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Abstract. We present a constructive method for Lyapunov functions for or-
dinary differential equation models of infectious diseases in vivo. We consider

models derived from the Nowak-Bangham models. We construct Lyapunov

functions for complex models using those of simpler models. Especially, we
construct Lyapunov functions for models with an immune variable from those

for models without an immune variable, a Lyapunov functions of a model with

absorption effect from that for a model without absorption effect. We make
the construction clear for Lyapunov functions proposed previously, and present

new results with our method.

1. Introduction. Infectious diseases in vivo and immune response against infec-
tion are investigated using nonlinear ordinary differential equations. It is important
to investigate the stability of the equilibrium of the equations to know whether
infection is established or not, whether the state of infection after establishment is
stable or oscillating, whether immune response exists or not and whether it is stable
or oscillating.

While the analysis of local stability using the Jacobi matrix for the stability of
equilibria can be used in many cases, we can show the global stability result for the
equilibrium if we can construct a Lyapunov function. A Lyapunov function of an
ordinary differential equation is a function on the phase space such that it decreases
(or does not increase) along each solution of the equation. If we can construct a
Lyapunov function, we can prove the global stability using the LaSalle invariance
principle in many cases.

But, constructive methods to find Lyapunov functions are not known except for
certain particular models, for example, Li et al. [9]. In many cases, Volterra type
functions are used, and the derivative of the Lyapunov function is shown to be
nonpositive using the result that it is expressed as a sum of squared terms with
negative coefficients.
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By the limitation of technique, the global stability of the interior equilibrium of
the model with three variables in Nowak and Bangham [12] has not been shown for
a long time. Korobeinikov [7] showed that Volterra type functions are applicable
to many models of epidemiology and virology using arithmetic-geometric mean in-
equality, and he settled the problem of global stability for the model in Nowak and
Bangham [12]. After that, many papers, for example Pang et al. [13], Iggidr et al.
[3], Kajiwara and Sasaki [5], Inoue et al. [4], have appeared and Lyapunov functions
have been obtained for many models. When a model is modified by some change
from a simpler model, it will be better if we can construct a Lyapunov function
from that for the original model in a constructive way.

In the present paper, we consider models derived from the models in Nowak and
Bangham [12]. We construct Lyapunov functions for more complex models from
those for simpler models. Using a Lyapunov function, which are already known (e.g.
Korobeinikov [7]) for a model that ignores the immunity, we construct a Lyapunov
function for a model that incorporates the immunity. We show that Lyapunov
functions, which is already known, are directly obtained by our method, and we
also show new results. When a pathogen infects an uninfected cells, the number of
pathogens decreases by one, and we call it the absorption effect. We construct a
Lyapunov function for a model with absorption effect from a Lyapunov function for
a model without absorption effect. We make previous constructions clearer. And
we also construct a Lyapunov function for a model of Qesmi et al. [14].

The contents of the paper are as follows. In Section 2, we present a method for
modifying a Lyapunov function for a model without an immune variable to obtain
a Lyapunov function for a model with an immune variable. We state the details
of the construction mainly for the model with humoral immunity. In Section 3, we
present a method to construct a Lyapunov function for a model with the absorption
effect by using that of a model without the absorption effect. We use the method in
Section 2 for the model which contains an immune variable and absorption effect.

Using the method which we propose, we also present some new results. We
construct Lyapunov functions mainly around the interior equilibrium because the
construction for the interior equilibrium is often more difficult.

2. Models with immune variables.

2.1. Formulation and a result. We will construct a Lyapunov function for a
model of infectious diseases in vivo with an immune variable, by using a Lyapunov
function for a corresponding model without an immune variable. Since the method
of construction can be applied to various models, we consider the following form:

dxk
dt

= fk(x1, x2, . . . , xn) (k = 1, 2 . . . , i− 1, i+ 1, . . . , n),

dxi
dt

= fi(x1, x2, . . . , xn)− bxi − pxn+1xi,

dxn+1

dt
= xiq(xn+1)−mxn+1.

(1)

The variables xk’s (k = 1, 2, . . . , n) express the amount of the uninfected cells,
infect cells of several stages, and pathogens. Here we fix i (1 ≤ i ≤ n), and xi
corresponds to the cells or pathogens that stimulate the immune system and are
eliminated by the immune system (the term −pxn+1xi with a positive constant p).
The linear clearance term −bxi (b > 0), which commonly appears in many models,
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is not included in fi because of a technical reason. The variable xn+1 expresses the
amount of the immune cells. We confine ourselves to the case where the immune
activation is described in the form xiq(xn+1). We assume that, for z > 0, the
function q(z) is positive and z/q(z) is monotonously nondecreasing. The positive
constant m is the death rate of immune cells.

