suggesting that the clearance

or the uniform persistence of the virus is completely determined by R0. Fur-
thermore, given both the two delays are zero, then the infected steady state

is asymptotically stable when the intrinsic growth rate of the extra logistic

term is sufficiently small. When the two delays are not zero, we showed that
both the immune response delay and the intracellular delay may destabilize

the infected steady state by leading to Hopf bifurcation and stable periodic

oscillations, on which we analyzed the direction of the Hopf bifurcation as well
as the stability of the bifurcating periodic orbits by normal form and center

manifold theory introduced by Hassard et al [15]. Third, we engaged numerical

simulations to explore the rich dynamics like chaotic oscillations, complicated
bifurcation diagram of viral load due to the logistic term of target cells and
the two time delays.

1. Introduction. Human Immunodeficiency Virus (HIV) has spread to all of main-
land China [44] and becomes a serious threat to public health. The dynamics of HIV
have three distinct phases which are primary infection, chronic infection and Ac-
quired Immune Deficiency Syndrome (AIDS) or drug therapy [9, 10]. Mathematic
modeling of viral dynamics for HIV infection has an important role for understand-
ing the pathogenesis of HIV infection [3, 11, 43, 17, 23, 24, 28, 32, 34, 37].
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Following the basic models of viral dynamics[30, 25], many mathematical models
have been used to study the dynamics of HIV infection and immune responses
[1, 5, 6, 16, 26, 27, 40, 42, 45]. Ciupe et al. [6] considered the following HIV model



dT

dt
= s− dT − kV T,

dT ∗

dt
= kV T − δT ∗ − dxET ∗,

dV

dt
= NδT ∗ − cV,

dE

dt
= pT ∗ − dEE,

(1)

where T (t), T ∗(t), V (t) and E(t) are uninfected T-cells, infected cells, free virus
and effector cells. s is the rate at which new T cells are created, d is their natural
death rate, k is the infection rate, and δ represents the death rate of the infected
cells before viral production commences. dx is the death rate of T ∗ due to action of
the immune response. N is the number of virus particles produced by each infected
cell, c is the viral clearance rate constant, dE is the death rate of E, and p is the
produce rate of the effector cells.

Time delays have also been introduced into HIV mathematical model to study
the dynamics. In [17], Herz et al. firstly introduced an intracellular delay, the time
between infection of a cell and production of new virus particles, to analyze the
clinical data. Nelson and Perelson [23] considered a set of models with intracellular
delays, and predicted that frequent early sampling of plasma virus will lead to
reliable estimates of the free virus half-life. Li and Shu [19] incorporated a time delay
into the immune response in the HTLV-1 infection model, and showed that the time
delay can destabilize the endemic equilibrium, leading to Hopf bifurcation. More
within-host HIV models with time delays can be found in [2, 8, 12, 20, 21, 38, 41, 46].

In [26], Pawelek et al. incorporated an intracellular delay and an immune re-
sponse delay into (1) to analyze virus dynamics, where the criteria on local stability
of the infection-free and infected steady states, and uniform persistence of the sys-
tem as well as the global stability of the infected steady states were established.
Moreover, it was shown in [26] that introducing the intracellular delay does not
change the stability results if there is no immune delay. However, incorporating the
immune delay may lead to rich dynamics like Hopf bifurcation even if there is no
intracellular delay.

Since the proliferation rate of T-cells is density-dependent with the proliferation
slowing as the T-cell count becomes high [4, 8, 29, 30, 39]. Culshaw and Ruan [8]
considered a basic HIV model with logistic growth and an intracellular delay, and
obtained the stability of the endemic equilibrium. Wang and Li [39] studied a HIV
model with a logistic proliferation of all T-cells and showed that the stability of the
endemic equilibrium is dependent on the T-cell proliferation rate. In this paper,
we incorporate the intracellular delay, immune response delay and logistic growth
term for T-cells into the model (1). We additionally consider the intracellular delay
by assuming that the generation of virus producing cells at time t is caused by the
infection of target cells at time t − τ1, i.e., τ1 is the lag between the time virus
contacts a target cell and the time cell becomes actively infected. τ2 is the time
of activation for the effector cells. As described in [22], we assume k1 = ke−α1τ1 ,
where α1 is the death rate of infected cells before viral production commences. The



VIRUS DYNAMICS MODEL 187

model is as follows

dT (t)

dt
= s− dT (t)− kV (t)T (t) + rT (t)

(
1− T (t)

Tmax

)
,

dT ∗(t)

dt
= k1V (t− τ1)T (t− τ1)− δT ∗(t)− dxE(t)T ∗(t),

dV (t)

dt
= NδT ∗(t)− cV (t),

dE(t)

dt
= pT ∗(t− τ2)− dEE(t),

(2)

with initial conditions

T (θ) = ϕ1(θ), T ∗(θ) = ϕ2(θ), V (θ) = ϕ3(θ), E(θ) = ϕ4(θ), θ ∈ [−τ, 0], (3)

where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C
(
[−τ, 0], R4

+

)
with ϕi(0) > 0(θ ∈ [−τ, 0], i =

1, 2, 3, 4). Where r is the growth rate of T-cells (thus, r > d in general), Tmax
(dTmax > s) is the carrying capacity of the T-cells population, and the term
T ∗(t − τ2) accounts for a time delay between the moment of infection and the
recognition of the infected cells by the cytotoxic CD8+T cells.

The paper is organized as follows. In section 2, local stability and global stability
of the uninfected equilibrium, and uniform persistence of the system are proved
by rigorous mathematical analysis. In section 3, we establish local stability of
the infected equilibrium and obtain sufficient conditions for the existence of the
local Hopf bifurcation, and the direction of Hopf bifurcation and stability of the
bifurcating periodic solutions are considered. In section 4, results from numerical
simulations are presented. We also study the effect of the immune response delay
and the growth rate of T-cells on the stability transition and viral load. Finally, a
brief discussion completes the paper.

2. Threshold dynamics of the steady states. We denote by X = C ([−τ, 0],
R4

+

)
, τ = max{τ1, τ2}, here C denotes the Banach space C

(
[−τ, 0], R4

+

)
of contin-

uous functions mapping the interval [−τ, 0] into R4
+ equipped with the sup-norm.

Then by the standard theory of functional differential equations [14] we obtain that,
for any ϕ ∈ C

(
[−τ, 0], R4

+

)
, there is a unique solution

Y (t, ϕ) = (T (t, ϕ), T ∗(t, ϕ), V (t, ϕ), E(t, ϕ))

of the system (2) which satisfies Y0 = ϕ.
System (2) has an uninfected equilibrium and an infected (positive) equilibrium.

The uninfected equilibrium is E0 = (T0, 0, 0, 0), where

T0 =
Tmax

2r

[
r − d+

√
(r − d)2 +

4rs

Tmax

]
.

