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Abstract. A mathematical spatial cancer model of the interaction between

a drug and both malignant and healthy cells is considered. It is assumed

that the drug influences negative malignant cells as well as healthy ones. The
mathematical model considered consists of three nonlinear parabolic partial

differential equations which describe spatial dynamics of malignant cells as

well as healthy ones, and of the concentration of the drug. Additionally, we
assume some phase constraints for the number of the malignant and the healthy

cells and for the total dose of the drug during the whole treatment process.

We search through all the courses of treatment switching between an appli-
cation of the drug with the maximum intensity (intensive therapy phase) and

discontinuing administering of the drug (relaxation phase) with the objective

of achieving the maximum possible therapy (survival) time. We will call the
therapy a viable treatment strategy.

1. Introduction. Glioma is one of the most widespread and dangerous kinds of
brain tumors. Almost half of initially diagnosed brain tumors are gliomas. There
exist different methods of treatment: chemotherapy, radiotherapy and surgical re-
section.

One of the distinctive features of glioma is its extremely invasive character and
fast penetration into surrounding tissues. Thus, it is often impossible to separate
malignant and healthy areas of brain. In addition, during the chemotherapy process
some of the malignant cells gain drug resistant properties.

One of the first attempts to formulate a searching strategy for glioma therapy
was made in ([26], [31]). The problem of searching an optimal therapy strategy
in mathematical models of leukemia based on Pontryagin’s maximal principle was
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investigated in ([1], [2]). An analogous approach was applied in many other math-
ematical models of avascular tumor ([20],[21], [9], [4], [34]).

Usually the aim of optimization is minimization of the number of malignant
cells at the end of the therapy process or minimization of integral functional which
represents the average integral value of the number of malignant cells during the
whole process period ([7], [27], [26]),([32], [33]). As a rule, the dynamics of the
chemotherapeutic agent and the drug effect described in the model presented in this
paper with help of including the control function into the equation of population
for malignant cells are not considered in the most models.

The problem of searching the optimal feedback control is more complicated from
a mathematical point of view since it leads to a necessary consideration of PDE
(Hamilton-Jacobi-Bellman equation) ([12], [5], [6], [8]).

It should be noted that, in general, the solution of an optimal control problem
for nonlinear systems presents a sufficiently difficult mathematical problem. An
analytical solution can be obtained in relatively simple mathematical models of
small dimensions only. The condition becomes more complicated in the case of
spatial (distributed) nonlinear mathematical models of optimal control since these
models are not assigned to investigated problems ([15], [22], [28]).

Nevertheless the practical significance of the problem does not permit to wait
when mathematics can provide an exhaustive solution of such problems.

Today, there is a sufficiently large experimental and theoretical base of informa-
tion on various characteristics of glioma such as proliferation velocity and velocity
of front profile ([32], [33], [26]), value of diffusion coefficient ([16], [11]) and its de-
pendence on white and grey matter of brain ([16], [11]). A plethora of information
is contained in the special database BrainWeb and the program EMMA (Extensi-
ble MATLAB Medical Analysis) is based on experimental patient data ( [32]) and
([26]).

In the present article we consider a spatial (distributed) mathematical model of
glioma that consists of three nonlinear PDE of parabolic type which describe the
dynamics of malignant and normal cells and the concentration of chemotherapeutic
agent during the therapy process. Chemotherapeutic agent kills not only malignant
cells but damages some healthy cells, too.

At every moment in time the restriction on the total number of malignant cells
(upper limit) and the restriction on the total number of normal cells (lower limit)
is introduced. In addition, we introduce the restriction on the total amount of
chemotherapeutic agent during the therapy process. Thus, for every moment in
time these restrictions form in the phase space some domain Ω. A violation of the
boundary of the domain Ω by phase variable means in reality the death of a patient.
At the same time a change of phase variables inside of the domain Ω means in reality
to secure the life of a patient. Below we refer to the domain Ω as a viable domain.

For the sake of simplicity we will consider the set of so called simple therapy
strategies that consists of alternating periods: active treatment and relaxation.

Among such strategies we will search for a strategy which provides the maximal
viable time without violating the restrictions described above and the boundary of
the viable domain Ω.

In this work we will pay special attention to cyclic and quasi cyclic therapy
strategies, i.e. such strategies for which, as a result of its application, the phase
variables form cyclic or quasi cyclic trajectories which are entirely contained in
the viable domain Ω . Existence of such cycles means a potential possibility of



ON VIABLE THERAPY STRATEGY 165

transforming the illness to a chronic phase where the illness can be controlled with
the help of regular treatment therapy.

2. Statement of the problem.

2.1. Description of the model. Let D ⊂ Rm (m = 2, 3) be a bounded domain
of area (or volume) S with a smooth boundary Γ, ν be the outer normal unit vector
to Γ.