We will construct a Lyapunov function for (1) using a Lyapunov function for the
following model

dxk
dt

= fk(x1, x2, . . . , xn) (k = 1, 2 . . . , i− 1, i+ 1, . . . , n),

dxi
dt

= fi(x1, x2, . . . , xn)− b′xi.
(2)

The model (2) corresponds to (1), and the meanings and dynamics of xk’s also
correspond to those for (1), except the fact that the model (2) dose not explicitly
include an immune variable. Here the coefficient b′ of the linear clearance term is
different from b in (1). If we put g = (g1, g2, . . . , gn) with

gk(x1, x2, . . . , xn) = fk(x1, x2, . . . , xn) (k = 1, 2, . . . , i− 1, i+ 1, . . . , n),

gi(x1, x2, . . . , xn) = fi(x1, x2, . . . , xn)− b′xi,

and x = (x1, x2, . . . , xn), then the system (2) becomes

dx

dt
= g(x).

We suppose that the model (1) has a positive equilibrium (x̂1, x̂2, . . . , x̂n+1),
which satisfies

fk(x̂1, x̂2, . . . , x̂n) = 0 (k = 1, 2 . . . , i− 1, i+ 1, . . . , n),

fi(x̂1, x̂2, . . . , x̂n)− bx̂i − px̂n+1x̂i = 0,

x̂iq(x̂n+1)−mx̂n+1 = 0.

(3)

Then, for
b′ = b+ px̂n+1, (4)

x̂ = (x̂1, x̂2, . . . , x̂n) is a positive equilibrium of (2). We use the notation (x̂, x̂n+1) =
(x̂1, x̂2, . . . , x̂n+1) and Rk

+ = {x ∈ Rk |xi > 0, i = 1, . . . , k } for each positive
integer k.

Theorem 2.1. We assume that the model (2) has a Lyapunov function of the form

U(x) = Ũ(x1, . . . , xi−1, xi+1, . . . , xn) + c(xi − x̂i log xi) (5)

around the positive equilibrium x̂, where c is a positive constant. Then we can con-
struct a Lyapunov function for the model (1), which contains an immune variable,
around the positive equilibrium (x̂, x̂n+1) in a constructive way.

We assume z/q(z) is strictly increasing at x̂n+1. Then if the largest invariant

subset of {x ∈ Rn
+ | U̇(x) = 0 } for the model (2) is the singleton {x̂}, the interior

equilibrium (x̂, x̂n+1) of (1) is globally asymptotically stable in Rn
+.

Proof. We introduce a function W (xn+1), which will be determined later. We put

V (x, xn+1) = U(x) +W (xn+1), (6)

and will find a condition for W that V is a Lyapunov function of (1) around
(x̂, x̂n+1). We note that the inequality

∇U(x) · g(x) ≤ 0 (7)
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holds.
If we calculate the derivative of V along (1), then we have, by (6), (4) and (5),

V̇ (x, xn+1) =

n∑
k=1
k 6=i

∂V

∂xk
(x, xn+1)fk(x) +

∂V

∂xi
(x, xn+1)(fi(x)− bxi − pxn+1xi)

+W ′(xn+1)(xiq(xn+1)−mxn+1)

=

n∑
k=1
k 6=i

∂U

∂xk
(x)fk(x) +

∂U

∂xi
(x)(fi(x)− bxi − px̂n+1xi)

+
∂U

∂xi
(x)(px̂n+1xi − pxn+1xi) +W ′(xn+1)(xiq(xn+1)−mxn+1)

=

n∑
k=1
k 6=i

∂U

∂xk
(x)fk(x) +

∂U

∂xi
(x)(fi(x)− b′xi)

+
∂U

∂xi
(x) p · (x̂n+1 − xn+1)xi +W ′(xn+1)(xiq(xn+1)−mxn+1)

= ∇U(x) · g(x) + c

(
1− x̂i

xi

)
p · (x̂n+1 − xn+1)xi

+W ′(xn+1)q(xn+1)

(
xi −m

xn+1

q(xn+1)

)
.

Thus, by the last equality −x̂i +mx̂n+1/q(x̂n+1) = 0 of (3),

V̇ (x, xn+1)

=∇U(x) · g(x) + cp · (xi − x̂i)(x̂n+1 − xn+1) +W ′(xn+1)q(xn+1)(xi − x̂i)

+W ′(xn+1)q(xn+1)m

(
x̂n+1

q(x̂n+1)
− xn+1

q(xn+1)

)
. (8)

Since (xi − x̂i)(x̂n+1 − xn+1) is not definite, we determine W (xn+1) as it satisfies

cp · (xi − x̂i)(x̂n+1 − xn+1) +W ′(xn+1)q(xn+1)(xi − x̂i) = 0,

which implies

W ′(xn+1) =
cp · (xn+1 − x̂n+1)

q(xn+1)
.