From the first equation of system (2), we have

dT (t)

dt
≤ s− dT (t) + rT (t)

(
1− T (t)

Tmax

)
,

then

lim sup
t→+∞

T (t) ≤ T0. (4)
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The infected (positive) equilibrium is E1 = (T1, T
∗
1 , V1, E1), where

T1 =
r − d+ kdENδ

2

cpdx
+
√

(r − d+ kdENδ2

cpdx
)2 + 4s( r

Tmax
+ kk1N2δ2dE

Pc2dx
)

2( r
Tmax

+ kk1N2δ2dE
Pc2dx

)
,

T ∗1 =
dE(k1NδT1

c − δ)
pdx

,

V1 =
Nδ

c
T ∗1 ,

E1 =
p

dE
T ∗1 .

(5)

The basic reproduction number is defined as

R0 = k1NT0/c. (6)

Following T ∗1 > 0, we know that the infected equilibrium exists if and only if
k1NT1/c > 1, which is equivalent to k1NT0/c > 1.

Theorem 2.1. Assume that Y (t, ϕ) is the solution of the system (2) with the initial
conditions (3). {T (t), T ∗(t), V (t), E(t)} (∀t ≥ 0) are nonnegative and ultimately
bounded. Furthermore, there is an ε > 0 such that lim inf

t→∞
T (t) ≥ ε.

Proof. By [35, Theorem 5.2.1], the nonnegativeness of T (t), T ∗(t), V (t) and E(t)
follows immediately.

From the first equation of (2), we have

dT

dt
≤ s− dT + rT

(
1− T

Tmax

)
.

Then lim supt→+∞ T (t) ≤ T0, and then T (t) is ultimately bounded. Now we define
a Lyapunov functional

U(t) = T (t) +
k

k1
T ∗(t+ τ1).

Obviously, U(t) ≥ 0 for all t ≥ 0. Differentiating U(t) along the solution of system
(2) yields

dU(t)

dt
≤ s− dT (t) + rT (t)

(
1− T (t)

Tmax

)
− δk

k1
T ∗(t+ τ1)

= s− dT (t) + rT (t)

(
1− T (t)

Tmax

)
+ δT (t)− δU(t)

≤ s+ rT (t)

(
1− T (t)

Tmax

)
+ δT (t)− δU(t)

Therefore, lim supt→+∞ U(t) ≤ C/δ, where C = max{s+rT
(

1− T
Tmax

)
+δT}, T ∈

(0, T0]. It follows that lim supt→+∞ T (t) ≤ C/δ and that T ∗(t) is ultimately
bounded. From the third and fourth equation of system (2), we know that V (t) and
E(t) are also ultimately bounded. In addition, by the first equation of (2), we have

Ṫ (t) ≥ s− T
[
d+ kVupper − r +

rT0
Tmax

]
, for a large t,

where Vupper is the upper bound of V (t). Then we can show that T (t) is uniformly
bounded away from zero. The proof is completed.
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2.1. Local stability of the uninfected equilibrium. In order to analyze the
local stability of the uninfected equilibrium E0, we denote

α =
s

T1
+

rT1
Tmax

> 0.

Theorem 2.2. Consider system (2). The uninfected equilibrium E0 is locally
asymptotically stable if R0 < 1, and unstable if R0 > 1, where R0 is defined by
(6).

Proof. The characteristic equation of the uninfected equilibrium E0 is

(λ+ α)(λ+ dE)
[
λ2 + (c+ δ)λ+ cδ − k1T0Nδe−λτ1

]
= 0. (7)

Obviously, λ = −α and λ = −dE are negative roots of Eq.(7). The other roots are
determined by the solutions of the following equation

λ2 + (c+ δ)λ+ cδ − k1T0Nδe−λτ1 = 0. (8)

Substituting τ1 = 0 into Eq.(8) leads to

λ2 + (c+ δ)λ+ cδ − k1T0Nδ = 0. (9)

If R0 < 1, then cδ > k1NδT0. Then we obtain that the equation (9) has two
negative real roots, and E0 is locally asymptotically stable for τ1 = 0.

If τ1 > 0 and Eq.(8) has a purely imaginary root λ = iω(τ1)(ω > 0). Separating
real and imaginary parts yields

cδR0 cosωτ1 = cδ − ω2,

−cδR0 sinωτ1 = (c+ δ)ω.

Squaring and adding the two equations give

F1(ω) = ω4 + (c2 + δ2)ω2 + c2δ2 − c2δ2R2
0 = 0. (10)

If R0 < 1 then c2δ2−c2δ2R2
0 > 0. Thus, Eq.(10) has no positive roots. If R0 < 1,

there is no root of Eq.(10) which can cross the imaginary axis when the delay τ1
increases. Then E0 is locally asymptotically stable for τ1 ≥ 0.

If R0 > 1, then cδ < cδR0, and the equation (9) has a positive root. Then E0

is unstable for τ1 = 0. Moreover, ∂F1(ω)
∂ω = 4ω3 + 2(c2 + δ2)ω > 0, and by Cooke

and Van den Driessche [7] and Freedman and Kuang [13], E0 is unstable for τ1 ≥ 0.
The proof is completed.

2.2. Global stability of the uninfected equilibrium.

Theorem 2.3. Consider system (2). If R0 < 1, The uninfected equilibrium E0 is
globally asymptotically stable.

Proof. Define

M = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C([−τ, 0], R4
+), 0 ≤ ϕ1 ≤ T0}.

From (4), it is verified that M attracts all solutions of system (2). Suppose
(T (t), T ∗(t), V (t), E(t)) be a solution of system (2) with initial value in M .

We claim that T (t) ≤ T0(∀t ≥ 0). Suppose by contradiction that there must
exist the first t1 > 0, such that T (t1) = T0 and T ′(t1) > 0. From the first equation
of system (2), we have

T ′(t1) = s− dT (t1) + rT (t1)

(
1− T (t1)

Tmax

)
− kV (t1)T (t1) = −kV (t1)T (t1) ≤ 0,
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which contradict T ′(t1) > 0. Therefore, M is positively invariant set with respect
to the system (2). Define a Lyapunov functional on M

V (ϕ) =
k

k1
ϕ2(0) + b1ϕ3(0) + b2ϕ4(0) + k

∫ 0

−τ1
ϕ3(s)ϕ1(s)ds+ b2p

∫ 0

−τ2
ϕ2(s)ds,

where b1 = kT0

c , b2 = − kδ
2pk1

(R0−1). The invariance of M implies that, for any ϕ ∈
M , the solution (T (t), T ∗(t), V (t), E(t)) of system (2) such that T (t) ≤ T0(∀t ≥ 0).
Then the derivative of V (ϕ) along the system (2) is

V ′(ϕ) =
k

k1
(k1ϕ3(−τ1)ϕ1(−τ1)− δϕ2(0)− dxϕ4(0)ϕ2(0))

+b1(Nδϕ2(0)− cϕ3(0)) + b2 (pϕ2(−τ2)− dEϕ4(0))

+k (ϕ3(0)ϕ1(0)− ϕ3(−τ1)ϕ1(−τ1)) + b2p (ϕ2(0)− ϕ2(−τ2))

= kϕ3(0)(ϕ1(0)− T0) + (b1Nδ + b2p−
kδ

k1
)ϕ2(0)− b2dEϕ4(0)

−kdx
k1

ϕ2(0)ϕ4(0)

=
1

2

k

k1
δ(R0 − 1)ϕ2(0)− b2dEϕ4(0)− kdx

k1
ϕ2(0)ϕ4(0)

+kϕ3(0)(ϕ1(0)− T0).