Let c(x, t) and n(x, t) be the density of tumor and normal cells, respectively, and
h(x, t) the amount of chemotherapeutic agent at the moment t in x ∈ D.

We will consider the following mathematical model which describes the process of
growth and spread of malignant and normal cells under the influence of chemother-
apy: 

∂c(x,t)
∂t = f1(c(x, t)) +∇ (dc(x)∇c(x, t))− k1c(x, t)g(h),

∂n(x,t)
∂t = f2(n(x, t)) + dn∆n(x, t)− k2n(x, t)g(h)− αϕ(c, n),

∂h(x,t)
∂t = −γhh(x, t) + dh∆h(x, t) + u(x, t).

(2.1)

with the following initial and boundary conditions:

c(x, 0) = c0(x) > 0, n(x, 0) = n0(x), h(x, 0) = h0(x);
∂c(x,t)
∂ν

∣∣∣
Γ

= 0, ∂n(x,t)
∂ν

∣∣∣
Γ

= 0, ∂h(x,t)
∂ν

∣∣∣
Γ

= 0;
(2.2)

Here ∇ denotes taking gradient, ∆ the Laplace-operator, k1, k2, dn, dh, γh, α ∈
R>0 are positive constants.

The positive coefficient k1 expresses the intensity of the therapy for cancer cells,
k2 the intensity of the damage to normal cells, the positive parameter α the com-
petition effect, dn is the diffusion coefficient for normal cells. Positive constants γh
and dh describe a dissipation rate and the diffusion coefficient of the medicine.

Taking into account the nonhomogenous property of the matter, we suppose for
the diffusion coefficient for tumor cells dc(x) that

dc(x) =

{
dg, if x belongs to grey matter,
dw, if x belongs to white matter

with dg, dw ∈ R>0. The values of the constants used for our numerical simulations
are taken from the literature and given in the Table 1 in the section 5.

The functions fi (i = 1, 2) describe in the model proliferation laws for malignant
and normal cells, respectively. In the literature (see for example [29],[18], [14],[24])
the Gompertzian (logarithmic) law

fi(v) = ρiv(1− βi ln v), v > 0,

or the logistic law

fi(v) = ρiv(1− βiv), v > 0, ρi, βi > 0, v > 0,

are frequently chosen for the description.
Both laws have a similar qualitative property of saturation if v →∞. They differ

in their behavior for small values of v. For the Gompertz law the velocity of growth
at v = 0 is infinite, at the same time for logistic law this velocity is restricted. Note
that from our point of view the Gompertz law is more suitable for describing such
invasive kind of tumor as glioma.

The function g(h) describes the influence of the chemotherapy on the process of
proliferation: both cell kinds will be damaged under influence of chemotherapy. So



166 ALEXANDER S. BRATUS, SVETLANA YU. KOVALENKO AND ELENA FIMMEL

we can call g(h) ‘therapy function’ considering its effect on the malignant cells and
‘damage function’ in the case of the normal cells. In this paper we will model this
function as an increasing concave function of the form:

g(h) =
h

a0 + h
, a0 > 0.

The function ϕ(c, n) describes how the malignant cells influence the population
of the normal cells (the competition effect):

ϕ(c, n) =
c(x, t)n(x, t)

b0 + c(x, t)
, b0 > 0.

The control function u(x, t) denotes the quantity of the chemotherapeutic agent
applied to a patient at time t in x ∈ D.

We assume that for all x ∈ D and all t ≥ 0 the following inequality holds

0 6 u(x, t) 6 q, q > 0. (2.3)

2.2. The actual optimization problem. The aim of the present work is to iden-
tify a therapy strategy which provides the maximal viable time for the patient. To
implement the results of the mathematical modelling to the existent medical prac-
tice we will consider a set of the so called simple therapy strategies which consist
of alternating periods of active treatment and relaxation.

Definition 2.1. Let D0 ⊆ D, q > 0, τ1 > 0, τ2 > 0. We will call the set of control
functions (compare 2.3) of the form

u(x, t) = χD0
(x)u0(t), (2.4)

where

u0(t) =

 q, 0 6 t 6 τ1;
0, τ1 6 t 6 τ1 + τ2;

χD0
(x) =

{
1, x ∈ D0;
0, x /∈ D0;

the class of simple therapy strategies and denote it as Σ.

Note that each function from the class Σ can be uniquely defined given a subset
D0 ⊆ D and three parameters: the intensity of therapy q, the time of active therapy
τ1 and the time of relaxation τ2. In the case D0 ≡ D the control function depends
only on time. In the case when the domain D0 coincides with a single point x0 ∈ D
the control function has the form u(x, t) = δ(x−x0)u0(t) where δ is the Dirac delta
function.

