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Abstract. Computing endemic equilibria and basic reproductive numbers
for systems of differential equations describing epidemiological systems with

multiple connections between subpopulations is often algebraically intractable.

We present an alternative method which deconstructs the larger system into
smaller subsystems and captures the interactions between the smaller systems

as external forces using an approximate model. We bound the basic reproduc-

tive numbers of the full system in terms of the basic reproductive numbers of
the smaller systems and use the alternate model to provide approximations for

the endemic equilibrium. In addition to creating algebraically tractable repro-

ductive numbers and endemic equilibria, we can demonstrate the influence of
the interactions between subpopulations on the basic reproductive number of

the full system. The focus of this paper is to provide analytical tools to help
guide public health decisions with limited intervention resources.

1. Introduction. There have been several examples in which the quantitative
fields of mathematics and statistics have significantly impacted the life sciences;
namely, the area of ecology and population biology. From the simple exponential
growth of a population of bacteria to the seminal equations of Lotka [29, 30, 31]
and Volterra [59, 60], the use of mathematical models to understand population dy-
namics has significantly impacted the way biologists view these areas. The Lotka-
Volterra predation equations successfully captured the oscillations and phase shift
between the predator population and the prey population of the Hudson Bay Com-
pany pelt trading data that spans almost a century [15, 45]. Since Lotka and
Volterra’s time, scientists have expanded on their fundamental contributions in-
cluding spatial-temporal effects, age-structured populations, and even studied the
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effect of harvesting on fish populations [3, 35, 51, 54] and the impact of forest fires
on flora and fauna [32]. One particularly important field within population dynam-
ics is that of epidemiology, in which the the populations are structured according to
their disease status, particularly the susceptible, infected, and recovered categories
(see for example, [1, 5, 19, 24, 25, 26]). These types of population models have been
used to study the spread of the Black Death that swept through Europe in the mid
1300s [36, 41], gonorrhea [13, 18, 27], HIV [6, 8] (among many other references),
and cholera [10, 11, 16]. With the development of biochemical weapons and the
onset of potential global epidemics of swine flu (H1N1) and SARS, understanding
epidemiological models is becoming more important from a national security and
public health perspective.

This paper focuses on a new method for constructing analytical tools that will
help target intervention and vaccination strategies by analyzing the basic reproduc-
tive numbers of the subpopulations of a system to reduce the size (or delay the
onset) of the endemic equilibria of chronic diseases. The practical implication be-
hind the study of epidemiological models is to identify which strategies best control
the spread of disease. In practice there are limited resources that can be allocated
for education, prevention, and treatment which means it is imperative to determine
the most effective methods of intervention and vaccination strategies to eradicate
and mitigate the impact of a global epidemic. Given the complexity of analytical re-
sults of systems with multiple couplings, recommendations are traditionally based
on numerical simulations in which the biological parameters are varied. A more
practical solution provides analytical bounds on the basic reproductive number and
approximations to the endemic equilibrium. Our analytical bounds can be used to
easily identify which subpopulation to target to achieve the best result with limited
resources. Our goal is to develop mathematical tools to aid medical practitioners
and assist organizations in planning points of intervention.

Our analysis was motivated by modeling incurable sexually transmitted diseases
using a simple SI model (S represents the susceptible population and I represents
the infected category) for three subpopulations. The full model consisted of six
nonlinear differential equations with seventeen different parameters (see Figures 1
and 2, Table 1, and Eq (1) for specifics of the models and parameters). Computing
the endemic equilibrium and basic reproductive numbers of this system is alge-
braically intractable, specifically if one is designing intervention strategies targeted
at reducing the size of the endemic equilibrium or the basic reproductive number.

Our motivational model consists of a susceptible and an infected population for
each of three subpopulations: heterosexual females, heterosexual males, and bisex-
ual males. Previously, a series of papers written by Mukandavire et al, [33, 39, 40],
considered a model, similar to the one we consider with fewer connections between
subpopulations, and focused on the basic reproductive number of the disease. In
contrast, we developed a method for bounding the basic reproductive number of
the disease in terms of the basic reproductive number of groups of subpopulations
within the system. The motivation for the sexual couplings depicted in this model
stem from a modification of the interactions presented in the Mukandavire study,
consisting of bisexual males, heterosexual females, and heterosexual males. We con-
sider the basic reproductive number of the bisexual males as an isolated system and
the basic reproductive number of the heterosexual males and heterosexual females as
an isolated system, then use these numbers to bound the basic reproductive number
of the full system including all three populations. The basic reproductive numbers
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of the disease within these subpopulations are useful in quantifying a metaphorical
bridge between decoupled subsystems.

We also propose a method in which the values of the endemic equilibria of the
subsystems are used as nonhomogeneous forcing terms to the remaining populations.
This alternate formulation provides an analytically tractable system, with explicit
expressions for the endemic equilibrium, that approximates the dynamics of the full
system. In particular, we provide numerical simulations showing the relationship of
the alternate system to the dynamics of the full system and an analytic bound on the
basic reproductive number of the full system in terms of the basic reproductive-like
number (to be defined in section 6) of the subsystems.

In section 2 we present the full S-I model for three populations. In section 3
we deconstruct the system into smaller subsystems and examine the dynamics of
these subpopulations. In section 4 we show how the analytical results from the
subsystems describe and bound the basic reproductive number of the full system.
In section 5 we present the endemic equilibrium of the full system in terms of
the basic reproductive numbers of the subsystems. In section 6 we introduce a
third system which approximates the interactions between populations with terms
that reflect the influence from the other subsystems and discuss disease stability in
terms of reproductive-like numbers of the subsystems. We include a comparison of
the endemic equilibrium from the directly connected system and the system with
influence terms. In section 7 we apply the model and methods to describe the HIV
infection. Lastly in section 8 we present the conclusions and a discussion of our
analysis.

2. Full model. In this section, we develop an SI model of three generic populations
A, B, C, whose interactions are motivated by the three interacting subpopulations:
bisexual males, heterosexual females, and heterosexual males, described in the in-
troduction, for a model of an incurable sexually transmitted disease, such as HIV.
We introduce a standard SI model with three subpopulations to set notation. We
further describe two subsystems: one consisting of population A, corresponding to
the bisexual population, and a second system consisting of populations B and C,
corresponding to the heterosexual females and males, respectively. We describe the
dynamics of each subpopulation including the reproductive number for each which
forms the foundation for bounding the reproductive number of the full system,
addressed in section 4.

In Figure [1], the three populations enter the susceptible population at a rate
of pjΛ, where j = A, B, or C; this can be seen in the arrows pointing into the
susceptible compartments of each population. Once the disease is passed, indi-
viduals move from the susceptible populations to the infective population by their
respective forces of infections, θj . Individuals can leave the infected population
with removal rate δj = µj + dj , where µj represents disease induced removal rate
and dj represents the natural death rate. The definition of the disease removal rate
depends upon its context within the disease: it could represent disease-death or
progression to another stage of the disease. Table 1 summarizes the notations and
constants.

The model corresponding to the SI structure illustrated in Figure [1] is given
below:

dSj
dt

= pjΛ− θjSj − djSj , (1)
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Table 1. Notation for the variables that describe each population.