If R0 < 1, then V ′(ϕ) ≤ 0, and V ′(ϕ) = 0 if and only if ϕ2(0) = 0, ϕ4(0) = 0,
ϕ1(0) = T0 or ϕ3(0) = 0. Then the largest compact invariant set in {ϕ ∈ M |
V ′(ϕ) = 0} is the singleton {E0}. By LaSalle’s Invariance Principle [18], we obtain
that all solutions of system (2) converge to E0. This result together with the local
stability of E0 established in Theorem 2.2 implies the global stability of E0. The
proof is completed.

2.3. Persistence as R0 > 1.

Theorem 2.4. Consider system (2). If R0 > 1, then the system (2) is uniformly
persistent, and there exists a ε̄ > 0, such that lim inf

t→∞
T (t) ≥ ε̄, lim inf

t→∞
T ∗(t) ≥ ε̄,

lim inf
t→∞

V (t) ≥ ε̄, and lim inf
t→∞

E(t) ≥ ε̄.

Proof.

X = {ϕ = (T, T ∗, V, E) ∈ C([−τ, 0], R4
+) : ϕ2(0) ≥ 0, ϕ3(0) ≥ 0}.

Denote

X1 = {ϕ ∈ X | ϕ2(0) > 0, ϕ3(0) > 0},

X2 = {ϕ ∈ X | ϕ2(0) = 0 or ϕ3(0) = 0},

which is relatively closed in X.
Next we prove X1 is positively invariant for P (t), where P (t)(t ≥ 0) is the family

of solution operators associated to system (2). The ω-limit set ω(x) of x consists of
y ∈ X such that there is a sequence tn →∞ as n→∞, and P (tn)x→ y as n→∞.

The equations of system (2) give

dT ∗(t)

dt
≥ −δT ∗(t), dV (t)

dt
≥ −cV (t),∀t ≥ 0. (11)



VIRUS DYNAMICS MODEL 191

Since T ∗(0, ϕ) = ϕ2(0) > 0, V (0, ϕ) = ϕ3(0) > 0, then

T ∗(t, ϕ) ≥ ϕ2(0)e−δt > 0, V (t, ϕ) ≥ ϕ3(0)e−ct > 0,∀t ≥ 0,

thus, X1 is positively invariant for P (t).
Denote

M∂ = {ϕ ∈ X : Y (t, ϕ) satisfies (2) and Y (t, ϕ) ∈ X2,∀t ≥ 0}.

Then we can claim that

M∂ = {(T, 0, 0, E)}. (12)

Assume that Y (t) ∈M∂(∀t ≥ 0). It suffices to prove that T ∗(t) = V (t) = 0(∀t ≥ 0).
Assume, by contradiction, that there exists a t0 ≥ 0 such that either

(i): T ∗(t0) > 0, V (t0) = 0; or
(ii): T ∗(t0) = 0, V (t0) > 0.

Consider (i), from the equations of system (2) we obtain

dV

dt

∣∣∣∣
t=t0

= NδT ∗(t0) > 0.

Therefore, there exists an ε0 > 0 such that V (t) > 0,∀t ∈ (t0, t0 + ε0). Since
T ∗(t0) > 0, then there exists a 0 < ε1 < ε0 such that T ∗(t) > 0,∀t ∈ (t0, t0 +ε1). So
we can get T ∗(t) > 0, V (t) > 0,∀t ∈ (t0, t0 + ε1), which contradicts our assumption
that (T (t), T ∗(t), V (t), E(t)) ∈ M∂ . Case (ii) can be treated similarly. Then (12)
holds.

Denote Ω =
⋂
x∈A ω(x), where A is the global attractor of P (t) restricted to

X2. Then we can claim that Ω = {E0}. Since Ω ⊆ M∂ and (12), then from the
equations of (2), we can obtain that lim

t→∞
E(t) = 0, lim

t→∞
T (t) = T0. Therefore, {E0}

is a isolated invariant set in X.
Next we prove that W s(E0)

⋂
X1 = ∅. Suppose by contradiction that there

exists a solution (T (t), T ∗(t), V (t), E(t)) ∈ X1 such that

lim
t→∞

T (t) = T0, lim
t→∞

T ∗(t) = 0, lim
t→∞

V (t) = 0, lim
t→∞

E(t) = 0.

For any small enough constant ε > 0, there is a positive constant t1 = t1(ε) such
that T (t) > T0 − ε > 0, E(t) < ε, ∀t ≥ t1.

From the equations of (2), we have
dT ∗(t)

dt
≥ k1(T0 − ε)V (t− τ1)− δT ∗ − dxεT ∗,

dV (t)

dt
= NδT ∗ − cV, t ≥ t1 + τ.

If T ∗(t), V (t) → 0, as t → ∞, using the nonnegativity and a standard comparison
argument, then the solution (T ∗2 (t), V2(t)) of the following monotone system

dT ∗2 (t)

dt
= k1(T0 − ε)V2(t− τ1)− δT ∗2 (t)− dxεT ∗2 (t),

dV2(t)

dt
= NδT ∗2 (t)− cV2(t), t ≥ t1 + τ.

(13)

with initial value T ∗2 (t) = T ∗(t), V2(t) = V (t),∀t ∈ [t1, t1 + τ ] converges to (0, 0).
Therefore, lim

t→∞
U(t) = 0, where U(t) > 0 is given by

U(t) = T ∗2 (t) +
k1(T0 − ε)

c
V2(t) + k1(T0 − ε)

∫ t

t−τ1
V2(ξ)dξ.
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Differentiating U(t) with respect to (13) gives

dU(t)

dt

∣∣∣∣
(13)

=

[
1

c
Nδk1(T0 − ε)− δ − dxε

]
T ∗2 (t).

When R0 > 1, we can get that Nδk1(T0 − ε)/c − δ − dxε > 0 for small enough
ε. Then U(t) goes to either infinity or some positive number as t → ∞, which
contradicts lim

t→∞
U(t) = 0. Therefore, we obtain that W s(E0)

⋂
X1 = ∅.