Let us introduce the following notations for the average integral logarithmic
numbers of the normal and malignant cells, respectively:

n(t) =

∫
D

lnn(x, t) dx, c(t) =

∫
D

ln c(x, t) dx. (2.5)

The positive constant c∗ denotes in the further considerations the restriction on
the total number of malignant cells (upper limit), n∗ the restriction on the total
number of normal cells (lower limit). Now we can give the definition of the viable
domain:
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Definition 2.2. If the solutions n(x, t), c(x, t) of the problem (2.1), (2.2) for all t
satisfy the following integral inequalities:

n(t) > n∗, c(t) 6 c∗. (2.6)

then we say that the numbers of malignant and normal cells are in the viable domain
Ω bounded by the parameters n∗ and c∗.

The inequality (2.6) means that the average integral number of normal cells
could not be smaller then the lower limit n∗ and the average integral number of
malignant cells have to be smaller then the critical value c∗. The values n∗ and c∗

are determined from conditions of safe survival of a patient.
Without loss of generality we suppose here and further that c(x, t) > 1, n(x, t) >

1, x ∈ D, t > 0.
Now we can formulate the control problem.
To find the control function u(x, t) in the class of simple tharapy strategies such

that response time T in the viable domain Ω bounded by the parameters n∗ and
c∗ (survival time) will be maximal under the restriction on cumulative amount of
chemotherapeutic agent during the whole therapy process:

T∫
0

∫
D

h(x, t) dx 6 Q. (2.7)

Here Q is a given positive constant.
As mentioned before, of special interest is the problem of identifying a periodical

strategy of therapy in the set of Σ for which, as a result of its application, the phase
variables form cyclic or quasi cyclic trajectories which entirely fit into the viable
domain of Ω. In theory, such a strategy allows the patient to stay alive during an
unlimited time period.

Note also that the proposed model (2.1), (2.2) can be applied for the description
of therapy processes for various kinds of tumours.

3. Estimate for the average integral values. Let us divide the first and the
second equation of system (2.1) by the function c(x, t) and n(x, t) respectively and
integrate the result in domain D.

Using the notations:

c(t) =

∫
D

ln c(x, t) dx, n(t) =

∫
D

lnn(x, t) dx,

h(t) =

∫
D

h(x, t) dx, u(t) =

∫
D

u(x, t) dx,

we obtain the following ODE system
dc(t)
dt = ρ1(S − β1c(t)) +A1(c)− k1g(h),

dn(t)
dt = ρ2(S − β2n(t)) +A2(n)− k2g(h)− αL(c),

dh(t)
dt = −γhh(t) + u(x, t).

(3.1)

Here

A1(c) =
∫
D

1
c(x,t)∇ (dc(x)∇c(x, t)) dx, A2(n) = dn

∫
D

1
n(x,t)∆n(x, t) dx

g(h) =
∫
D

h(x,t)
a0+h(x,t) dx, L(c) =

∫
D

c(x,t)
b0+c(x,t) dx.

(3.2)
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Lemma 3.1. Let

c(x, t) > 1, n(x, t) > 1 for x ∈ D, t > 0,

ln c(x, t) ∈W 1
2 (D), lnn(x, t) ∈W 1

2 for t > 0.

Then the following inequalities hold

A1(c) > 0, A2(n) > 0 (3.3)

where W 1
2 denotes the Sobolev space of functions which are squared integrable to-

gether with all derivatives.

Proof.

A1(c) =

m∑
i=1

∫
D

1

c(x, t)

∂

∂xi

(
d
∂c(x, t)

∂xi

)
dx =

=

m∑
i=1

∫
D

∂

∂xi

(
d

1

c(x, t)

∂c(x, t)

∂xi

)
−

m∑
i=1

∫
D

∂

∂xi

(
1

c(x, t)

)(
d
∂c(x, t)

∂xi

)
dx.

m = 2, 3.
Using the Gauss-Ostrogradsky equation we get

m∑
i=1

∫
D

∂

∂xi

(
dc(x)

1

c(x, t)
(x, t)

∂c(x, t)

∂xi

)
=

=

m∑
i=1

∫
Γ

dc(x)
1

c(x, t)
(x, t)

∂c(x, t)

∂xi
cos(n, xi) ds = 0

Therefore

A1(c) = −
m∑
i=1

∫
D

∂

∂xi

(
1

c(x, t)

)(
d
∂c(x, t)

∂xi

)
dx =

=

m∑
i=1

∫
D

d

(
1

c(x, t)

)2
∂c(x, t)

∂xi

∂c(x, t)

∂xi
dx =

=

m∑
i=1

∫
D

d

(
∂ ln c(x, t)

∂xi

)2

dx > 0.

The proof of the inequality A2(n) > 0 is similar.