Symbol Description

Sj Susceptible individuals in population j
Ij Infected individuals in population j
Nj Total population of j
N Total population
bij Probability of infection per exposure in population i

to an individual in population j
cij Contact number of an individual in population i

with a new individual in population j.
ψij = cijbij Transmission rate from an individual in population i

to an individual in population j
pj Proportion of population j entering into susceptible population
Λ Recruitment rate into susceptible population
µj Death rate due to disease of individuals in population j
dj Natural death rate of individuals in population j
δj = µj + dj Total death rate of individuals in population j

pj Λ 

dj 

δj θj 

Ij Sj 

Figure 1. Basic S-I Model.

dIj
dt

= θjSj − δjIj ,

dNj
dt

= pjΛ− djSj − δjIj .

We consider a system with three populations, i.e. j = A,B,C. Each population
A, B, C has the susceptible-infected (SI) structure illustrated in Figure 1. The
interaction terms are not immediately obvious, these are part of the force of in-
fection θj where j = A,B,C. These θj terms capture the interactions between
the populations as illustrated in Figure 2. The choice of this particular interaction
was motivated by modeling the incurable sexually transmitted diseases with bisex-
ual males (population A), heterosexual females (population B), and heterosexual
males (population C). In this figure, we see that population A, bisexual males in
the example, interact with themselves, as well as with population B, heterosexual
females, and the heterosexual males and heterosexual females interact with each
other. This choice of interactions between subpopulations gives explicit forms of
the forces of infections:
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θA =
ψAAIA
NAC

+
ψBAIB
NB

, θB =
ψCBIC
NAC

+
ψABIA
NAC

, θC =
ψBCIB
NB

, (2)

where NAC = NA+NC . The dashed rectangles in Figure 2 delineate how the three
population system is deconstructed into System I and System II.

Hence

B C A 

SYSTEM I SYSTEM II 

Figure 2. Three Population Model: Interactions between popu-
lations A, B, and C.

For chronic diseases, µj ≈ 0 ∀j ∈ {A,B,C}, then dj ≈ δj . Consequently, our
expression for the rate of change of size of the subpopulations with respect to time

can now be rewritten as:
dNj
dt = pjΛ − δjNj . It follows as t → ∞, Nj(t) → pjΛ

dj
=

N∗j . The theory of asymptotically autonomous systems, in particular a result of
Thieme [56, p. 385-387], allows us to reduce the large-time behavior of system
(1) to a simpler set of equations exploiting the constant subpopulations. Namely,
let x = 1 − sA, y = 1 − sB , and z = 1 − sC where sj = Sj/Nj , x = IA/NA,
y = IB/NB , and z = IC/NC . Correspondingly we rescale the transmission rates
as βAj = ψAjNA/NAC , βBj = ψBj , and βCB = ψCBNC/NAC . To capture the
relationships of the full system we need only consider the smaller system of infected
classes:

dx

dt
= (βAAx+ βBAy) (1− x)− δAx, (3)

dy

dt
= (βCBz + βABx) (1− y)− δBy, (4)

dz

dt
= βBCy (1− z)− δCz. (5)

The susceptible populations can be reconstructed using the relations sA = 1 − x,
sB = 1− y, and sC = 1− z.

3. Dynamics of subpopulations. Even with the reduced form of the equations
of the full system given by Eqs. (3-5), the number of parameters in the system
makes the calculation and computation of the endemic equilibrium and the basic
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reproductive number algebraically intractable. In this section we introduce two
subsystems as depicted in Figure 2. For each of these subsystems we will compute
both endemic equilibria and basic reproductive numbers. The basic reproductive
numbers of these smaller systems will be used to bound the basic reproductive
number of the full system and the values of the endemic equilibria will be used to
compute a nonhomogeneous forcing term in the alternate formulation discussed in
section 6.

We will reserve the term R0 for the basic reproductive number of the three pop-
ulation fully connected system and (x∗, y∗, z∗) for its endemic equilibrium. The
endemic equilibria of Systems I and II will be designated as x∗1 and (y∗2 , z

∗
2) respec-

tively. The basic reproductive number for System I is RA, as the system consists of
population A solely and the basic reproductive number for System II is RBC , as the
system consists of populations B and C. The interaction number of a subsystem,
τAB will later be introduced for the interactions of populations A and B.

Dynamics of System I for Population A. The dynamics of System I are
governed by a single equation, Eq (3). From the Next Generation Method [7] we
find the basic reproductive number

RA =
βAA
δA

. (6)

The Next Generation Method ensures the local asymptotic stability of the disease-
free equilibrium when RA < 1 and instability of this point when RA > 1 [7], thus
the disease-free equilibrium is locally asymptotically stable when RA < 1. The
endemic equilibrium

x∗1 =
RA − 1

RA
, (7)

exists and can be shown to be locally asymptotically stable when RA > 1.

Dynamics of System II for Populations B and C. The dynamics of System
II are governed by Eqs (4) and (5). From the Next Generation method we find the
basic reproductive number,

RBC =

√
βBCβCB
δBδC

. (8)

Then the disease-free equilibrium is locally asymptotically stable when RBC < 1.
The endemic equilibrium,

(y∗2 , z
∗
2) =

(
R2
BC − 1

R2
BC −

βBC
δC

,
R2
BC − 1

R2
BC −

βCB
δB

)
, (9)

is globally asymptotically stable for RBC > 1 using results from [28] by showing
that there exists a compact absorbing set K with a direction field pointing toward
its interior and eliminating periodic orbits within the domain of our problem.

Interaction of Population A with B. Here we consider the direct interaction
between population A and population B. That is,

dx

dt
= βBAy (1− x)− δAx, (10)

dy

dt
= βABx (1− y)− δBy. (11)
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The interaction number of population A and population B, ignoring self-interactions
of population A, is

τAB =

√
βABβBA
δAδB

. (12)

The notation, τAB has been chosen to indicate that this is an interaction between
population A and population B and not of the the full A-B system. We will use
this number in bounding the basic reproductive number of the full system in the
next section. The endemic equilibrium of this system is equivalent to that in Eq.
(9) with the label C replaced with A.

4. Bound on the basic reproductive number for full system. In this section
we will utilize basic reproductive and interaction numbers, RA, RBC , and τAB ,
together with other information gathered from the decoupled subsystems to obtain
a bound on R0, the basic reproductive number of the full system.

Using the Next Generation Method the basic reproductive number is defined as
R0 = max {w : P (w) = 0} where

P (w) = w3 −RAw2 −
(
R2
BC + τ2

AB

)
w +R2

BCRA (13)

and the expressions RA, RBC , and τAB are the basic reproductive numbers and
interaction number of the deconstructed models, found in Systems I and II in Eqs
(6, 8, 12). The analytical solutions of this polynomial exist, however it is difficult
to get a true understanding of the factors affecting the basic reproductive number
due to the length of its expression. In order to get a sense of the size of this value,
we bound R0 in terms of reproductive numbers that are algebraically computable
in the following theorem.