Define f : X → R+ by f(ϕ) = min{ϕ2(0), ϕ3(0)}, ∀ϕ ∈ X. It can be verified
that X1 = f−1(0,∞) and X2 = f−1(0). Following the Theorem 3 in [36], we have
lim inf
t→∞

(T ∗(t), V (t)) ≥ (ε1, ε1) for some constant ε1 > 0. Following Theorem 2.1, we

know that lim inf
t→∞

T (t) ≥ ε > 0. Furthermore, from the fourth equation of (2), we

can get that lim inf
t→∞

E(t) ≥ ε2 for some constant ε2 > 0. Define ε̄ = min{ε, ε1, ε2},
note that lim inf

t→∞
T (t) ≥ ε > 0, then the proof is completed.

3. Local stability and Hopf bifurcation. Let x1 = T − T1, x2 = T ∗ − T ∗1 ,
x3 = V − V1, x4 = E − E1. Then system (2) becomes

dx1
dt

=

[
r(1− 2T1

Tmax
)− d− kV1

]
x1 − kT1x3 −

r

Tmax
x21 − kx1x3,

dx2
dt

= −(δ + dxE1)x2 − dxT ∗1 x4 + k1V1x1(t− τ1) + k1T1x3(t− τ1)

−dxx2x4 + k1x1(t− τ1)x3(t− τ1),
dx3
dt

= Nδx2 − cx3,
dx4
dt

= −dEx4 + px2(t− τ2).

(14)

We linearize the system and obtain the characteristic equation of system (14) at
F (0, 0, 0, 0) is∣∣∣∣∣∣∣∣

λ+ d+ kV1 − r + 2rT1

Tmax
0 kT1 0

−k1V1e−λτ1 λ+ δ + dxE1 −k1T1e−λτ1 dxT
∗
1

0 −Nδ λ+ c 0
0 −pe−λτ2 0 λ+ dE

∣∣∣∣∣∣∣∣ = 0,

that is,

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 + e−λτ1(b0λ
2 + b1λ+ b2)

+e−λτ2(c0λ
2 + c1λ+ c2) = 0,

(15)

where

a1 = α+ k1NδT1

c + c+ dE ,

a2 = α
(
k1NδT1

c + c+ dE
)

+ k1NδT1 + cdE + dE
k1NδT1

c ,

a3 = α
(
k1NδT1 + cdE + dE

k1NδT1

c

)
+ dEk1NδT1,

a4 = αdEk1NδT1,
b0 = −k1NδT1,
b1 = k1NδT1(kV1 − α− dE),
b2 = k1NδT1(kV1dE − αdE),
c0 = pdxT

∗
1 ,

c1 = pdxT
∗
1 (α+ c),

c2 = pdxT
∗
1 αc.
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When τ1 = τ2 = 0, this characteristic equation reduces to

λ4 + a1λ
3 + (a2 + b0 + c0)λ2 + (a3 + b1 + c1)λ+ a4 + b2 + c2 = 0. (16)

By Routh-Hurwitz criterion we know that all solutions of Eq.(16) have negative real
parts if and only if

∆1 = a1 > 0,
∆2 = a1(a2 + b0 + c0)− (a3 + b1 + c1) > 0,
∆3 = a1(a2 + b0 + c0)(a3 + b1 + c1)− a21(a4 + b2 + c2)− (a3 + b1 + c1)2 > 0
∆4 = a4 + b2 + c2 > 0.

It is easy to show that ∆1 = a1 = α+ k1NδT1

c +c+dE > 0, and ∆4 = a4+b2+c2 =
k1NδT1k1V1dE + pdxT

∗
1 αc > 0. Then we need ∆2 > 0 and ∆3 > 0. If 2α > kV1

and α > dE hold, we have ∆2 > 0 and ∆3 > 0. If

(H1) 2α > kV1 and α > dE

holds, then all roots of Eq.(16) have negative real parts. Thus, we have

Theorem 3.1. Assume R0 > 1 and τ1 = τ2 = 0, then the infected equilibrium E1

is locally asymptotically stable if (H1) holds.

When τ1 = 0 and τ2 > 0, the characteristic equation (15) reduces to

λ4 + a1λ
3 + (a2 + b0)λ2 + (a3 + b1)λ+ a4 + b2 + e−λτ2(c0λ

2 + c1λ+ c2) = 0. (17)

Since c2 + a4 + b2 > 0, λ = 0 is not a root of characteristic equation (17).
If iω(τ2)(ω > 0) is a purely imaginary root of the characteristic equation (17),

separating real and imaginary parts leads to

ω4 − (a2 + b0)ω2 + a4 + b2 = −(c2 − c0ω2) cosωτ2 − c1ω sinωτ2,
−a1ω3 + (a3 + b1)ω = (c2 − c0ω2) sinωτ2 − c1ω cosωτ2.

(18)

Squaring and adding the two equations of (18) give

f(ω) = ω8 + ω6[a21 − 2(a2 + b0)] + ω4[(a2 + b0)2 + 2(a4 + b2)− 2a1(a3 + b1)− c20]
+ω2[(a3 + b1)2 − 2(a2 + b0)(a4 + b2) + 2c0c2 − c21] + (a4 + b2)2 − c22 = 0.

(19)
Denote

f(v) = v4 + [a21 − 2(a2 + b0)]v3 + [(a2 + b0)2 + 2(a4 + b2)− 2a1(a3 + b1)− c20]v2

+[(a3 + b1)2 − 2(a2 + b0)(a4 + b2) + 2c0c2 − c21]v + (a4 + b2)2 − c22.

By Routh-Hurwitz criterion we know that if

(H2): (a2 + b0)2 + 2(a4 + b2)− 2a1(a3 + b1)− c20 > 0,(a3 + b1)2− 2(a2 + b0)(a4 +
b2) + 2c0c2 − c21 > 0 and a4 + b2 − c2 > 0

holds, then equation (17) has no positive real roots. Accordingly, by the Theorem
3.1 in [13], we obtain the following result.

Theorem 3.2. Assume R0 > 1, τ1 = 0 and τ2 > 0, then the infected equilibrium
E1 is locally asymptotically stable if (H1) and (H2) hold.

We know that if

(H3): (a2 + b0)2 + 2(a4 + b2)− 2a1(a3 + b1)− c20 > 0, (a3 + b1)2− 2(a2 + b0)(a4 +
b2) + 2c0c2 − c21 > 0 and a4 + b2 − c2 < 0
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holds, then Eq.(17) have positive real roots.
If (H3) holds. Continuity of f(ω) implies that f(ω) = 0 have a solution ω > 0 for

τ1 = 0 and τ2 > 0, since limω→+∞ f(ω) =∞. As ∂f(ω)
∂ω = 8ω7+6ω5[a21−2(a2+b0)]+

4ω3[(a2+b0)2+2(a4+b2)−2a1(a3+b1)−c20]+2ω[(a3+b1)2−2(a4+b2)+2c0c2−c21] > 0
for ω > 0, the Implicit Function Theorem implies that there exists a unique C1

function ω = ω(τ2) such that f(ω) = 0 for τ1 = 0 and τ2 > 0. We thus obtain the
following result.

Lemma 3.3. If τ1 = 0, τ2 > 0 and (H3) hold, then f(ω) = 0 has a unique positive
root ω20.