Then (8) becomes

V̇ (x, xn+1) = ∇U(x) · g(x) + cpm(xn+1 − x̂n+1)

(
x̂n+1

q(x̂n+1)
− xn+1

q(xn+1)

)
,

and we have

W (xn+1) =

∫ xn+1

x̂n+1

cp · (τ − x̂n+1)

q(τ)
dτ.

Since z/q(z) is assumed to be nondecreasing and (7) holds, V̇ (x, xn+1) is nonposi-
tive, and thus V (x, xn+1) is a Lyapunov function for (1) around (x̂, x̂n+1).

We assume z/q(z) is strictly increasing at x̂n+1. Then V̇ (x, xn+1) = 0 implies
xn+1 = x̂n+1. By the assumption for U(x), the largest invariant subset of {x ∈
Rn+1

+ | V̇ (x) = 0 } is the singleton (x̂, x̂n+1). By the LaSalle invariance principle,
the interior equilibrium (x̂, x̂n+1) of (1) is globally asymptotically stable.
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Remark 1. When z/q(z) is not strictly increasing near x̂n+1, we can not use
directly Theorem 2.1 for the global stability of (1). But for some specific examples,
we can conclude that the interior equilibrium of (2.1) is globally asymptotically
stable, using the specific information of (2) and U(x).

We don’t consider the existence of interior equilibria in this section. The existence
is a nontrivial matter in many cases, and should be proved for each case. Some
results on the existence are described in Appendices B, C and D. The uniqueness
of the interior equilibrium follows from its global stability.

2.2. Some specific models. We apply Theorem 2.1 in Section 2.1 to specific
models in infectious diseases in vivo.

We consider the following model incorporating humoral immunity:

dx

dt
= λ− dx− ϕ(x, v),

dy

dt
= ϕ(x, v)− ay,

dv

dt
= ary − bv − pzv, dz

dt
= q(z)v −mz.

(9)

Humoral immunity works by killing pathogens outside target cells. In Murase et
al. [11], models incorporating humoral immunity are investigated. The variable x
denotes the amount of uninfected cells, y the amount of infected cells, v the amount
of pathogens and z the amount of humoral immunity specific to the pathogens. The
function ϕ(x, v) is called an incidence function and nonlinear in general. We assume
that ϕ(x, v) and q(z) satisfy the following conditions:

1. ϕ(x, v) is continuous, ϕ(x, v) > 0, monotonously increasing with respect to x
and v respectively, and ϕ(x, v)/v is monotone nonincreasing, for x > 0 and
v > 0.

2. ϕ(x, 0) = 0, ϕ(0, v) = 0 for x > 0 and v > 0.
3. q(z) is continuous and positive, and z/q(z) is monotonously nondecreasing for
z > 0.

When ϕ(x, v) is C2, the above conditions 1. is satisfied if ϕ(x, v) > 0, ϕx(x, v) >
0, ϕv(x, v) > 0 and ϕvv(x, v) ≤ 0 for x > 0 and v > 0. We state two important cases
for q(z) in Appendix A, which are convenient to show the existence of an interior
equilibrium.

We put x0 = λ/d. We note that the basic reproductive ratio R0 for the model is
given by

R0 =
r

b

∂ϕ

∂v
(x0, 0).

Since z/q(z) is monotonously nondecreasing, limz→+0 z/q(z) is zero or positive.
In this section, we assume that an interior equilibrium (x̂, ŷ, v̂, ẑ) exists and

construct a Lyapunov function of (9). Some results on the existence of an interior
equilibrium are described in Appendix B.

As in Section 2.1, we consider the following model without an immune variable
corresponding to (1):

dx

dt
= λ− dx− ϕ(x, v),

dy

dt
= ϕ(x, v)− ay, dv

dt
= ary − bv. (10)

We note i = 3 in Section 2.1 and the right hand side of the third equation contains
a term −bv. We use the following modified equation:

dx

dt
= λ− dx− ϕ(x, v),

dy

dt
= ϕ(x, v)− ay, dv

dt
= ary − (b+ pẑ)v. (11)
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We put y = (x, y, v) and denote by k(y) the vector field defined by the right hand
side of (11). The equation has an interior equilibrium (x̂, ŷ, v̂).