Theorem 4.1. The basic reproductive number R0 is bounded above and below by
functions of the basic reproductive numbers RA and RBC and the interaction num-
ber τAB with the following inequality:

max

(
RA,

√
τ2
AB +R2

BC

)
< R0 < RA +

(
τ2
AB +R2

BC

)2
4RAR2

BC

. (14)

Proof. Our strategy for bounding the roots of P (w) is to construct two other poly-
nomials P1(w) and P2(w), each having three real roots that can be found analyti-
cally, and bound P (w) above and below, respectively. Figure 3 illustrates all three
polynomial functions P1(w) > P (w) ≥ P2(w). On figure 3 the basic reproductive

number R0 is bounded above by a root of P2(w) given by
(
RA +

(τ2
AB+R2

BC)2

4RAR2
BC

)
and

below by a root of P1(w) labeled T in the figure.
We begin by defining the polynomial P1(w), representing a lower bound on the

roots of P (w). Define the function

P1(w) = P (w) + τ2
ABRA =

(
w2 −

(
τ2
AB +R2

BC

))
(w −RA) (15)

where P1(w) is a vertical shift up from P (w) by τ2
ABRA units and consequently, the

maximal root of P (w) is greater than the maximal root of P1(w). The roots of P1(w)

areRA and ±
√
τ2
AB +R2

BC . The points S and T in the figure will correspond to the

values RA and the
√
τ2
AB +R2

BC , with T being the larger of those two roots. Hence

we have two cases for a maximal lower bound: R0 > RA or R0 >
√
τ2
AB +R2

BC

depending on the value of T , as illustrated in Figure 3.
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Max	  Root	  P(w)	  =	  R0	  

P1	  − RBC
2 +τ AB

2

( ) ABCRRP 20 =

( ) 002 =P

P(w)	  

P2	  

S	  
T	  

RA +
τ AB
2 + RBC

2( )
2

4RARBC
2

P1 0( ) = RBC2 RA +τ AB
2 RA

Figure 3. This figure displays the polynomials P1 and P2, whose
roots are used to bound the maximal root of the function P (w).
The basic reproductive number R0 is bounded below by T whose
value is the maximum of RA and

√
τ2
AB +R2

BC .

Similarly we define P2(w)

P2 (w) = w2

[
w −

(
RA +

(τ2
AB +R2

BC)2

4RAR2
BC

)]
, (16)

whose maximum root is given by
(
RA +

(τ2
AB+R2

BC)2

4RAR2
BC

)
and is an upper bound for

R0. We further show

P (w)− P2 (w) =
(τ2
AB +R2

BC)2

4RAR2
BC

w2 −
(
τ2
AB +R2

BC

)
w +R2

BCRA, (17)

=
(τ2
AB +R2

BC)2

4RAR2
BC

(
w − 2RAR2

BC

τ2
AB +R2

BC

)2

, (18)

which implies the curve P (w) is always above or equal to the curve P2(w) and the
maximum root of P2(w) is greater than or equal to the maximum root of P (w).

We note that for w =
2RAR2

BC

τ2
AB+R2

BC
, P (w) equals P2(w), which is not illustrated in the

figure.

The previous theorem bounds the basic reproductive number of the disease in
terms of the size of the basic reproductive numbers within the decoupled subpop-
ulations. For example, if τAB is reduced, then the upper bound on R0 is reduced.
This would correspond to reducing the transmission of disease between the bisexual
men and heterosexual women. Thus, this analytic bound on R0 can be used to
identify the best intervention points, with limited resources, to reduce the spread
chronic diseases in the population. In terms of epidemiology, the lower bound on
R0 represents the dependence on both secondary infections within system I and the
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secondary infections within system II including an influx of disease from system I.
We explore this relationship in our alternate formulation for the full system shown
in section 6. The maximal bound for R0 represents the secondary infections within
system I along with a ratio of secondary infections in system II caused by members
of system II to the secondary infections in system II caused by members of system
I. This is seen by the inequalities

RA +
(τ2
AB +R2

BC)2

4RAR2
BC

≤ RA +
(τ2
AB +R2

BC)2

4τ2
ABR2

BC

= RA +
τ4
AB

τ2
ABR2

BC

< RA +
τ2
AB

R2
BC

,

whenever R2
BC < τ2

AB < RA. If this relationship were fully reversed, then

RA +
(τ2
AB +R2

BC)2

4RAR2
BC

≤ RA +
R4
BC

τ2
ABR2

BC

= RA +
R2
BC

τ2
AB

.

Additionally, it follows from our stability analysis these subsystems’ basic repro-
ductive numbers have an influence on the stability of the system’s equilibrium, as
shown in the next proposition.

Proposition 1. We have the following necessary condition for a locally asymptot-
ically stable disease-free equilibrium in the three population model in Eqs. (3 - 5)
consisting of the A, B, and C populations when

τ2
AB < (1−RA)(1−R2

BC), (19)

where RA, τAB, and RBC are all less than 1.

In order to have a stable disease free equilibrium, we need to haveR0 < 1. Hence,
the lower bound for R0 given in Eq. (14) must be less than 1. Thus, RA, τAB , and
RBC must be all less than 1.

This expression was obtained by examining the conditions under which the Ja-
cobian of our system evaluated at the disease-free equilibrium is negative. Note
the condition τ2

AB < (1−RA)
(
1−R2

BC

)
is the same as s(A) ≤ 0 shown in

Lajmanovich and Yorke [27, Theorem 3.1, page 227] using the theory of irre-
ducible matrices. Similarly the condition for stability of the endemic equilibrium,
τ2
AB > (RA − 1)

(
R2
BC − 1

)
, is also a consequence of Lajmanovich and Yorke [27,

Theorem 3.1, page 227] with s(A) > 0. Alternatively, Wang and Dai [61] use the
theory of complex networks to show a similar result. Given the complexity of the
basic reproductive number of the system, (19) provides an epidemiologically inter-
pretable expression that relates the basic reproductive numbers of these subsystems.
We can clearly see as τAB increases, so does the severity of the disease in either one
or both of the decoupled subsystems I and II.

The basic reproductive number of the disease corresponds to the maximal root
of the polynomial (13) and is dependent upon the size of the basic reproductive
numbers of the subsystems, RA and RBC . We numerically explore how the repro-
ductive number of the full system changes as RA and RBC change in Figure 4.
The reproductive number R0 corresponds to the solid black line in Figure 4. The
upper and lower bounds on the reproductive number R0 given in equations (14) in
theorem 4.1 are also illustrated in Figure 4 by the dot-dashed curve and the dashed
curve, respectively. In each case, we consider six scenarios where the other basic
reproductive numbers are fixed: either both less than one, both greater than one,
one greater than one and one less than one, and the various relationships between
the two. In particular, the figures labeled A-F in figure 4(a) correspond to the
following choice of parameters: A: τAB = 1

4 < 3
4 = RBC < 1; B: RBC = 1

4 <
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Figure 4. The basic reproductive number of the disease for the
three population model, R0 represented in the solid black curve is
illustrated as a function of basic reproductive numbers of the sub-
systems, RA in figure 4(a) and RBC in figure 4(b). The reproduc-
tive number corresponds to the maximum root of the polynomial
(13). Also plotted are the upper bounds, indicated with the dot-
dashed curve and lower bounds indicated with the dashed curve,
defined by equation (14) in theorem 4.1. The figures labeled A-
F in figure 4(a) correspond to the following choice of parameters:
A: τAB = 1