Since equation (17) has a unique positive root ω20, then equation (15) has a pair
of purely imaginary roots of the form ±iω20. Denote

τk2 =
θ1 + 2kπ

ω20
, k = 0, 1, 2, · · · . (20)

where θ1 ∈ [0, 2π] is defined by
sin θ1 =

−c1ω20[ω4
20 − (a2 + b0)ω2

20 + a4 + b2] + (c2 − c0ω
2
20)[−a1ω

3
20 + (a3 + b1)ω20]

c21ω
2
20 + (c2 − c0ω2

20)2
,

cos θ1 = − (c2 − c0ω
2
20)[ω4

20 − (a2 + b0)ω2
20 + a4 + b2] + c1ω20[−a1ω

3
20 + (a3 + b1)ω20]

c21ω
2
20 + (c2 − c0ω2

20)2
.

(21)

Now differentiating Eq.(17) with respect to τ2, we have(
dλ

dτ2

)−1
=

4λ3 + 3a1λ
2 + 2(a2 + b0)λ+ a3 + b1 + e−λτ2(2c0λ+ c1)

λe−λτ2(c0λ2 + c1λ+ c2)
− τ2
λ
. (22)

Hence, a direct calculation shows that{
(dReλ)

dτ2

}−1

λ=iω20

=

{
Re

(
dλ

dτ2

)}−1

λ=iω20

= − −ω20[−a1ω
3
20 + (a3 + b1)ω20][(a3 + b1) − 3a1ω

2
20]

ω2
20[−a1ω3

20 + (a3 + b1)ω20]2 + ω2
20[ω4

20 − (a2 + b0)ω2
20 + a4 + b2]2

− ω20[2(a2 + b0)ω20 − 4ω3
20][ω4

20 − (a2 + b0)ω2
20 + a4 + b2]

ω2
20[−a1ω3

20 + (a3 + b1)ω20]2 + ω2
20[ω4

20 − (a2 + b0)ω2
20 + a4 + b2]2

+
−c21ω2

20 + 2c0ω
2
20(c2 − c0ω

2
20)

c21ω
4
20 + ω2

20(c2 − c0ω2
20)2

=
4ω6

20 + ω4
20[3a2

1 − 6(a2 + b0)] + ω2
20[4(a4 + b2) − 4a1(a3 + b1) + 2(a2 + b0)2 − 2c20]

c21ω
2
20 + (c2 − c0ω2

20)2

+
(a3 + b1)2 − 2(a2 + b0)(a4 + b2) − c21 + 2c0c2

c21ω
2
20 + (c2 − c0ω2

20)2

=
f ′(ω2

20)

c21ω
2
20 + (c2 − c0ω2

20)2
.

(23)

Note that c21ω
2
20 + (c2 − c0ω2

20)2 > 0, then we have

sign

{
Re

(
dλ

dτ2

)−1}
λ=iω20

= signf ′(ω2
20). (24)

Then we can get the following result.
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Theorem 3.4. If (H3), f ′(ω2) 6= 0 and τ1 = 0 hold, then the infected equilibrium
E1 is locally asymptotically stable for τ2 ∈ [0, τ02 ), and system (2) undergoes a Hopf
bifurcation at the infected equilibrium E1 when τ2 = τk2 (k = 0, 1, 2, . . .).

When τ1 > 0, τ2 = τ∗2 ∈ I, where I is the stability internal such that the infected
equilibrium E1 is locally asymptotically stable when τ1 = 0 and τ2 ∈ I. Then the
characteristic equation is Eq.(15). Since c2 + a4 + b2 > 0, then λ = 0 is not a root
of characteristic equation (15).

If iω(τ1)(ω > 0) is a purely imaginary root of the characteristic equation (15),
separating real and imaginary parts gives

ω4 − a2ω
2 + a4 + (c2 − c0ω

2) cosωτ∗2 + c1ω sinωτ∗2 = (b0ω
2 − b2) cosωτ1 − b1ω sinωτ1,

−a1ω
3 + a3ω + (c0ω

2 − c2) sinωτ∗2 + c1ω cosωτ∗2 = −(b0ω
2 − b2) sinωτ1 − b1ω cosωτ1.

(25)

Squaring and adding the two equations of (25) lead to

[ω4 − a2ω2 + a4 + (c2 − c0ω2) cosωτ∗2 + c1ω sinωτ∗2 ]2

+[−a1ω3 + a3ω + (c0ω
2 − c2) sinωτ∗2 + c1ω cosωτ∗2 ]2

−b21ω2 − (b0ω
2 − b2)2 = 0.

(26)

Denote

F (ω) = [ω4 − a2ω2 + a4 + (c2 − c0ω2) cosωτ∗2 + c1ω sinωτ∗2 ]2

+[−a1ω3 + a3ω + (c0ω
2 − c2) sinωτ∗2 + c1ω cosωτ∗2 ]2 − b21ω2 − (b0ω

2 − b2)2.

Then we have lim
ω→∞

F (ω) =∞, since

F (0) = (a4 + c2)2 − b22
= (αdEk1NδT1 + pdxT̄ ∗αc)

2 − [dEk1NδT1(kV1 − α)]2

= [pdxT
∗
1 αc+ dEk1NδT1kV1][pdxT

∗
1 αc+ (2α− kV1)dEk1NδT1].

We can know that if a4 + c2 − b2 < 0 holds, that is, F (0) < 0, then Eq.(26) has
limited positive real roots ω1, ω2, · · · , ωm.

Denote

τ j1k =
θ2 + 2jπ

ωk
, j = 1, 2, · · · ,m, k = 0, 1, · · · ,

where θ2 ∈ [0, 2π] is defined by

sin θ2 = −b1ωk[ω4
k − a2ω2

k + a4 + (c2 − c0ω2
k) cosωkτ

∗
2 + c1ωk sinωkτ

∗
2 ]

b21ω
2
k + (b0ω2

k − b2)2

+
(b0ω

2
k − b2)[−a1ω3

k + a3ωk + (c0ω
2
k − c2) sinωkτ

∗
2 + c1ωk cosωkτ

∗
2 ]

b21ω
2
k + (b0ω2

k − b2)2
,

cos θ2 =
(b0ω

2
k − b2)[ω4

k − a2ω2
k + a4 + (c2 − c0ω2

k) cosωkτ
∗
2 + c1ωk sinωkτ

∗
2 ]

b21ω
2
k + (b0ω2

k − b2)2

−b1ωk[−a1ω3
k + a3ωk + (c0ω

2
k − c2) sinωkτ

∗
2 + c1ωk cosωkτ

∗
2 ]

b21ω
2
k + (b0ω2

k − b2)2
.