We define U by

U(y) =x−
∫ x

x̂

ϕ(x̂, v̂)

ϕ(τ, v̂)
dτ + (y − ŷ log y) +

1

r
(v − v̂ log v)

=
1

r
(v − v̂ log v) + Ũ(y),

and Ũ does not contain the variable v. The function U is a Lyapunov function
of (11) at (x̂, ŷ, v̂). U is essentially the same as that obtained for SEIR model by
Korobeinikov [8]. By Korobeinikov [8], it holds that

U̇(y) = ∇U(y) · k(y)

=− d
(

1− ϕ(x̃, ṽ)

ϕ(x, v̂)

)
(x− x̂) + ϕ(x̂, v̂)

(
4− ϕ(x̂, v̂)

ϕ(x, v̂)
− ŷ

y

ϕ(x, v)

ϕ(x̂, v̂)
− v̂y

vŷ
− v

v̂

ϕ(x, v̂)

ϕ(x, v)

)
+ ϕ(x̂, v̂)

(
ϕ(x, v)

ϕ(x, v̂)
− v

v̂
− 1 +

v

v̂

ϕ(x, v̂)

ϕ(x, v)

)
≤ 0.

The first term and the third term are nonpositive from the condition of ϕ(x, v), and
the second term is nonpositive from the arithmetic-geometric mean inequality. We
put x = (x, y, v, z), and put

V (x) =U(y) +W (z)

=x−
∫ x

x̂

ϕ(x̂, v̂)

ϕ(τ, v̂)
dτ + (y − ŷ log y) +

1

r
(v − v̂ log v) +

∫ z

ẑ

p(τ − ẑ)
rq(τ)

dτ.

Then by Theorem 2.1, V (x) is a Lyapunov function of (9) at (x̂, ŷ, v̂, ẑ).
Using the LaSalle invariance principle, it is shown that the interior equilibrium

(x̂, ŷ, v̂, ẑ) is globally asymptotically stable in the first quadrant, and the interior
equilibrium is unique if it exists. When the interior equilibrium does not exist, we
can show the global stability of the boundary equilibrium using Lyapunov functions.

Now consider the model incorporating cell-mediated immunity

dx

dt
= λ− dx− ϕ(x, v),

dy

dt
= ϕ(x, v)− ay − pzy,

dv

dt
= ary − bv, dz

dt
= yq(z)−mz.

(12)

We assume that ϕ(x, v) and q(z) satisfy the same conditions as in the humoral
immunity model (9). For the model (12), R0 is given in the same form as (9). We
assume R0 > 1. We assume the existence of an interior equilibrium (x̂, ŷ, v̂, ẑ). We
consider the following modified equation:

dx

dt
= λ− dx− ϕ(x, v),

dy

dt
= ϕ(x, v)− (a+ pẑ)y,

dv

dt
= ary − bv.

(13)

We put y = (x, y, v), x = (x, y, v, z). Let U(y) be the Lyapunov function of (13) at
(x̂, ŷ, v̂) in the same form as humoral immunity model. We put

W (z) =

∫ z

ẑ

τ − ẑ
q(τ)

dτ.
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Then as in the humoral immunity model (9), V (x) = U(y) + W (z) is a Lyapunov
function of (12) at the interior equilibrium (x̂, ŷ, v̂, ẑ). The global stability and the
uniqueness of the interior equilibrium also hold.

Putting ϕ(x, v) = βxv, q(z) = qz in (12), we get the following model given by
Nowak and Bangham [12]:

dx

dt
=λ− dx− βxv, dy

dt
= βxv − ay − pyz,

dv

dt
=ary − bv, dz

dt
= qyz − ez.

(14)

For (14), R0 is given by λβr/(bd). When R0 > 1 + (areβ)/(bdq), it is easy to
show that there exists the unique interior equilibrium. Pang et al. [13] constructed
a Lyapunov function for the interior equilibrium of (14). Their function is also
directly obtained by our method in Section 2.1.

We can incorporate both effects of humoral and cell-mediated immunity to the
model (10):

dx

dt
=λ− dx− ϕ(x, v),

dy

dt
= ϕ(x, v)− ay − pyz, dv

dt
= ary − bv − svw,

dz

dt
=yq(z)−mz, dw

dt
= vh(w)− nw.

(15)

We put x = (x, y, v, z, w). The variable z denotes the amount of cell-mediated
immunity, and w denotes the the amount of humoral immunity. We assume the
existence of an interior equilibrium x̂ = (x̂, ŷ, v̂, ẑ, ŵ). We define V (x) by

V (x) =x−
∫ x

x̂

ϕ(x̂, v̂)

ϕ(τ, v̂)
dτ + (y − ŷ log y) +

1

r
(v − v̂ log v) +

∫ z

ẑ

p(τ − ẑ)
rq(z)

dτ

+

∫ w

ŵ

s(τ − ŵ)

h(τ)
dτ.

Then V (x) is a Lyapunov function for (15). Since the calculation is separated for
the z variable part and the w variable part, we omit the detail.