Lemma 3.2. Let h(x, t) ∈ L1(D) be a solution of the third equation of the system
(2.1), S the area of the domain D, SD0

the area of the domain D0 ⊂ D,

h0 =

∫
D

h(x, 0) dx =

∫
D

h0(x) dx; u(x, t) ∈ Σ; g(h) =
h

a0 + h
.

Then the inequality

g(h) =

∫
D

h(x, t)

a0 + h(x, t)
dx 6 R (3.4)
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takes place where R is a positive constant which can be calculated as

R = Sg
(
h0 + Sq

γh

)
, for u(x, t) = u(t),

R = Sg
(
h0 +

SD0
q

γh

)
, for u(x, t) = χD0

(x)u(t),

R = Sg
(
h0 + q

γh

)
, for u(x, t) = δ(x− x0)u(t), x0 ∈ D.

(3.5)

Proof. Integrating the third equation of (2.1) and using the Gauss-Ostrogradsky‘s
formula we get

dh

dt
(t) = −γhh(t) + u(t), h(0) = h0.

The soluton of the equation is

h(t) = h0e
−γht +

t∫
0

e−γh(t−s)u(s) ds.

Evidently it holds for u(x, t) ∈
∑

u(t) 6 Sq, if u(x, t) = u(t),
u(t) 6 SD0

q, if u(x, t) = χD0
(x)u(t),

u(t) 6 q, if u(x, t) = δ(x− x0)u(t), x0 ∈ D.
(3.6)

and, consequently, we can estimate

h(t) 6
q

γh

(
1− e−γht

)
+ h0e

−γht 6
q

γh
+ h0,

if for example u(t) 6 q.
For concave function g(h) the Jensen inequality has the form∫

D

g(h(x))λ(x) dx 6 g

∫
D

λ(x)h(x) dx

 , λ(x) > 0,

∫
D

λ(x) dx = 1.

Taking λ(x) = 1
S we obtain

g

(
h

S

)
= g

∫
D

1

S
h(x) dx

 >
∫
D

g(h(x, t))
1

S
dx =

1

S
g(h).

Using the fact that g(h) is increasing and estimating h(t) with the help of (3.6)
we obtain (3.4), (3.5).

Theorem 3.1. Let C(t) and N(t) be positive functions defined by

C(t) :=
σc
ρ1β1

(
1− e−ρ1β1t

)
+ e−ρ1β1tc(0)

N(t) :=
σn
ρ2β2

(
1− e−ρ2β2t

)
+ e−ρ2β2tn(0)

where σc := ρ1S − k1R, σn := ρ2S − k2R − αS, c(0) =
∫
D

ln c0(x) dx, n(0) =∫
D

lnn0(x) dx, R is the maximal of constants from the lemma above, ρi, βi denote

parameters of Gompertz’s Law for cancer (i = 1) and normal cells (i = 2), respec-
tively, k1 denotes the intensity of the therapy for cancer cells and k2 the intensity
of the damage to normal cells.

Then the following statements are true
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• If for some t > 0 and some c∗ > 0 the inequality

C(t) > c∗

takes place then there is no treatment strategy u(x, t) ∈ Σ that can supply

the fulfillment of the viable restriction c(t) 6 c∗.
• If for any t > 0 and some n∗ > 0 the inequality

N(t) > n∗

takes place then for any treatment strategy from the set Σ the viable re-
striction n(t) > n∗ is fulfilled.

Proof. Using the estimates (3.3)-(3.5) and the inequality L(c) 6 S we obtain the
following system of differential inequalities{

dc(t)
dt > ρ1S − k1R− ρ1β1c(t) = σc − ρ1β1c(t),

dn(t)
dt > ρ2S − k2R− αS − ρ2β2n(t) = σn − ρ2β2n(t).

Therefore {
c(t) > σc

ρ1β1

(
1− e−ρ1β1t

)
+ e−ρ1β1tc(0) = C(t),

n(t) > σn

ρ2β2

(
1− e−ρ2β2t

)
+ e−ρ2β2tn(0) = N(t).

The result of the theorem immediately follows from last inequalities.

4. Stability of the space homogenous steady state position. Consider the
dynamical system (2.1) without taking into account a space distribution

dc(t)
dt = ρ1c(t)(1− β1 ln c(t))− k1c(t)g(h(t)),

dn(t)
dt = ρ2n(t)(1− β2 lnn(t))− k2n(t)g(h(t))− αϕ(c(t), n(t)),

dh(t)
dt = −γhh(t) + u(t).

(4.1)

Denote by c(t) = ln c(t), n(t) = lnn(t).
For any t > 0 to determine the viable domain Ω bounded by the parameters n∗

and c∗ by the following inequalities:

n(t) > n∗, c(t) 6 c∗. (4.2)

Let us consider now the control function u(t) = u as a parameter of the system
that does not depend on the variable t and satisfies the restriction 0 6 u 6 q.