(27)
Define

τ01 = min
1≤k≤m

τ01k, ω0 = ωi, i = 1, 2, . . . ,m, (28)

where ω0 corresponds to τ01 .
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Let λ(τ1) = α(τ1) + iω(τ1) be the root of Eq.(15) satisfying α(τ j1k) = 0 and

ω(τ j1k) = ω0. Differentiating Eq.(15) with respect to τ2 and a direct calculation give

(α′(τ01 ))−1 =
B11 sinω0τ

0
1+B12 cosω0τ

0
1+B13 cosω0(τ

0
1−τ

∗
2 )+B14 sinω0(τ

0
1−τ

∗
2 )

b22ω
4
0+(b2−b0ω2

0)
2ω2

0

+
−b21+2b0(b2−b0ω2

0)

b21ω
2
0+(b2−b0ω2

0)
2 − cosω0τ

0
1

(29)

where

B11 = ω0(b2 − b0ω2
0)(a3 − 3a1ω

2
0) + b1ω

2
0(2a2ω0 − 4ω3

0),
B12 = [(b2 − b0ω2

0)(2a2 − 4ω2
0)− b1(a3 − 3a1ω

2
0)]ω2

0 ,
B13 = [(b2 − b0ω2

0)(2a2 − 4ω2
0)− b1c1]ω2

0 ,
B14 = c1ω0(b2 − b0ω2

0) + 2b1c0ω
3
0 ,

From the above discussions, we can get the following result.

Theorem 3.5. Assume that Eq.(26) has positive roots, and that τ2 = τ∗2 ∈ I
and (H1) hold. Then we have that all roots of Eq.(15) have negative real parts
for τ1 ∈ [0, τ01 ) and the infected equilibrium E1 is locally asymptotically stable for
τ1 ∈ [0, τ01 ). In addition, if (α′(τ01 ))−1 6= 0, then system (2) undergoes a Hopf
bifurcation at the infected equilibrium E1 when τ1 = τ01 .

From the previous discussions, sufficient conditions are given for Hopf bifurcation
to occur when τ1 = τ01 . Next we analyze the direction of the Hopf bifurcation and
the stability of the bifurcating periodic orbits when τ1 = τ01 by normal form and
center manifold theory (see e.g. Hassard et al. [15]). As the details are given in the
Appendix, from (29), (34) and (35), we can compute the following quantities:

C1(0) =
i

2ω0

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = −Re(C1(0))

Re(λ′(τ01 ))
,

β2 = 2Re(C1(0)),

T2 = −Im(C1(0)) + µ2Im(λ′(τ01 ))

ω0
.

(30)

Theorem 3.6. Assume that conditions of Theorem 3.5 hold. Then µ2 determines
the direction of the Hopf bifurcation: if µ2 > 0(µ2 < 0), then the Hopf bifurcation
is forward (backward) and the bifurcating periodic orbits exist for τ1 > τ01 (τ1 < τ01 );
β2 determines the stability of bifurcating periodic orbits: the bifurcating orbits are
asymptotically stable(unstable) if β2 < 0(β2 > 0); and T2 determines the period of
the bifurcating periodic orbits: the period increases(decreases) if T2 > 0(T2 < 0).

4. Numerical simulations. In this section, we carry out numerical simulations
to illustrate our results on the variation of stability of E1 and the occurrence of
Hopf bifurcation for several values of the time delays. Throughout this section, we
refer the parameter values of system (2.1) to Table 1. The parameter values given
in Table 1 refer to [6, 29, 31, 33, 37, 41].

Fig. 1 shows the relationship between the basic reproduction number R0 and
growth rate of T-cells. The basic reproduction number R0 can be less than unity
when growth rate of T-cells r is reduced to 0.015 (day−1). The growth rate of
T-cells has an effect on the basic reproduction number, and then impacts on the
dynamics of the system.
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Variables Values

T (0) Uninfected T-cells 10 µl−1 [37]

T∗(0) Productively infected T-cells 10−6 µl−1 [6]

V (0) Virus 10−6 µl−1 [6]

E(0) CTLs 10−6 µl−1 [37]
Parameters Values

s Source term for uninfected T-cells 0.103 µl−1 (day)−1 [6]

d Natural death rate of healthy T-cells 0.01 (day)−1 [6]

r Growth rate of T-cells 0.95 (day)−1 [41, 29]

k Viral infectively rate 0.00065 µl day−1 [6]

k1 Activation rate 0.00065 µl day−1 [6]

Tmax Carrying capacity of T-cells 1000 µl−1 [37]

δ Death rate of infected T-cells 0.514 day−1 [37]

dx Death rate of infected T-cells due to action of immune response 0.812 µl day−1 [37]

dE Death rate of effector cells 1.618 day−1 [37]
N Number of virus particles produced by each infected T-cells 1861 cells [37]

c Clearance rate of virus 0.517 day−1 [31, 33]

p Produce rate of effector cells 1.473 µl day−1 [37]

Table 1. Variables and parameters for viral spread
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Figure 1. The relationship between the basic reproduction num-
ber and the growth rate of T-cells. The parameter values in Table
1.

According to [31, 33], set 0 < c ≤ 36 (day−1). Following the estimates of the
intracellular time delay τ1 and the immune delay τ2 in [22, 31], we assume that
τ1 ≤ 2 (days) and τ2 ≤ 32 (days). From Wang et al. [41] and Perelson et al. [29],
we suppose 0.03 ≤ r ≤ 3 (day−1). We choose that the initial values are T (0) = 10
cells µl−1, T ∗(0) = 10−6 cells µl−1, V (0) = 10−6 cells µl−1 and E(0) = 10−6

cells µl−1. Other parameter values of system (2.1) to Table 1. Correspondingly,
R0 = 2.3154e + 003 > 1, and E1 = (0.9621, 0.8699, 1609.5, 0.7919). We can get
(H1) and (H2) hold. When τ1 = 0, by direct computation we get ω20 = 0.7415 and

τ
(j)
2 = 1.6558 + 8.4736j(j = 0, 1, 2, . . .). By Theorem 3.4 we know that the stability

of the infected equilibrium E1 varies when τ2 increases, and the infected equilibrium
E1 is asymptotically stable for τ2 ∈ [0, 1.6558). Fig. 2 illustrates the results. Fig.
3 illustrates the bifurcating periodic orbits are asymptotically stable.

Let τ2 = 1.2 ∈ [0, 1.6558), we can obtain τ01 = 0.5300. By Theorem 3.5 we can get
that the infected equilibrium E1 is asymptotically stable when τ1 ∈ [0, 0.5300). By
a direct computation, we can get C1(0) = −15.9427− 46.2952i, β2 = −31.8854 < 0
and µ2 = 15.0233 > 0. By Theorem 3.6, when τ01 = 0.5300, the direction of the
Hopf bifurcation is forward and the bifurcating periodic orbits are asymptotically
stable. Fig. 4 and Fig. 5 illustrate the results.
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Figure 2. Behavior and phase portrait of system (2) with τ1 = 0,
τ2 = 1.5. The infected equilibrium is stable. The parameter values
in Table 1.
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Figure 3. Behavior and phase portrait of system (2) with τ1 = 0,
τ2 = 2. Hopf bifurcation occurs from the infected equilibrium. The
parameter values in Table 1.