There exist many examples of q(z) satisfying the condition 3 in this section.
Nowak and Bangham [12] and Murase et al. [11] used q(z) = qz. Inoue et al. [4]
used q(z) = q, and they constructed Lyapunov functions which are the same forms
as ours. A function in the family of functions q(z) = qza (0 < a < 1) satisfies
the condition for q(z). The family interpolates the known functions q(z) = qz and
q(z) = q. Especially, q(z) = q is an idealized form of q(z) = qza for small a. The
function W (z) for q(z) = qza is given by

W (z) =
1

q

(
1

2− a
z2−a − ẑ

1− a
z1−a +

ẑ2−a

(2− a)(1− a)

)
.

Gomez-Acevedo and Li [1] used q(z) = qz/(z+K) and considered the following:

dx

dt
= λ− dx− βxy, dy

dt
= σβxy − ay − pyz, dz

dt
=

qyz

z +K
− ez,

where we use different notations. The interior equilibrium exists if and only if
σβλq < a(dq + βeK). Gomez-Acevedo and Li [1] used the following Lyapunov
function:

V (x, y, z) = x− x̂ log x+
1

σ
(y − ŷ log y) +

p(ẑ +K)

σq
(z − ẑ log z),
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and proved by the Lyapunov function that the interior equilibrium is globally sta-
ble. Our Lyapunov function is different from theirs, and it is constructed more
constructive way.

If the conditions 3 for q(z) in this section is satisfied, an interior equilibrium can
be unstable. The following model

dx

dt
= λ− dx− βxy, dy

dt
= σβxy − ay − pyz, dz

dt
= yq(z)− ez

is considered in Lang and Li [10], where we use different notations. It is shown that
for the case q(z) = zn/(zn + K) with n ≥ 2 interior equilibrium can be unstable.
In this case, the condition 3 of q(z) in Section 2.2 is not satisfied.

3. Models with absorption effect.

3.1. Model without an immune variable. When a pathogen infects an unin-
fected cell, the number of free pathogens decreases by one. We call it the effect
of absorption. We consider the following model whose incidence function is of the
form ϕ(x)v:

dx

dt
= λ− dx− ψ(x)v,

dy

dt
= ψ(x)v − ay, dv

dt
= ary − ρψ(x)v − bv. (16)

The constant ρ ≥ 0 with 0 ≤ ρ < r expresses the strength of absorption effect.
The case ρ = 0 corresponds to the model without absorption effect, the case ρ = 1
corresponds to the model with ordinary absorption effect, and the case 1 < ρ < r
corresponds to the model with multiple absorption. We assume that the continuous
function ψ(x) satisfies the following:

1. The function ψ(x) satisfies ψ(0) = 0 and strictly increasing for x > 0.
2. The function ψ(x) satisfies(

ψ(x1)

x1
− ψ(x2)

x2

)
(ψ(x1)− ψ(x2)) ≤ 0 (17)

for x1 > 0, x2 > 0.

When ψ(x) is twice differentiable, the second condition is satisfied if φ′(x) ≥ 0 and
φ′′(x) ≤ 0 for x > 0. Put x0 = λ/d. For the model (16), the basic reproductive
ratio R0 is calculated as follows:

R0 =
rψ(x0)

ρψ(x0) + b
.

We assumeR0 > 1. We show in Appendix C that the interior equilibrium (x∗, y∗, v∗)
of (16) exists.

We construct a Lyapunov function of (16) using a Lyapunov function of the
equation without absorption effect. We rewrite (16) as follows:

dx

dt
=λ− dx− ψ(x)v,

dy

dt
= ψ(x)v − ay,

dv

dt
=ary − (ρψ(x∗) + b)v + ρ(ψ(x∗)− ψ(x))v.

For the construction of a Lyapunov function, we consider the following modified
equation:

dx

dt
= λ− dx− ψ(x)v,

dy

dt
= ψ(x)v − ay, dv

dt
= ary − (ρψ(x∗) + b)v. (18)
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The model is of the same form as the model without absorption effect, and also has
the interior equilibrium (x∗, y∗, v∗). We put x = (x, y, v) and denote by k(x) the
vector field defined by the right hand side of (18). Following Korobeinikov [8], we
define U(x) by

U(x) =

∫ x

x∗

ψ(ξ)− ψ(x∗)

ψ(ξ)
dξ + (y − y∗ log y) +

1

r
(v − v∗ log v).

The time derivative of U(x) along (18) is shown in Korobeinikov [8] as

U̇(x) = ∇U(x) · k(x)

= dx∗
(

1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
+ ψ(x∗)v∗

(
3− ψ(x∗)

ψ(x)
− v∗y

vy∗
− y∗ψ(x)v

yψ(x∗)v∗

)
.