4 < 3
4 = RBC < 1; B: RBC = 1

4 < 3
4 = τAB < 1;

C: 1 < τAB = 2 < 4 = RBC ; D: 1 < RBC = 2 < 4 = τAB ;
E: τAB = 1

2 < 1 < 2 = RBC ; F: RBC = 1
2 < 1 < 2 = τAB ,

and the figures labeled A-F in figure 4(b) correspond to the fol-
lowing choice of parameters: A: RA = 1

4 < 3
4 = τAB < 1; B:

τAB = 1
4 < 3

4 = RA < 1; C: 1 < RA = 2 < 4 = τAB ; D:

1 < τAB = 2 < 4 = RA; E: RA = 1
2 < 1 < τAB = 2; F:

τAB = 1
2 < 1 < 2 = RA.
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3
4 = τAB =< 1; C: 1 < τAB = 2 < 4 = RBC ; D: 1 < RBC = 2 < 4 = τAB ; E:

τAB = 1
2 < 1 < 2 = RBC ; F: RBC = 1

2 < 1 < 2 = τAB . A necessary condition for
the disease free equilibrium to be locally stable is that R0 < 1 and the reproductive
number R0 represented by the solid line is only less than one in figures 4(a) A-B.
We note that Figures 4(a) A-B correspond to values of τAB and RBC are also less
than one, supporting the hypothesis that τAB < 1 and RBC < 1 are necessary
conditions for R0 < 1.

The parameters for the figures labeled A-F in figure 4(b) correspond to the
following choice of parameters: A: RA = 1

4 < 3
4 = τAB < 1; B: τAB = 1

4 <
3
4 = RA < 1; C: 1 < RA = 2 < 4 = τAB ; D: 1 < τAB = 2 < 4 = RA; E:

RA = 1
2 < 1 < τAB = 2; F: τAB = 1

2 < 1 < 2 = RA. Similar to the results
in figure 4(a), the reproductive number R0 represented by the solid line is only
less than one in figures 4(b) A-B. These figures also correspond to the only set
of parameter values for RA and τAB are less than one, thus also supporting the
hypothesis that τAB < 1 and RBC < 1 are necessary conditions for R0 < 1.

Figure 4 also demonstrates that the upper and lower bounds given in equa-
tions (14) in theorem 4.1 are actually good approximations of the actual reproduc-
tive number, even though there was no claim of optimality of the bounds in the
theorem. When the decoupled basic reproductive numbers in each of the twelve
cases becomes larger, the lower bound becomes a better estimate of the basic re-
productive numbers. The dynamics of the basic reproductive numbers reflects the
respective intensities of the disease in subpopulations, that is, if the disease increases
in intensity in a particular subpopulation, eventually the full system will assume the
basic reproductive number of that subpopulation. These values approach the size of

the lower bounds max
(
RA,

√
τ2
AB +R2

BC

)
which are functions of the population

that intra-mixes, AB and BC, and the population A with itself. We also note if any
of the basic reproductive numbers of the decoupled subsystems are greater than one,
this will force the reproductive number R0 of the entire system to become large.
Conversely, a necessary condition for R0 to be less than one is that the decoupled
basic reproductive numbers are also less than one. We note that this occurs only
in figures 4(a)(A,B) and 4(b)(A, B).

5. Endemic equilibrium. In this section, we compute conditions under which
the endemic equilibrium exists in the feasible region, as well as bounds on the
values of the endemic equilibrium in terms of the basic reproductive number of
the subsystems. We note the equilibria are roots of a quartic equation, and thus
algebraic solutions are not easily obtained, whereas the basic reproductive number
of the subsystems are easily obtainable algebraically.

The equilibria of our system are the steady states of Eqs (3-5). From these
algebraic equations, we are able to obtain the following expressions for the endemic
equilibrium terms x∗ and z∗, in terms of y∗:

x∗ =
δBy

∗ [R2
BC (βCB + δB) y∗ − βCB

(
R2
BC − 1

)]
(R2

BCy
∗δB + βCB) (1− y∗)βAB

, (20)

z∗ =
y∗βBC

y∗βBC + δC
, (21)

where y∗ satisfies

y∗ =

{
y

∣∣∣∣∣ δAδBy Q (y)

(δByR2
BC + βCB)

2
βAB

2 (y − 1)
2

= 0

}
, (22)
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where Q(y) = b4y
4 + b3y

3 + b2y
2 + b1y + b0 with the coefficients

b4 =

(
R2
BCτABδBβCB

δC

)2

(βAB + δB + βCB) , (23)

b3 =

(
R2
BCδBβ

2
CB

δ2
C

){
τ2
AB

[(
βCB −R2

BCδB
)

(βCB + 2βAB + 2δB)
]

(24)

+R2
BC

[
δB
(
βAB −RA

(
2βCB + βAB + δB − β2

CB

))
+ βABβCB (1−RA)

] }
,

b2 =

(
βCB
δC

)2 {
R2
BCβCB [RAδB (−2βCB − 2δB − 2βAB) + βABβCB(1−RA)

(25)

−τ2
ABδB (2βCB + 4 + 2δB) + 2δBβAB

]
+ τ2

ABβ
2
CB (βAB + δB)

+R4
BC

[
2RAδB (βCB (βCB + 2δB + 2βAB) + δBβAB) + τ2

ABδ
2
B (βAB + βCB)

−δBβAB (2βCB + δB)]
}
,

b1 =

(
β3
CB

δ2
C

){
R2
BC [2RA (δBβCB + βABβCB + δBβAB)− 2βAB(βCB + δB) (26)

+δBτ
2
AB(βCB + 2βAB)

]
+ (1−RA)βABβCB + βCBRAδB

− τ2
ABβCB(2βAB + δB) +R4

BCδB((1−RA)βAB − βCBRA)
}
,

b0 =

(
βABβ

4
CB

δ2
C

)[
τ2
AB(1−RA)(1−R2

BC)
]
. (27)

Nontrivial steady states y∗ are roots of Q(y), thus, there are at most four non-
trivial equilibria of our system. Using the Intermediate Value Theorem applied to
Q(y), we are able to determine that a value for y∗ exists in (0, 1) when τ2

AB >
(RA − 1)

(
R2
BC − 1

)
. For values of y∗ ∈ (0, 1), we have to then show that the

corresponding values of x∗ and z∗ are also in (0,1). This will ensure that the endemic
equilibrium is in the feasible region (0, 1) × (0, 1) × (0, 1). When y∗ ∈ (0, 1), then
with z∗ given by Eq (21), we automatically have z∗ ∈ (0, 1). However, x∗ does
not always lie in the feasible region for all y∗ ∈ (0, 1), therefore we must place
restrictions on y∗ to guarantee that x∗ ∈ (0, 1). Using equation (20), we note that
the value for x∗ is positive when

y∗ <

(
δBR2

BC + βCB
)
βAB

δBβCB (R2
BC − 1)

. (28)

This requires us to place two conditions on y∗, one for the case where R2
BC < 1

and one for the case where R2
BC > 1 to be certain that x∗ ∈ (0, 1). In Figure 5, x∗

is plotted as a function of y∗ with R2
BC < 1 in Figure 5(a) and with R2

BC > 1 in
Figure 5(b) . For x∗ to be in the feasible region, y∗ is always bounded above by ξ,
but has a differing lower bound depending upon the size of RBC .