We not only concern the local behaviors near the critical point, but we also
concern the dynamics when τ2 away from the critical point. Therefore, we give a
bifurcation diagram for τ2 ∈ [0.001, 16] (see Fig. 6). It is plotted by using Matlab
software, which depicts the change of periodic solutions in the V-axis as τ2 increases.
In the case of τ1 = 0, by the rigorous mathematical analysis we know that the
endemic equilibrium is asymptotically stable for τ2 ∈ [0, 1.6558), and the delay τ2
destabilize the endemic equilibrium by leading to stable periodic oscillations when
τ2 > 1.6558, and the fluctuation of viral load increases. The amplitude of periodic
solutions quickly drops near τ2 = 1.6558+8.4736×1 = 10.1294, and the fluctuation
of viral load is small at τ2 = 10.13. When τ2 > 10.13, the delay τ2 can destabilize
the infected state leading to Hopf bifurcation and stable periodic oscillations, and
the amplitude of periodic solutions goes up gradually as τ2 increases. Fig. 7-9
illustrate the results. When r, τ1 and τ2 are very large, we give the time history
and phase portraits to show that system (2) has chaotic motions (see Fig. 10-
11). Fig. 12 shows that system (2) has stable periodic, quasi periodic and chaotic
motions. Thus, immune response delay has an effect on the control of HIV.
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Figure 4. Behavior and phase portrait of system (2) with τ1 =
0.4, τ2 = 1.2. The infected equilibrium is stable. The parameter
values in Table 1.
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Figure 5. Behavior and phase portrait of system (2) when τ1 =
0.7, τ2 = 1.2. Hopf bifurcation occurs from the infected equilib-
rium. The parameter values in Table 1.
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Figure 6. Bifurcation diagram of V versus τ2 when τ1 = 0 and
τ2 ∈ [0.001, 16]. The parameter values in Table 1.
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Figure 7. Behavior and phase portrait of system (2) when τ1 = 0,
τ2 = 10. Hopf bifurcation occurs from the infected equilibrium.
The parameter values in Table 1.
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Figure 8. Behavior and phase portrait of system (2) when τ1 = 0,
τ2 = 10.13. Hopf bifurcation occurs from the infected equilibrium.
The parameter values in Table 1.
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Figure 9. Behavior and phase portrait of system (2) when τ1 = 0,
τ2 = 13. Hopf bifurcation occurs from the infected equilibrium.
The parameter values in Table 1.
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Figure 10. When τ1, τ2 and r are very large, system (2) shows
chaotic phenomenon. τ1 = 2, τ2 = 20 and r = 3, and other param-
eters are given in Table 1.
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Figure 11. Simulating solution of system (2) when r = 3, τ1 = 2
and τ2 = 20, showing a chaotic attractor. Other parameter values
in Table 1.

The bifurcation diagram of V versus r in the range 0.01 ≤ r ≤ 3 is shown in Fig.
13, and is realized by varying r in steps of 0.01. At the left end of the r range, up to
2.1, the infected steady state is asymptotically stable, but the viral load increases.
As r increases, r destabilize the infected steady state and leading to stable periodic
oscillations. Fig. 14 illustrates the results. These results imply that the growth
rate of T-cells have an effect on the dynamics of the HIV model.
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Figure 12. Phase portraits of system (2) at: (a)τ2 = 1.9; (b)τ2 =
10; (c)τ2 = 13.9; (d)τ2 = 15, showing the evolution of dynamics
types with increasing τ2. Where τ1 = 2 and r = 3, and other
parameters are given in Table 1.
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Figure 13. Bifurcation diagram of V versus r when τ1 = 0, τ2 = 1
and r ∈ [0.01, 3]. Other parameter values in Table 1.

5. Discussion. In this paper, we incorporate an extra logistic term for target cells
into a model of HIV-1 infection with two time delays studied in [26]. We define a
basic reproduction number R0 which plays a major role in determining the uniform
persistence or clearance of viral load. When R0 < 1, the uninfected steady state
is globally asymptotically stable. When R0 > 1, the system is uniform persistent.
For the case of R0 > 1, given both the two delays are zero, then we show that the
infected steady state is asymptotically stable when the intrinsic growth rate of the
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Figure 14. Phase portraits of system (2) at: (a)r = 0.5; (b)r =
1.8; (c)r = 2.4; (d)r = 2.8, showing the evolution of dynamics types
with increasing r. Where τ1 = 0 and τ2 = 1, and other parameters
are given in Table 1.

logistic term r is sufficiently small. In the case of the intracellular delay τ1 that is
zero, by analyzing the distribution of the roots of the corresponding characteristic
equation, stability varies for the infected equilibrium when the immune delay τ2
increases. Fixing τ2, we get that there exists a first critical value of τ1 at which
the infected equilibrium loses its stability and the Hopf bifurcation occurs. The
direction of the Hopf bifurcation and the stability of the bifurcating periodic solution
are investigated.

Comparing our results with those established in [26] without logistic growth, we
show some new results in our paper. First, we prove that the intracellular delay
τ1 may also destabilize the infected equilibrium by leading to a Hopf bifurcation
and stable periodic oscillations for some fixed immune delay τ2, while in [26] it
was shown that τ1 is unable to destabilize the infected steady state provided that
τ2 = 0. Second, we prove that, with the increase of the intrinsic rate for target
cells r, the behaviors of viral load may be destabilized into oscillations, moreover
by simulation we show that the oscillation interval will be enlarged as r increases.
Third, our simulations suggest that richer dynamics chaotic oscillations as observed
in Figs. 10-11 will occur in the system. Therefore, our results suggest that the
logistic growth for T-cells, the intracellular delay τ1 or the immune delay τ2 may
be responsible for the rich virus dynamics.

Determining the stability switching regions for a model with two positive delays
and logistic term, it is worth of further study on the combined effects of these three
elements, which we leave for future work.



204 HAITAO SONG, WEIHUA JIANG AND SHENGQIANG LIU

Acknowledgments. We would like to thank professor Yang Kuang, Stephen Gour-
ley and anonymous referee for their valuable comments and suggestions which led
to a significant improvement of our work.

Appendix. In this section, by normal form and center manifold theory [15], we
analyze the direction of the Hopf bifurcation and the stability of the bifurcating
periodic orbits under the conditions of Theorem 3.5.