The second term is nonpositive by the arithmetic-geometric inequality.
The time derivative U̇(x) along the original equation (16) is

U̇(x) = ∇U(x) · k(x) +
1

r

(
1− v∗

v

)
(ρ(ψ(x∗)− ψ(x)))v

= ∇U(x) · k(x) +
ρ

r
(v − v∗)(ψ(x∗)− ψ(x)). (19)

The sign of the second term is clearly indefinite. To control the sign of the sec-
ond term above, we use some unknown differentiable function T (x), which will be
determined later. The time derivative of T (x) along (16):

Ṫ (x) = T ′(x)(λ− dx− ψ(x)v)

= T ′(x) (−d(x− x∗) + (ψ(x∗)v∗ − ψ(x)v))

= −dT ′(x)(x− x∗) + T ′(x)(ψ(x∗)v∗ − ψ(x)v) (20)

We add the second term of (20) and the second term of (19):

ρ

r
(v − v∗)(ψ(x∗)− ψ(x)) + T ′(x)(ψ(x∗)v∗ − ψ(x)v)

=
ρ

r

(
(v − v∗)(ψ(x∗)− ψ(x)) +

r

ρ
T ′(x)(ψ(x∗)v∗ − ψ(x)v)

)
.

To simplifying the second term, we put (r/ρ)T ′(x) = S(x)(ψ(x∗)− ψ(x)) using an
unknown function S(x). Then

(v − v∗)(ψ(x∗)− ψ(x)) +
r

ρ
T ′(x)(ψ(x∗)v∗ − ψ(x)v)

=(ψ(x∗)− ψ(x)) ((v − v∗) + S(x)(ψ(x∗)v∗ − ψ(x)v))

=(ψ(x∗)− ψ(x)) ((1− S(x)ψ(x))v + (S(x)ψ(x∗)− 1)v∗) .

If we put S(x) = 1/ψ(x), then the last expression becomes

(ψ(x∗)− ψ(x))

(
ψ(x∗)

ψ(x)
− 1

)
v∗ = ψ(x∗)v∗

(
1− ψ(x)

ψ(x∗)

)(
ψ(x∗)

ψ(x)
− 1

)
.

Then we have

T ′(x) =
ρ

r
· (ψ(x∗)− ψ(x))

ψ(x)
,

and if we require T (x∗) = 0, we have

T (x) = −ρ
r

∫ x

x∗

ψ(ξ)− ψ(x∗)

ψ(ξ)
dξ.
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The condition (17) on ψ(x) can be rewritten as:

If x < x∗,
ψ(x)

ψ(x∗)
≥ x

x∗
, and if x > x∗,

ψ(x)

ψ(x∗)
≤ x

x∗
.

When x∗ < x, using
ψ(x∗)

ψ(x)
− 1 < 0, it holds that(

1− ψ(x)

ψ(x∗)

)(
ψ(x∗)

ψ(x)
− 1

)
≤
(

1− x

x∗

)(ψ(x∗)

ψ(x)
− 1

)
.

When x < x∗, the same inequality holds. Then it holds that

ρ

r

(
(v − v∗)(ψ(x∗)− ψ(x))− r

ρ
T ′(x)(ψ(x∗)v∗ − ψ(x)v)

)
≤ρv

∗ψ(x∗)

r

(
1− x

x∗

)(ψ(x∗)

ψ(x)
− 1

)
.

Then we have
ρ

r
(v − v∗)(ψ(x∗)− ψ(x)) + Ṫ (x)

≤− ρdx∗

r

(
1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
− ρv∗ψ(x∗)

r

(
1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
.

We put V (x) = U(x) + T (x). The time derivative of V (x) along (16) is

V̇ (x) =∇U(x) · k(x) +
ρ

r
(v − v∗)(ψ(x∗)− ψ(x)) + Ṫ (x)

≤dx∗
(

1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
− ρdx∗

r

(
1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
− ρv∗ψ(x∗)

r

(
1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
+ ψ(x∗)v∗

(
3− ψ(x∗)

ψ(x)
− v∗y

vy∗
− y∗ψ(x)v

yψ(x∗)v∗

)
=dx∗

(
1− ρ

r

(
1 +

v∗ψ(x∗)

dx∗

))(
1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
+ ψ(x∗)v∗

(
3− ψ(x∗)

ψ(x)
− v∗y

vy∗
− y∗ψ(x)v

yψ(x∗)v∗

)
. (21)

When r > ρ

(
1 +

v∗ψ(x∗)

dx∗

)
, it holds V̇ (x) ≤ 0 and V (x) is a Lyapunov function

at (x∗, y∗, v∗). We note that

V (x) =
(

1− ρ

r

)∫ x

x∗

ψ(ξ)− ψ(x∗)

ψ(ξ)
dξ + (y − y∗ log y) +

1

r
(v − v∗ log v). (22)

By the LaSalle invariance principle, if r > ρ

(
1 +

v∗ψ(x∗)

dx∗

)
, it is shown that

(x∗, y∗, v∗) is globally stable. When R0 ≤ 1, we can show that disease free equilib-
rium (λ/d, 0, 0) is globally stable using a Lyapunov function. We omit the detail.