The following theorem summarizes the necessary conditions on y∗ for the endemic
equilibrium to lie within the feasible region. The inequalities in the theorem are
obtained by combining the inequality in Eq. (28) and the definition for y∗ in Eq.
(22).

Theorem 5.1. The point (x∗, y∗, z∗), satisfying Eqs (20, 22, 21), is an endemic
equilibrium of the three population system when τ2

AB > (RA − 1)
(
R2
BC − 1

)
and

the following conditions on y∗ are satisfied:
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Figure 5. Bounding x∗. This figure depicts x∗ as a function of
y∗. In the top figure R2

BC > 1, then x∗ ∈ (0, 1) when 0 < y∗ <
ξ < 1. In the bottom figure R2

BC < 1 then x∗ is in (0, 1) when

0 <
βCB(R2

BC−1)
R2
BC(βCB+δB)

< y∗ < ξ < 1.

i. If R2
BC < 1, then 0 < y∗ < ξ < 1,

ii. If R2
BC > 1, then 0 <

βCB(−1+R2
BC)

R2
BC(βCB+δB)

< y∗ < ξ < 1,

where, ξ = 1
2

t1+
√
t2

δBR2
BC(δB+βAB+βCB)

with t1 =
(
δBR2

BC − βCB
)
βAB + δBβCB

(
R2
BC

−1) and t2 =
(
δBR2

BC + βCB
)2
βAB

2+2βCBδB
(
R2
BC + 1

) (
δBR2

BC + βCB
)
βAB+δB

2βCB
2(

R2
BC − 1

)2
.
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Thus using we have established conditions for which the endemic equilibrium
exists and lies in the feasible region. Lajmanovich and Yorke [27, Lemma 3.2,
p. 226] also establish existence results and provide conditions on the stability of
the endemic equilibrium equivalent to those given in Proposition 1 [27, Theorem
3.1, p. 227], but do not provide estimates on the endemic equilibrium in terms of
computable quantities such as basic reproductive numbers of the subsystems.

Figure 6 displays the dynamics of the full system (x, y, z) over time with ten
randomly selected initial conditions. The shaded gray areas represent the bounds
for y∗ found in Theorem 5.1. Figure 6(b) contains an enlarged version of the figure
displaying the behavior of y. For both Figure 6(a), corresponding to RBC < 1, and
Figure 6(b), corresponding to RBC > 1, we see the value of the y-component of
the endemic equilibrium is within the bounds given in Theorem 5.1. The trajec-
tories converge to the endemic equilibrium of the full system for both the initial
conditions shown in the figure and many other simulations (not shown here). Our
numerical results suggest that the endemic equilibrium of the full system is globally
asymptotically stable provided the conditions in Theorem 5.1 hold.

6. Alternate model for the full system. Thus far, we have studied the bene-
fit of decompartmentalizing the full system into decoupled subsystems in order to
get a sense of the dynamics of the full system. The basic reproductive numbers of
the disease in the decoupled subsystems has allowed us to obtain upper and lower
bounds for the basic reproductive number in the full system. Also, we are able to
use these expressions to decrease the impact of the infection transmission between
populations A and B. In this section, we provide an alternate approach to studying
the dynamics of the full system. We develop an alternate formulation of the full
system in which the connections between System I and System II are replaced with
nonhomogeneous constant forcing terms. We will use the values of the globally
asymptotically stable endemic equilibria of the decoupled subsystems (Eqs. (7) and
(9)) to represent an influx of disease between populations A and B, as depicted
in Figure 7. Recall the motivation behind the interactions within the model: the
spread of a sexually transmitted disease within heterosexual females, heterosexual
males, and bisexual males. The influx terms represent an inflow of disease contrac-
tion within the heterosexual female and bisexual male populations. The advantages
of this alternate formulation of the full system include an explicit representation of
the endemic equilibrium. This formulation also provides a comparison between the
dynamics of the subpopulations and the dynamics of the full system. In addition we
will show the dynamics of this alternate formulation given in Eqs. (29 - 31) provide
a close approximation to the dynamics of the full system given in Eqs. (3 - 5).

In Figure 7 we illustrate how the dynamics of one system influences the dynamics
of the other. The solid arrows represent the interactions between the subpopula-
tions and the dashed arrows labeled by f and g represent the influence between
populations A and B modeled as nonhomogeneous forcing terms. The term forcing
here is used in a physics or mathematical context, where an external nonhomoge-
neous term is added to a homogeneous system. In this context, the external force
of the constant influx of infection, f and g, pushes the equilibrium of the system
away from the disease free equilibrium. Note that while disease influx rates between
systems I and II are constant, the incidence rate d(x + y + z)/dt, the number of
new cases per population at risk in a given time period, is variable. The equations
representing these interactions remain decoupled as seen in
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(a) x, y, z vs Time. RBC < 1

(b) x, y, z vs Time. RBC > 1

Figure 6. The figures display the dynamics of the full (x, y, z)
system over time with randomly selected initial conditions. The
shaded gray areas represent the bounds for y∗ found in Theorem
5.1. In figure 6(a), RBC is less than one, and RBC is greater than
one in figure 6(b). Figure 6(b) contains an enlarged version of
the figure displaying the behavior of y. Parameters are as listed in
Table 2 correspond to βAA = 0.7368, βAB = 0.4911, βBA = 0.1491,
βCB = 0.13419, and δA = δB = δC = 0.1. In 6(a) βBC = 0.1863
which gives RBC = 0.5 and in 6(b) βBC = 26.8 which gives RBC =
6. This large value of RBC was chosen to easily distinguish the
endemic equilibrium values for x, y, and z.
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dx

dt
= (βAAx+ g) (1− x)− δAx, (29)

dy

dt
= (βCBz + f) (1− y)− δBy, (30)

dz

dt
= βBCy (1− z)− δCz, (31)

where f = βABx1
∗ and g = βBAy

∗
2 with x∗1 as defined in Eq. (7) and y∗2 as defined

in Eq (9). We can compare system III shown in Figure 7 to that in Figure 2
and see that the dashed lines representing our forcing terms f and g simulate the
direct connection between populations A and B shown with the solid lines and
given respectively by βABx

∗
1 and βBAy

∗
3 . The system of differential equations given

in Eqs. (29-31) have replaced the direct connection terms in Eqs. (3-5) with the
forcing terms f and g which decouples the system of three equations, but still retains
the effect of input of disease between populations A and B, albeit at a constant rate
dependent on the endemic equilibrium value of the influencing population. Thus
system III is an intermediate model between the completely decoupled systems I
and II and the fully connected model.