Assume that τ∗2 > τ01 . Let τ1 = τ01 + µ, then system (14) is transformed into an
FDE in C = C([−τ∗2 , 0], R4) as

ẋ(t) = Lµ(xt) + f(µ, xt), (31)

where xt(θ) = x(t+ θ) and Lµ : C → R4 is defined by

Lµϕ = A1ϕ(0) +B1ϕ(−τ01 ) +B2ϕ(−τ∗2 ) (32)

where

A1 =


r(1− 2T1

Tmax
)− kV1 − d 0 −kT1 0

0 −(δ + dxE1) 0 −dxT ∗1
0 Nδ −c 0
0 0 0 −dE



B1 =


0 0 0 0

k1V1 0 k1T1 0
0 0 0 0
0 0 0 0


B2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 p 0 0


ϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t))T

and

f(µ, ϕ) = (τ01 + µ)


− r
Tmax

ϕ1(0)2 − kϕ1(0)ϕ3(0)

−dxϕ2(0)ϕ4(0) + k1ϕ1(−τ01 )ϕ3(−τ01 )
0
0


From the discussions in Section 3, we obtain that system (14) undergoes a Hopf

bifurcation at (0, 0, 0, 0) when µ = 0, and the corresponding characteristic equation
of system (14) with µ = 0 has a pair of purely imaginary roots ±iω0.

Using the Riesz representation theorem, there is a function η(θ, µ)(θ ∈ [−τ∗2 , 0)
such that

Lµϕ =

∫ 0

−τ∗
2

dη(θ, µ)ϕ(θ), ∀ϕ ∈ C. (33)

Denote

η(θ, µ) =

 A1 +B2, θ = 0,
B1, θ ∈ [−τ01 , 0),
−B2δ(θ + τ∗2 ), θ ∈ [−τ∗2 ,−τ01 ),

where

δ(θ) =

{
0, θ 6= 0,
1, θ = 0.
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For ϕ ∈ C1([−τ∗2 , 0], R4), define

A(µ)ϕ =

{
dϕ(θ)
dθ , θ ∈ [−τ∗2 , 0),∫ 0

−τ∗
2

dη(s, µ)ϕ(s), θ = 0.

and

R(µ)ϕ =

{
0, θ ∈ [−τ∗2 , 0),
f(µ, ϕ), θ = 0.

Then system (14) becomes

ẋt = A(µ)xt +R(µ)xt,

where xt(θ) = x(t+ θ) for θ ∈ [−τ∗2 , 0). For ψ ∈ ([0, τ∗2 ], (R4)∗), define an operator

A∗ψ =

{
−dϕ(s)

ds , s ∈ [0, τ∗2 ),∫ 0

−τ∗
2

dηT (t, 0)ψ(−t), s = 0.

and a bilinear form

〈ψ(s), ϕ(θ)〉 = ψ̄(0)ϕ(0)−
∫ 0

−τ∗
2

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ,

Therefore, A(0) and A∗ are adjoint operators. From the above discussions, we know
that ±iω0 are eigenvalues of A(0) and so they are also eigenvalues of A∗.

Denote

q2 =
(iω0 + c)(r(1 − 2T1

Tmax
) − kV1 − d− iω0)

NδkT1
,

q3 =
r(1 − 2T1

Tmax
) − kV1 − d− iω0

kT1
,

q4 =
(iω0 + c)(r(1 − 2T1

Tmax
) − kV1 − d− iω0)pe−iω0τ

∗
2

(NδkT1)(iω0 + dE)
,

q∗2 =
iω0 − r(1 − 2T1

Tmax
) + kV1 + d

k1V1e−iω0τ
0
1

,

q∗3 =
(iω0 − r(1 − 2T1

Tmax
) + kV1 + d)T1 − kV1T1

(iω0 + c)V1
,

q∗4 =
−dxT ∗1 (iω0 − r(1 − 2T1

Tmax
) + kV1 + d)

k1V1e−iω0τ
0
1 (iω0 + dE)

,

D =
(

1 + q̄2q
∗
2 + q̄3q

∗
3 + q̄4q

∗
4 + k1V τ

0
1 e
iω0τ

0
1 q∗2 + pτ∗2 e

iω0τ
∗
2 q∗4 + k1T1τ

0
1 e
−iω0τ

0
1 q2
∗q̄3
)−1

.

(34)

We can show that the vectors q(θ) = (1, q2, q3, q4)T eiω0θ, θ ∈ [−τ∗2 , 0), and q∗(s) =
D(1, q∗2 , q

∗
3 , q
∗
4)eiω0s, s ∈ (0, τ∗2 ], are the eigenvectors of A(0) and A∗ associated with

the eigenvalue iω0 and −iω0. Moreover, 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0.
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Following the procedure in [15], we can obtain the coefficients:

g20 = 2D̄
[
− r
Tmax

− kq3 + q̄2
∗(−dxq2q4 + k1q3e

−2iω0τ
0
1 )
]
,

g11 = D̄
[
− 2r
Tmax

− k(q3 + q̄3) + dxq̄2
∗(q2q̄4 + q̄2q4) + k1q̄2

∗(q3 + q̄3)
]
,

g02 = 2D̄
[
− r
Tmax

− kq̄3 + q̄2
∗(−dxq̄2q̄4 + k1q̄3e

2iω0τ
0
1 )
]
,

g21 = D̄{− 2r
Tmax

[4W
(1)
11 (0) + 2W

(1)
20 (0)]

−k[2W
(3)
11 (0) +W

(3)
20 (0) + q̄3W

(1)
20 (0) + 2q3W

(1)
11 (0)]

−dxq̄2∗[2q2W (4)
11 (0) + q̄2W

(4)
20 (0) + q̄4W

(2)
20 (0) + 2q4W

(2)
11 (0)]

+k1q̄2
∗[2W

(3)
11 (−τ01 )e−iω0τ

0
1 +W

(3)
20 (−τ01 )eiω0τ

0
1 ]

+k1q̄2
∗[q̄3W

(1)
20 (−τ01 )eiω0τ

0
1 + 2q3W

(1)
11 (−τ01 )e−iω0τ

0
1 ]},

(35)

where for θ ∈ [−τ∗2 , 0),

W20(θ) =
ig20
ω0

q(0)eiω0θ +
iḡ02
3ω0

q̄(0)e−iω0θ +H1e
2iω0θ,

W11(θ) = − ig11
ω0

q(0)eiω0θ +
iḡ11
ω0

q̄(0)e−iω0θ +H2,

H1 = 2G−11


− r
Tmax

− kq3
−dxq2q4 + k1q3e

−2iω0τ
0
1

0
0

 ,

where

G1 =


2iω0 − r(1 − 2T1

Tmax
) + kV1 + d 0 kT1 0

−k1V1e−2iω0τ
0
1 2iω0 + δ + dxE1 −k1T1e−2iω0τ

0
1 dxT ∗1

0 −Nδ 2iω0 + c 0

0 −pe−2iω0τ
∗
2 0 2iω0 + dE

 ,

and

H2 = G−12


− 2r
Tmax

− k(q3 + q̄3)

−dx(q2q̄4 + q̄2q4) + k1(q3 + q̄3)
0
0

 ,

where

G2 =


kV1 + d− r(1− 2T1

Tmax
) 0 kT1 0

−k1V1 δ + dxE1 −k1T1 dxT
∗
1

0 −Nδ c 0
0 −p 0 dE

 .

Consequently, g21 can be expressed definitely.
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