Remark 2. When ψ(x) = βx, then the Lyapunov function constructed in this
section coincides with that in Iggidr et al. [3].
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3.2. Model with absorption containing an immune variable. We consider
models, with absorption effect, which contain an immune variables explicitly. We
consider the following model incorporating humoral immunity:

dx

dt
= λ− dx− ψ(x)v,

dy

dt
= ψ(x)v − ay,

dv

dt
= ary − ρψ(x)v − bv − pvz, dz

dt
= vq(z)−mz,

(23)

where ψ(x) satisfies the conditions 1 and 2 in Section 3.1, and q(z) satisfies the
condition 3 in Section 2.2.

In the section we assume that an interior equilibrium (x̂, ŷ, v̂, ẑ) exists and con-
struct a Lyapunov function of (23) at (x̂, ŷ, v̂, ẑ). The results on the existence of an
interior equilibrium are described in Appendix D.

We put x = (x, y, v, z) and y = (x, y, v) here. The following model modified from
(16)

dx

dt
= λ− dx− ψ(x)v,

dy

dt
= ψ(x)v − ay,

dv

dt
= ary − ρψ(x)v − (b+ pẑ)v

(24)

is a model with absorption effect and without an immune variable. It has the same
form as the model (16) and has (x̂, ŷ, v̂) as an interior equilibrium. Then by the
argument in Section 3.1, the following function U(y)

U(y) =
(

1− ρ

r

)∫ x

x̂

ψ(ξ)− ψ(x̂)

ψ(ξ)
dξ + (y − ŷ log y) +

1

r
(v − v̂ log v)

is a Lyapunov function of (24) at (x̂, ŷ, v̂) if r > ρ

(
1 +

v̂ψ(x̂)

dx̂

)
holds.

As in Section 2, we define V (x) by

V (x) =U(y) +W (z)

=
(

1− ρ

r

)∫ x

x̂

ψ(ξ)− ψ(x̂)

ψ(ξ)
dξ + (y − ŷ log y) +

1

r
(v − v̂ log v)

+

∫ z

ẑ

p(τ − ẑ)
rq(τ)

dτ.

(25)

By the calculation in the proof of Theorem 2.1 and that in 3.1, the derivative of V
along (23) satisfies the following inequality:

V̇ (x) ≤dx̂
(

1− ρ

r

(
1 +

v̂ψ(x̂)

dx̂

))(
1− ψ(x̂)

ψ(x)

)(
1− x

x̂

)
+ ψ(x̂)v̂

(
3− ψ(x̂)

ψ(x)
− v̂y

vŷ
− ŷψ(x)v

yψ(x̂)v̂

)
+
pv̂z(z − ẑ)
rq(ẑ)

(
q(z)

z
− q(ẑ)

ẑ

)
.

(26)

When r > ρ

(
1 +

v̂ψ(x̂)

dx̂

)
, it holds that V̇ (x) ≤ 0 and V (x) is a Lyapunov function

at (x̂, ŷ, v̂, ẑ).
Using the LaSalle invariance principle, it is shown that (x̂, ŷ, v̂, ẑ) is globally

asymptotically stable.
When the interior equilibrium does not exist, in Appendix E we construct a

Lyapunov functions for some boundary equilibria of the model (23) for some cases.
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Remark 3. When ψ(x) = βx and q(z) = qz, a Lyapunov function is obtained
in Kajiwara and Sasaki [5]. Similar results are also obtained for cell-mediated
immunity model in Kajiwara and Sasaki [5]. Much calculation is needed in [5],
but the same results are directly obtained using models without immunity by our
method in the present paper.

3.3. Qesmi et al.’s model. In this section, using the Lyapunov function con-
structed for a simple model (16), we can construct a Lyapunov function for a more
complex model.

In Qesmi et al. [14], the model which explains relapse after a liver transplant is
presented:

dx1
dt

=λ1 − β1x1v − d1x1,
dy1
dt

= β1x1v − a1y1,

dx2
dt

=λ2 − β2x2v − d2x2,
dy2
dt

= β2x2v − a2y2,

dv

dt
=k1y1 + k2y2 − β1x1v − β2x2v − bv.

(27)

We change the variables of the original model to fit the equation to our paper. The
variable x1 denotes the amount of uninfected liver cells, y1 infected liver cells, v hep-
atitis viruses, x2 uninfected blood cells and y2 infected blood cells. In the model,
hepatitis viruses infect liver cells and blood cells, and the relapse after a liver trans-
plant can occur. Qesmi et al.[14] shows that the backward bifurcation can occur in
the model. We put x1 = (x1, y1, v), x2 = (x2, y2, v) and x = (x1, y1, x2, y2, v).