B C A 
f 

g 

SYSTEM III 

Figure 7. Deconstructed Model with Nonhomogeneous Forcing
Terms: f is a function of the endemic equilibrium of System I,
x∗1, and g is a function of one term of the endemic equilibrium of
System II, y∗2 .

There is no longer a disease-free equilibrium in System III since there is a constant
influx of disease from population A into B and B into A. As a result, the disease
always persists in the population when there is a constant influx of disease between
population A, bisexual males in our motivational example, and B, heterosexual
females in our example. This idea may seem obvious: if you are constantly inserting
infectives into a population then the disease will not have an opportunity to die out.
Perhaps the model with influence terms is a more realistic representation of the
dynamics of the disease considering that it is indeed incurable and there may never
be a case when the disease is completely eradicated from the population. Consider,
for example, our motivational example with incurable sexually transmitted disease
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in the male bisexual, female heterosexual, and male heterosexual populations. The
disease may not be eradicated due to inadequate access to healthcare, persistent
homophobia, and a number of other sociological and epidemiological factors. The
next proposition shows that the endemic equilibrium is locally asymptotically stable.

Proposition 2. The Endemic Equilibrium

(x∗3, y
∗
3 , z
∗
3) =

(
η4 +

√
η2

4 + 4βAAg

2βAA
,
−η1 + η3

2η2
,

βBC (η1 − η3)

βBC (η1 − η3)− 2δCη2

)
, (32)

where:

η4 = −g + βAA − δA, (33)

η3 =
√
η2

1 − 4η2η0, (34)

η2 = βBC (f + βCB + δB) , (35)

η1 = δC (f + δB −RBCδB)− fβBC , (36)

η0 = −δCf. (37)

exists, is unique, and is locally asymptotically stable.

Proof. Note the dynamics of x, see Eq (29), are completely decoupled from that of y
and z in Eqs (30, 31). Hence the first component, x∗3 in Eq. (32) comes solely from
solving for the equilibrium in Eq (29). The second two components, (y∗3 , z

∗
3), in Eq

(32) come from solving for equilibrium in Eqs (30, 31). The second two components
of the equilibrium in Eq (32) reduce to the disease-free equilibrium for the unforced
System II, i.e. Eqs (4, 5), as f → 0, and the endemic equilibrium for the unforced
System II, (y∗2 , z

∗
2), moves outside the domain [0, 1]× [0, 1] for f > 0.

Next we show x∗3 lies in the domain [0, 1] for g ≥ 0. Since βAA > 0 then x∗3 ≥ 0.
Since there is no disease-free equilibrium, there is no basic reproductive number for
System I with g > 0. However, we define a basic reproductive-like number

R̃A(g) = βAA/(g + δA), (38)

which comes from performing the Next Generation method evaluated at x3 = 0
for Eq. (29) alone. Note this expression is a definition of a certain combination
of parameters that will be important for our analysis below, but since it is not a
basic reproductive number is the true sense, it cannot be used to draw stability
conclusions based on the Next Generation Method, particularly since there is no
disease-free equilibrium.

In the case when g is zero, we are returned to system I with R̃A(0) = RA. With

this basic reproductive-like number R̃A(g) we can rewrite x∗3 as:

x∗3 =
(R̃A(g)− 1) +

√
(R̃A(g)− 1)2 +

4gR̃2
A(g)

βAA

2R̃A(g)
, (39)

=
1

2

(
1− 1

R̃A(g)

)
+

√
1

4

(
1− 1

R̃A(g)

)2

+
g

βAA
,

<
1

2

(
1− 1

R̃A(g)

)
+

√
1

4

(
1− 1

R̃A(g)

)2

+
1

R̃A(g)
,

<
1

2

(
1− 1

R̃A(g)

)
+

√
1

4

(
1 +

1

R̃A(g)

)2

= 1,
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as R̃A(g) < βAA/g. Thus x∗3 ∈ (0, 1). The equilibria for the second two components
in Eq (32) are non-trivial equilibrium points. We identify the right hand sides of Eqs.
(30) and (31) as F2(y, z) and F3(y, z) respectively. Note that F2(0, z) = f+βCBz >
0 and F2(1, z) = −δB . Similarly F3(y, 0) = βBCy > 0 and F3(y, 1) = −δC . We can
consider z in F2 and y in F3 as fixed and apply the Intermediate Value Theorem.
The sign changes of the functions of both F2 and F3 assures us that we have at
least one endemic equilibria. The sign of η1 defined in Eq (36) is not intrinsic but
depends on the size of the disease removal rates, infection influence, and the external
force f . However, we note that in any case, η2

1 − 4η2η0 > 0 (because of the signs of
η2 and η0) which implies η3 > η1. Thus, we now see that −η1 + η3 > 0. The other
equilibrium solution that arises from the solution of Eqs (30) and (31) lies outside
of the (0, 1) interval. As a result, (y∗3 , z

∗
3), defined in Eq (32) is the only equilibrium

that lies within (0, 1). Thus, the endemic equilibrium exists in the feasible region
and is unique.

Next we explore the local stability of the endemic equilibrium. Since the equa-
tions are decoupled, we first look at the stability of x∗3. In order to show the first
component is locally asymptotically stable for Eq (7) we need to show the eigenva-
lue of the Jacobian, λ = βAA(1− 2x∗3)− δA − g for this equation is negative. This
is equivalent to requiring x∗3 > η4/2βAA which is clearly satisfied by the definition
of x∗3 in Eq (32).

In order to show the y∗3 and z∗3 components of the endemic equilibrium in Eq
(32) are asymptotically stable for the dynamics defined by Eqs (30, 31), one must
evaluate the Jacobian of the vector field at the endemic equilibrium and show the
trace is negative and the determinant is positive. The trace −(δB+δC+f+βBCy

∗
3 +

βCBz
∗
3) is clearly negative. We recognize the definition of z∗3 from Eq (32) may be

written in terms of y∗3 as

z∗3 =
βCBy

∗
3

βCBy∗3 + δC
. (40)

We substitute this expression for z∗3 into the determinant of the Jacobian

1 +RBC(y∗3 + z∗3 − 1) +
βBC
δC

(
y∗3 +

f

δB

)
+

1

δB
(f + βCBz

∗
3) , (41)

=
η1δC + β2

BCy
∗
3 ((βCB + f)(1 + y∗3) + δBy

∗
3)

δC + βBCy∗3
+

+
βBC (η1y

∗
3 + δC (f(1 + y∗3) + y∗3(2βCB + δB)))

δC + βBCy∗3
> 0,

thereby showing the determinant is positive and the endemic equilibrium is therefore
locally asymptotically stable.

Proposition 3. The Endemic Equilibrium (x∗3, y
∗
3 , z
∗
3) is globally asymptotically

stable.

Proof. Since the system is actually decoupled with the influence terms, we need only
to look at x∗3 and then (y∗3 , z

∗
3) separately. Identifying the right hand side of Eq.

(29) as the function h(x), we note that in one-dimension, to extend local asymptotic
stability to global asymptotic stability h(x) requires the condition, |h(x)| > 0 for
all x ∈ (0, 1) and x 6= x∗3. We have shown that h(x) = 0 only at the unique the
equilibrium, x = x∗3, so x∗3 is globally asymptotically stable [17, 46].