Consider now the critical point of the dynamical system (4.1) which depends on
the parameter u Au (cu, nu, hu) where

cu =
1

β1
(1− κ1g(hu)), nu =

1

β2
(1− κ2g(hu))− α

β1ρ2
l(cu), hu =

u

γ
(4.3)

Here

κi =
ki
ρi
i = 1, 2, g(hu) =

u

a0γ + u
, l(cu) =

ecu

1 + ecu
.

Analyzing the eigenvalues of the Jacobi matrix at point Au, we obtain that for
any possible value of the parameter 0 6 u 6 q the critical point Au will be a stable
knot. 1

Aside from the point Au the system (4.1) has another critical points. It can be
shown that all these critical points are unstable (see Figure 1).

1Note that for sufficiently small values of the parameter α the characteristic of the critical point
Au does not change comparing with the case when α = 0.
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Figure 1. critical points of the system (4.1)

For u = 0 the critical point A0 will be situated out of the viable domain Ω since
in this case the density of tumour cells reaches its maximal value.

On the other hand, since the critical point Au is asymptotically stable, then the
phase orbits will be located in the viable domain Ω only if Au ∈ Ω holds. Let us
estimate the value of the parameter u that is supplied this location (for α = 0).

If Au ∈ Ω then

1− κ1g(hu) ≤ β1c
∗, 1− κ2g(hu) ≥ β2n

∗, κi =
ki
ρi
, i = 1, 2, κ1 > κ2 > 1.

Therefore
a0γhr1

1− r1
≤ u ≤ a0γhr2

1− r2

where

r1 :=
1

κ1
(1− β1c

∗), r2 :=
1

κ2
(1− β2n

∗).

The critical point of the system (4.1) will be a space homogenous steady state
position of the distributed system (2.1).

We introduce the following supposition:

1. The positive functions c(x, t), n(x, t), h(x, t) are smooth functions of a real
variable t > 0.

2. For any t > 0 the functions c(x, t), n(x, t), h(x, t) belong to the Sobolev space
W 2

2 (D) as functions of a variable x ∈ D.
3. u(x, t) = u is a parameter with 0 6 u 6 q,
4. dc(x) = d ∈ R>0 for all x ∈ D.

Note that from the embedding theorem (see, for instance, [23]) it follows that
the functions from W 2

2 (D) coincide with continuous functions C(D) everywhere,
excluding maybe a set of measure zero.

Let us recall that a space homogenous equilibrium v0 =
(
c0, n0, h0

)
, with

c0, n0, h0 > 0 of the distributed system (2.1) is called Lyapunov stable if for any
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ε > 0 we can find in the space W 2
2 (D) such neighborhood Uδv0 of the equilibrium v0

that any initial data of the system (2.1) which belong to Uδv0 will fulfill the condition:

‖v(x, t)− v0‖W 2
2 (D) < ε, t > 0

where v(x, t) = (c(x, t), n(x, t), h(x, t)) is a solution of the system (2.1) with initial
data from the neighborhood Uδv0 .

The equilibrium v0 will be asymptotically stable if besides that

lim
t→∞

‖v(x, t)− v0‖W 2
2 (D) = 0.

We consider the following auxiliary boundary eigenvalue problem for the Laplace
equation

∆ψ(x) = −λψ(x), x ∈ D,
(
∂ψ

∂ν

)
Γ

= 0 (4.4)

The system of eigenfunctions of this problem ψ0(x) = 1, {ψi(x)}∞i=1 forms a
complete system in the Sobolev space W 2

2 (D)∫
D

ψi(x)ψj(x) dx = δi,j , i, j = 0, 1, 2 . . . (4.5)

where δi,j is the Kronecker symbol ([23]). Here and further the parentheses ( , )
denote the scalar product in the space L2(D).

The corresponding eigenvalues of (4.4) satisfy the condition

λ0 = 0 < λ1 6 λ2 . . . 6 λn 6 . . . lim
n→+∞

λn = +∞ (4.6)

Theorem 4.1. Suppose that assumptions 1−4 are fulfilled. Then the space homoge-
nous steady state position (4.3) will be asymptotically stable in the space W 2

2 (D) for
all values of the control parameters 0 6 u 6 q.

Proof. Using (4.4-4.6) we seek the solution of the system (2.1) in the following form:

c(x, t) = c̃+ δ

(
c0(t) +

∞∑
s=1

cs(t)ψs(x)

)
= c̃+ δΨc(x, t),

n(x, t) = ñ+ δ

(
n0(t) +

∞∑
s=1

ns(t)ψs(x)

)
= ñ+ δΨn(x, t),

h(x, t) = h̃+ δ

(
h0(t) +

∞∑
s=1

hs(t)ψs(x)

)
= h̃+ δΨh(x, t).