The goal of this proof for (y∗3 , z
∗
3) is to show the trajectories with initial values in

the domain of our problem converge to the endemic equilibrium point. In order to
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show this for our unique (y∗3 , z
∗
3) we must first show there exists a compact absorbing

set in [0, 1] × [0, 1]. Then we can apply Poincaré-Bendixson’s criterion divF < 0
for V′ = F(V) to show that the system has no periodic orbits and the endemic
equilibria is globally stable in [0, 1]× [0, 1].

We define a square absorbing set K = [0, 1]× [0, 1], where K is connected since
it is a convex subset of R with the non-trivial endemic equilibrium (y∗3 , z

∗
3) given by

Eq. (32) in the interior. Any orbit with initial condition in K must remain in K
since the vector field points inward along the boundary of K1 and by the Poincaré
-Bendixson theorem, approach either the unique endemic equilibrium (y∗3 , z

∗
3) or

a periodic orbit. Since divF = − (βCBz3 + f + δB + βBCy3 + δC) is negative for
all values of (y3, z3) ∈ K, there are no periodic orbits in K, and all orbit must
approach the unique endemic equilibrium (y∗3 , z

∗
3) . Hence, (x∗3, y

∗
3 , z
∗
3) is globally

asymptotically stable.

7. Example: Application to HIV. Sexually transmitted diseases can be charac-
terized as either viral, such as herpes, HPV, and HIV, or bacterial, such as chlamy-
dia, gonorrhea and syphilis. In general bacterial STDs are curable by antibiotics,
whereas viral STDs are not. Malaria models such as [52] inspired early models of
STDs such as [13, 27]. Mathematical modeling in the area of sexually transmitted
diseases shifted towards incurable diseases during the 1980’s with the emergence of
the HIV/AIDS epidemic (see for example [1, 8, 2, 20, 21, 22, 23, 58]).

The introduction of highly active antiretroviral therapy (HAART), a treatment
paradigm utilizing three or more antiretroviral drugs in combination, has led to a
significant decrease in HIV-associated morbidity and mortality [14]. In more devel-
oped countries with ready access to highly active antiretrovial therapy (HAART),
the progression to AIDS has dropped drastically [14, 42, 43, 55]. Studies of the life
expectancy of individuals treated with combination antiretroviral therapy [4, 12, 37,
38, 42, 43, 47, 50, 53, 55] show that access to antiretroviral therapy has improved
life expectancy to the extent that HIV is increasingly considered as a chronic illness.
For example, a life expectancy of 40-50 additional years after contracting HIV at
age 20 corresponds to a range of µj between 0.0018 to 0.003 [34, 42, 57]. Thus
with the introduction of HAART therapies, the values of µ for HIV is small. In
Figure 8, we compare population sizes for each of the three subpopulations A, B,C,
as µ varies from 0 to 0.01, corresponding to the values of µ for HIV with HAART
therapy. In Figures 8, 9, and 10 we are using the parameter values detailed in Table
2 taken from various HIV studies [39], [48].

In this application, we examine the spread of HIV within a population consist-
ing of homosexual interactions within a bisexually mixing male population as well
as heterosexual couplings between males and females. Recall, population A corre-
sponds to bisexual males, population B depicts heterosexual females, and population
C represents heterosexual males. Figure 8 demonstrates that solutions for µ small
approach the solution corresponding to µ = 0. The long term dynamics of each
of the scaled proportion of individuals infected in the respective subpopulations of
the full system, IAΛdA/pA, IBΛdB/pB , and ICΛdC/pC with a small positive µj ,
approach the dynamics of µj = 0. The values of µj shown in Figure 8 correspond to
µj = 0 .005, and 0.01. For population A, population B, population C, depicted by
the solid, dashed, and dashed-dotted lines in Figure 8, the solution corresponding to

1The values
(

f
δB+f

, 0
)

with dy
dt

= 0 and
(

1, βBC
βBC+δC

)
with dz

dt
= 0 are not equilibria in our

system but rather values where the individual populations reach steady state.
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Table 2. Parameter Estimates.

Symbol Description Value Reference
(x, y, z) Initial Conditions 25

100 , 50
400 , 25

300 [39]
N Total population 900 [39]
NB Total population of B N

2 [39]
NAC Total population of A and C N

2 [39]
NC Total population of C NAC · .9 [39]
NA Total population of A NAC · .1 [39]
bAA, Probability of infection per 0.2456, 0.1637, [39]
bAB = bCB , exposure in population i 0.0497
bBA = bBC to an individual in population j
cij Contact number of an individual Average 3/year [48], [39]

in population i with a new
individual in population j.

µA, µB , µC Death rate due to disease of 1
15 [48]

individuals in population j
1
dA

, 1
dB

, 1
dC

Average duration of acquisition 30, 30, 30 [48]

of sexual partners

µ = 0 is the top most solution. The middle solution curve for each of the respective
populations correspond to µ = 0.005, and the bottom solution curve corresponds
to µ = 0.01. Both of these nonzero values of µj values overestimate the range of
0.0018 to 0.003 corresponding to previously mentioned HIV life expectancy results
[34, 42, 57]. However, the curves corresponding to the values of µj = 0.0018 and
0.003 are nearly indistinguishable from the curve for µj = 0. Hence we have exag-
gerated the value of µj to illustrate the effect of an increasing µj . For all the values
of µj , the trajectories approach the value of the endemic equilibrium.

Figures 9 and 10 illustrate the connection between the full system and the alter-
nate system by comparing values of the endemic equilibrium, as a function of basic
reproductive numbers RA and RBC , and also comparing trajectories of both sys-
tems, starting with the same initial conditions. First, we compare the dynamics of
the full system for the case of HIV given Eqs. (3 - 5) to the alternative formulation
given in Eqs. (29 - 31). In particular we will compare the value of the endemic equi-
libria of the full system (3 - 5) to the value of the endemic equilibria of the alternate
system (29 - 31). Figure 9 illustrates the equilibria of both the full system and the
alternate system as RA and RBC vary. In particular, Figure 9(a) plots the value
of the components of the endemic equilibrium as βAA varies in (6) and Figure 9(b)
plots of the value of the components of the endemic equilibrium as βCB varies,
with fixed βBC in (8). Figure 9(a) shows the values endemic equilibria of the full
system (x∗, y∗, z∗) and the values of the endemic equilibria of the alternate system
(x∗3, y

∗
3 , z
∗
3), as the reproductive number RA varies. In each of the components, the

values of the components of the endemic equilibria of the alternate system, denoted
by the dashed line, gives a good approximation of the values of the components of
the endemic equilibria of the full system, denoted by the solid dots. Similar results
can be seen in Figure 9(b), as the reproductive number RBC varies.

These figures illustrate the validity of using the simpler alternate model to un-
derstand the behavior of the full system. The simulation results in Figure 9 show
that the values of the endemic equilibrium are very similar between the direct and
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Figure 8. The figure displays the dynamics of the scaled propor-
tion of individuals infected in the respective subpopulations of the
full system Eqs. (3-5), IAΛdA/pA, IBΛdB/pB , and ICΛdC/pC ver-
sus time as µj is varied from 0 to 0.01. Increasing µj lowers each
population curve: from top to bottom µ = 0, µ = .005, and µ = .01.
Parameters are as listed in Table 2 correspond to βAA = 0.7368,
βAB = 0.4911, βBA = 0.1491, βCB = 0.13419, and δA = δB =
δC = 0.1.

indirect system and Figure 10 shows that the alternate system tracks the full sys-
tem, as a function of time. Thus, we have numerically demonstrated using both
the endemic equilibrium and the basic reproductive numbers that the alternate and
algebraically simpler model follows the dynamics and behavior of the full system.

Finally, we can bound the basic reproductive number of the disease in the direct
transmission model, R0, the basic reproductive number for Eqs (3 - 5), in terms

of basic reproductive-like numbers from the influenced system, R̃A(g) as defined in
Eq. (38) and

R̃BC(f) =

√
βBCβCB

(f + δB)δC
. (42)

This is described in the theorem below:

Theorem 7.1. The basic reproductive number R0 is bounded below by the functions
R̃A(g) and R̃BC(f).
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Figure 9. The figures display the endemic equilibria of the full
system (x∗, y∗, z∗), denoted by the solid dots in the figure, and
alternate system (x∗3, y

∗
3 , z
∗
3), as specified in the legend which ap-

plies to 9(a) and 9(b), varied with respect to the decoupled basic
reproductive numbers RA and RBC . Parameters are as listed in
Table 2 correspond to βAA = 0.7368, βAB = 0.4911, βBA = 0.1491,
βCB = 0.13419, and δA = δB = δC = 0.1. Note that βAA is varying
in Figure 9(a), and βCB is varying in Figure 9(b).



ANALYSIS OF SI MODELS WITH MULTIPLE INTERACTIONS 157

Time
10-1 100 101 102
0

0.2

0.4

0.6

0.8

1

x
3

x
y

3
y
z

3
z

Figure 10. Semilogarithmic plot of the alternate (x3, y3, z3) and
full (x, y, z) systems over time beginning with the same initial con-
ditions. The alternate system captures the behavior of the full
system at the endemic equilibrium. The behavior of the alternate
system for populations B and C over short and long the periods
matches the full system. The behavior of population A differs ini-
tially, with an overestimate on the the part of the alternate sys-
tem, but both systems converge in the long term. Parameters are
as listed in Table 2 correspond to βAA = 0.7368, βAB = 0.4911,
βBA = 0.1491, βCB = 0.13419, and δA = δB = δC = 0.1.

Proof. For f and g positive then R̃A(g) < RA and R̃BC(f) < RBC . In section 4
we established that R0 is greater than RA and RBC , hence it must be bounded
below by R̃A(g) and R̃BC(f) as well.

8. Discussion. In this paper we consider an epidemiological model of a chronic
disease with multiple connections between subpopulations. Motivated by the al-
gebraically intractable basic reproductive numbers and endemic equilibria of this
system, we have provided two alternative approaches that not only approximate
the dynamics of the full system but also bound the basic reproductive number of
the full system. In particular, we provide explicit bounds on the basic reproductive
number of the full system in terms the basic reproductive numbers of the smaller
subsystems. We introduce an alternate system in which the values of the basic re-
productive numbers of the subsystems provide a constant stream of disease into the
separate subsystems. The dynamics of the alternative formulation approximates the
dynamics of the full system. The basic reproductive-like numbers of the alternate
system provide lower bounds on the basic reproductive number of the full system.
Providing computationally tractable bounds on the basic reproductive number and
value of the endemic equilibrium allows us to study the effect of the subpopulations
on the entire population.

With this new method we are able to demonstrate that bridging interactions be-
tween mutually exclusive populations effect the prevalence of the disease within the
subsystems and ultimately the disease level of the entire system. For example, the
interaction number representing the connection between the populations in subsys-
tems I and II is an important part of the upper bound for the basic reproductive
number of the full system. By providing tools for analysis of the full populations in
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terms of the subpopulations we can target control of the disease rather than erad-
ication. In the case of chronic sexually transmitted diseases, control of the spread
of the disease is a realistic goal. In the case of our motivational model, there is not
reliable data on the bisexual male population, population A, however our model
allows us to understand the effect this population has on the heterosexually mixing
populations, B and C.

In our quest to describe the reproduction numbers and endemic equilibrium of
the full system, we considered using reproduction invasion numbers in addition to
the reproduction and interaction numbers of the subpopulations. Typically invasion
reproductive numbers are used in the study of two competing strains of infection.
These invasion reproductive numbers quantify the possibility of “invasion” by one
strain in an environment in which the other strain is at a positive equilibrium.
However, in this case, there is only one strain of infection, and invasion refers
to either the infection in system I spilling over into system II, or the infection in
system II spilling into system I, through bridging interactions. Invasion reproductive
numbers are calculated by evaluating the Jacobian at the boundary equilibrium.
For the boundary equilibrium where the infection exists only in system I, EI =(
RA−1
RA , 0, 0

)
is the endemic equilibrium of the system I given in Eq. (7). The

invasion reproductive number RIIA is then the largest positive eigenvalue of the
polynomial

P IIA = −λ3 +

(
R2
A +RA(RA − 1)

[
βAB
δB
− τ2

AB

])
λ2 +

(
(UR2

BC + τ2
AB)RA

UV

)
λ−
R2
BCR2

A

[
(RA − 1)βABδB +RA

]
UV 2

,

where U = 2RA−1 and V = RA+(RA−1)βAB/δB . This expression is analytically
as intractable as the reproductive number of the full system described the roots of
equation (13). The invasion reproduction number RIIA for an infection in system
II spilling into system I is more complicated than a the case of an infection type
II invading a population with infection type I as in [9, 44, 49], among many other
papers, because of the self interaction of population A with itself (a result of our
motivating sexually transmitting disease model with population A representing male
bisexuals). Similarly, the invasion reproduction number for an infection from system

I invading system II at the boundary equilibrium EII =

(
0,

R2
BC−1

R2
BC−

βBC
δC

,
R2
BC−1

R2
BC−

βCB
δB

)
,

reflecting the endemic equilibria of the system I given in Eq. (9), is not simple to
express analytically. Hence, we chose to use only the reproduction and interaction
numbers of the subsystems to bound the basic reproductive number for the full
system and to describe the endemic equilibrium of the full system.

The epidemiological impact of this study allows us to target the behavior of
population A. Specifically, if intervention strategies, such as targeted sex education,
are employed on the members of population A, the disease will die out. In this
model, in particular, a bridge exists between a population that intermixes, A, and
the cross mixing populations, B and C. This connection is quantified through the
manner in which the basic reproductive numbers of System I and System II are
linked together by the interaction number τAB . The population A is the most
sexually-interactive in the system given they have the highest number of couplings
between groups. Our study shows if their risky interactions with population B
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decreases, the disease has the potential to die out within the entire system. We
urge public health officials to create a public health campaign to encourage members
of population A to either eliminate risky interactions with population B, or take
significant protective actions when involved with sexual activities with members of
this population.
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