(4.7)

Here ln c̃ = cu, ln ñ = nu, h̃ = u
γh
. The values cu and nu are defined by (4.4). δ

is a sufficiently small value.
Note that expatiations (4.7) are possible since eigenfunctions {ψs(x)}∞s=0 of the

boundary problem (4.5) complete the full system in the space W 2
2 (D).

Substituting (4.7) into (2.1) and retaining in the usual way only linear terms
with respect to Ψc(x, t), Ψn(x, t), Ψh(x, t) we obtain the following linear system

∂Ψc(x,t)
∂t =

(
ρ1(1− β1 ln c̃)− β1ρ1 − k1g(h̃)

)
Ψc(x, t)− k1c̃g

′(h̃)Ψh(x, t)+

+dc∆Ψc(x, t),
∂Ψn(x,t)

∂t =
(
ρ2(1− β2 ln ñ)− β2ρ2 − k2g(h̃)− α∂ϕ(c̃,ñ)

∂n

)
Ψn(x, t)−

−α∂ϕ(c̃,ñ)
∂c Ψc(x, t)− k2c̃g

′(h̃)Ψh(x, t) + dn∆Ψn(x, t),
∂Ψh(x,t)

∂t = −γhΨh(x, t) + u+ dh∆Ψh(x, t).
(4.8)
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From [17] it follows that sufficient investigate stability of the system (4.8).
Integrating (4.8) and using (4.6) we obtain an ODE system respective to the

functions c0(t), n0(t) and h0(t) from the expansion (4.7)

dc0(t)
dt =

(
ρ1(1− β1 ln c̃)− β1ρ1 − k1g(h̃)

)
c0(t)− k1c̃g

′(h̃)h0(t),

dn0(t)
dt =

(
ρ2(1− β2 ln ñ)− β2ρ2 − k2g(h̃)− α∂ϕ(c̃,ñ)

∂n

)
n0(x, t)−

−α∂ϕ(c̃,ñ)
∂c c0(x, t)− k2c̃g

′(h̃)h0(t),
dh0(t)
dt = −γhh0(t) + u.

(4.9)

The Jacobi matrix of the system (4.9) at the critical point (4.3) coincides with
the Jacobi matrix of the system (4.1). Therefore

lim
t→∞

c0(t) = lim
t→∞

n0(t) = lim
t→∞

h0(t) = 0.

Multiplying equations from (4.8) with the eigenfunctions ψs(x), s = 1, 2, . . . and
integrating the obtained equations over D we get a sequence of systems of ODE for
cs(t), ns(t) and hs(t), s = 1, 2, . . . This systems ‘almost’ coincide with the system
(4.9) except that to each equation the terms −λsdccs(t), −λsdnns(t), −λsdhhs(t),
respectively, will be added.

Due to the facts that λs > 0 for each s = 1, 2, . . . and λs → +∞ if s→ +∞, the
presence of these terms does not change the signs of eigenvalues of corresponding
Jacobi matrixes.

Therefore

lim
t→∞

cs(t) = lim
t→∞

ns(t) = lim
t→∞

hs(t) = 0, s = 1, 2 . . .

This completes the proof of theorem 4.1.

5. Numerical simulation. One of important aims of a therapy process is securing
the life of a patient or in our terms keeping the phase orbit inside of the viable
domain Ω. Therefore it is necessary to investigate the behavior of the system in the
neighborhood of the boundary of the viable domain Ω.

The point is that the system (2.1) has the property of inertia when the control
function switches from its maximal value u = q to its minimal value u = 0 and vice
versa.

For a demonstration of this phenomenon we consider the following example:
Taking h(t0) = h0 ≥ 0, τ1 > 0 and

u(t) =

{
q, t0 6 t 6 t0 + τ1,
0, t > t0 + τ1,

we obtain the following solution of the third equation from (4.1)

h(t) =

{
h0 + q

γh

(
1− e−(t−t0)

)
, t0 6 t 6 t0 + τ1,

h0 + q
γh

(
1− e−(t0+τ1)

)
e−γh(t−t0−τ1), t > t0 + τ1.
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Figure 2. h(t)

Above we can see (Figure 2) that if the control function switches instantly
the concentration of the chemotherapeutic agent stays a continuous function and
approaches its limit value after some time only.

An analogous behavior takes places for c(t), n(t).
Therefore, to ensure that a phase orbit does not leave the viable domain Ω it

is necessary to increase the dosage of the chemoterapeutic agent some time before
this orbit reaches the boundary of Ω.

Consider the null-isocline of variables c(t), n(t) in the planes (h, c) and (h, n)
(compare 4.3) respectively:

c = β−1
1

(
1− κ1h

a0 + h

)
= ϕc(h), n = β−1

2

(
1− κ2h

a0 + h

)
= ϕn(h). (5.1)

These isoclines divide the domain Ω into four subdomains:

D+
c = {(c, n, h) ∈ Ω : c > ϕc(h)}

D−c = {(c, n, h) ∈ Ω : c < ϕc(h)}

D+
n = {(c, n, h) ∈ Ω : n > ϕn(h)}

D+
n = {(c, n, h) ∈ Ω : n < ϕn(h)}

If the phase orbit belongs to the domain Ω1 = D−c ∩ D
+
n , then for any choice

of control function from the set Σ the restrictions c 6 c∗, n > n∗ will be always
fulfilled.

If a phase orbit gets into the domain Ω2 = D+
c ∩D

+
n , then the restriction c 6 c∗,

can be violated. Note that at the same time the restriction n > n∗ will be fulfilled
for any control function from the set Σ.

Leave out the orbits of the system (4.1) in inverse time with control u = q from
each point of the set c = ϕc(h). The calculation shows that orbits do not leave the
domain Ω2 except the orbits are situated below the orbit which goes from the point
ϕc(h) = c∗. Therefore the restriction c 6 c∗ will be violated if the phase points
belong to this area (see Fig. 3).
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Figure 3. The viable domain is located on the left. Shaded area
Bc is bounded by the viable domain and the new surface produced
from the orbits in inverse time with control u = q from each point
of the set ϕc(h) = c∗. Here k1 > ρ1.

If a phase orbit gets into the domain Ω3 = D−c ∩D
−
n then the restriction n > n∗

can be violated while the restriction c 6 c∗ is fulfilled for any control function from
the set Σ.

Leave out the orbits of the system (4.1) in inverse time with control u = 0 from
each point of the set n = ϕn(h). The calculation shows that the orbits do not leave
the domain Ω4 except the orbits are situated above the orbit which goes from the
point ϕn(h) = n∗. Thus, the restriction n > n∗ is violated if the phase points
belong to this area (see Fig. 4).

ln n

h u=0

Viable
Domain

(ln n)
t
=0

Figure 4. The viable domain is located on the right. Shaded area
Bn is bounded by the viable domain and the new surface produced
from the orbits in inverse time with control u = 0 from each point
of the set ϕn(h) = n∗. Here k2 > ρ2.
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If a phase orbit gets into the domain Ω4 = D+
c ∩D

−
n then both restrictions on

the numbers of healthy and malignant cells can be violated.
Note that if we suppose that c > c∗ then the domains D+

c and D−n are mutually
disjoint.

One of the important problems of searching the optimal strategy from the set Σ
is the choice of the relation

p =
τ2
τ1

between the time of relaxation (τ2, u = 0) and the time of active control (τ1, u = q).
For chosing the optimal response time T in the viable domain Ω as a function

of the parameter p, we assume the following restriction on the total value of the
chemotherapeutic agent

Q = 500[gm], c∗ = 250, n∗ = 350.

Let D be a square of an area 25 cm2. The remaining values of parameters of the
system (2.1) (see [10], [11], [26], [33]) are presented in the table below:

Table 1. Parameters of the system (2.1)

parameter notation value
diffusion of cancer cells dg 1.3× 10−3 cm2/day
diffusion of cancer cells dw 5× 10−3 cm2/day
diffusion of drug dh 0.386× 10−2 cm2/day
diffusion of normal cells dn 1.0× 10−3 cm2/day
drug dissipation γh 0.0347

proliferation of cancer cells ρ1 0.012 day−1

saturation of cancer cells β1 0.0819

proliferation of normal cells ρ2 0.006 day−1

saturation of normal cells β2 0.0869
cancer domain area SD 5× 5 cm2

For our numerical simulation we choose the control function u(x, t) = u0(t)
(for the case D0 ≡ D). The values of the parameter k1, k2 and q as well as the
corresponding value of the parameter p will be presented separately in each case.

Our calculation shows that increasing the value of the parameter p = τ2
τ1

leads to
a violation of the restriction c 6 c∗. On the other hand decreasing the value of the
parameter p leads to a violation of the restriction n > n∗. The explanation of this
phenomenon is very simple. In the first case the population of malignant cells have
a plethora of time for restoration after applying drugs. In contrast, in the second
case the population of normal cells have not enough time for restoration since the
schedule of applying drugs is very intensive.

The projections of trajectories ((c(t), n(t))) of the system (2.1) on the plane
((c× n))

c(t) =

∫
D

ln c(x, t) dx, n(t) =

∫
D

lnn(x, t) dx

are presented in the Fig. 5.
Three cases are presented: p = 4, p = 3, p = 1. The number of cycles of control

function from the set Σ is denoted by m. The amount of the chemotherapeutic agent
which was spent during one cycle is denoted by H [gm].
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The time in the viable domain is denoted by T [day] and the total value of the
chemotherapeutic agent applied in this time is denoted by QT .
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= 0.5, α = 0, q = 0.002.
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h(x, t) dx 6 500; k2
k1

= 0.5, α = 0, q = 0.002.

The best strategy: τ1 = 30, τ2 = 78.

In all cases after several cycles the trajectory leaves the viable domain. Never-
theless, the second case (p = 3) supplies the maximal survival time T .

From analysis of graphs of the fig. 5 it is possible to drow the conclusion that an
optimal strategy of control from the set Σ has to provide almost simultaneous vio-
lation of both restrictions on numbers of malignant and normal cells. This strategy
is realized when p = 2.6 and QT = 470[gm]. Fig. 6 demonstrates the behavior of
trajectories c(t) and n(t) when p = 2.6 and p = 2.7.

Note that this strategy will be optimal only if it is possible to use a sufficiently
large quantity of drugs, and cannot be optimal if, for example, Q < 470[gm] (com-
pare 2.7).
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Analysis of the behavior of trajectories c(t) and n(t) which correspond to the
relations k2

k1
and α are demonstrated in Fig. 7 and Fig. 8, respectively.
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Figure 7. τ1 = 30, α = 0, q = 0.002.
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= 0.5, q = 0.002.

In both cases there exist threshold values of parameters k2
k1

= 0.5 and α = 0.001
after that the survival time T rapidly decreases.

In Fig. 9 the numerical results for the case if the time of active control is decreas-
ing while the ratio of the time of active control to the relaxation time stays equal
to 2.6 are presented. The results obtained show that a consequence of decreasing
the active control time is an increase of the total survival time, which reaches its
maximal value at τ1 = 3 (Fig. 10).
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= 0.5, p = 2.6, q = 0.002.
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= 0.5, p = 2.6, q = 0.002.

In Fig. 11 the dependence of the total viable time on the parameter q if the value
of the parameter p is constant and equal to 2.6 is shown. The results obtained
show that in the case of the increasing dose of drug the total survival time does not
increase.
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In Fig. 12 the dependence of the value of the parameter p on the parameter q,
which guarantee the maximal survival time is shown. The results obtained show that
the dependence p on q is almost linear. For instance for q = 0.005 the corresponding
optimal value p is 8.
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= 0.5, p = 2.6

Obtained numerical results do not give an answer on the question of the possi-
bility of realizing a strategy from the set Σ which supplies presence in the viable
domain for a desired time. Moreover these results show the impossibility of exis-
tence of such a strategy for given values of parameters. Note also the latter fact
agrees with medical practice.

Nevertheless, if we suppose that it is possible to increase the value of the param-
eter q and that a patient can sustain a sufficiently large dose of chemotherapeutic
agent without any harm to their health then we have a stabilizing strategy of treat-
ment. An example of this strategy is given in Fig. 13 which shows the projection
of the trajectory of a solution of (2.1) on a plane c, n.
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In this case the time of relaxation is 10 times more then the time of active control.
The position of the trajectory stabilizes outside of the viable domain.

6. Conclusions. In the present work a mathematical spatial cancer model of in-
teraction between a drug and both malignant and healthy cells is considered. It is
assumed that the drug influences negative malignant cells as well as healthy ones.
The mathematical model under consideration consists of three non-linear parabolic
partial differential equations that describe spatial dynamics of malignant cells, that
of healthy ones, and of the concentration of drug (pharma-kinetic equation), respec-
tively. Additionally, we assume there are phase constraints for the total quantity of
the drug during the whole treatment process. In contrast to most works on therapy
optimization with the aim to minimize the number of malignant cells, the aim of
the present work is to find a therapy strategy which maximizes the survival time of
the patient.

The qualitative implications of our analysis of the task considered can be sum-
marized as follows:

The ratio of the time of the active control to the relaxation time influences the
viable time essentially. The optimal value of this parameter depends on the intensity
of application of the therapeutic agent. Therefore, stronger administration of drug
requires a longer period of relaxation. In our opinion, this fact has very important
implications for a real therapy process.

Based on the analysis of the task considered, we can argue that there exists a
threshold value for the time of active control: The viable time increases if the time
of active control decreases to this threshold value, if the time of active control is
below this threshold value the viable time decreases again.

As expected, the restriction on the cumulative amount of the chemotherapeutic
agent is the strongest factor which hinders a periodic therapy strategy. This implies
a need to decrease the total admissible dosis of drugs and emphasises the need for
further medical investigations.

At the same time, when it comes to the intensity of the damage to normal
cells and the efficiency of the therapy for cancer cells, their ratio does not lead to
significant effects when it is smaller than some threshold value, while increasing the
competition parameter has essential influence on the value of viable time.
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