We assume k1 > a1, k2 > a2. By Qesmi et al. [14], under some assumption,
backward bifurcation does not occur. We also assume that R0 > 1. Then it is
shown in Qesmi et al. [14] that the interior equilibrium (x̂1, ŷ1, x̂2, ŷ2, v̂) exists.

By the condition of the equilibrium,

b = k1
ŷ1
v̂

+ k2
ŷ2
v̂
− β1x̂1 − β2x̂2, β1x̂1v̂ = a1ŷ1, β2x̂2v̂ = a2ŷ2.

Using these, we have

k1y1 + k2y2 − β1x1v − β2x2v − bv

=

(
k1y1 − β1x1v −

(k1 − a1)ŷ1
v̂

v

)
+

(
k2y2 − β2x2v −

(k2 − a2)ŷ2
v̂

v

)
.

We consider

dx1
dt

=λ1 − β1x1v − d1x1,
dy1
dt

= β1x1v − a1y1,

dv

dt
=k1y1 − β1x1v −

(k1 − a1)ŷ1
v̂

v.

(28)

We denote by f1(x1) the vector fields given by (28). We also consider

dx2
dt

=λ2 − β2x2v − d2x2,
dy2
dt

= β2x2v − a2y2,

dv

dt
=k2y2 − β2x2v −

(k2 − a2)ŷ2
v̂

v.

(29)
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We denote by f2(x2) the vector fields defined by (29). We put

U1(x1) =

(
1− a1

k1

)
(x1 − x̂1 log x1) + (y1 − ŷ1 log y1) +

a1
k1

(v − v̂ log v)

U2(x2) =

(
1− a2

k2

)
(x2 − x̂2 log x2) + (y2 − ŷ2 log y2) +

a2
k2

(v − v̂ log v)

V (x) =

(
k1
a1
− 1

)
(x1 − x̂1 log x1) +

(
k1
a1

)
(y1 − ŷ1 log y1) + v − v̂ log v

+

(
k2
a2
− 1

)
(x2 − x̂2 log x2) +

(
k2
a2

)
(y2 − ŷ2 log y2).

The model (28) is obtained from the model (16), if we replace x by x1, y by y1,
λ by λ1, d by d1, ψ(x) by β1x1, a by a1, r by k1/a1, ρ by 1 and b by (k1− a1)ŷ1/v̂.
The model (29) is obtained from the model (16) similarly.

If the parameters satisfy

k1 > a1

(
1 +

v̂β1
d1

)
, k2 > a2

(
1 +

v̂β2
d2

)
, (30)

by using the calculation in Section 3.1, U1(x1) is a Lyapunov function for (28) at
the interior equilibrium (x̂1, ŷ1, v̂), and U2(x2) is a Lyapunov function for (29) at
the interior equilibrium (x̂2, ŷ2, v̂), and then it holds that

U̇1(x1) = ∇U1(x1) · f1(x1) ≤ 0, U̇2(x2) = ∇U2(x2) · f2(x2) ≤ 0.

Then we have

V̇ (x) = ∇V (x) · f(x) =
k1
a1
∇U1(x1) · f1(x1) +

k2
a2
∇U2(x2) · f2(x2) ≤ 0.

Thus V (x) is a Lyapunov function for (x̂1, ŷ1, x̂2, ŷ2, v̂). By the LaSalle invariance
principle, if (30) is satisfied, (x̂1, ŷ1, x̂2, ŷ2, v̂) is globally asymptotically stable.

In Qesmi et al. [14], the global stability result using a Lyapunov function is not
obtained.

4. Concluding remarks. In the present paper, we propose a systematic method
to construct Lyapunov functions of complex models from Lyapunov functions of
simpler equations.

It is not easy to construct directly a Lyapunov function of a complex model.
From a simple model without absorption effect and without immunity, we construct
a Lyapunov function of more complex models step by step. Each step is clear and
easy to understand.

We treat models with nonlinear incidence functions with some reasonable as-
sumptions. But it is not easy to construct Lyapunov functions for models with fully
general nonlinear incidence functions especially for models with absorption effect.
This is remained as the future problem. For many infectious diseases, there exist
a lot of strains in pathogen, and we can consider multistrain models of infectious
diseases in vivo. We postpone the construction of Lyapunov functions of multistrain
models in a forthcoming paper.

Our method has many applications. We can use similar arguments for the con-
struction of Lyapunov functionals on delay differential equations and age-structured
equations. We also postpone these problems in a forthcoming paper.
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Appendix.

Appendix A. For the explicit calculation of the existence of an interior equilib-
rium, we treat the following two important cases for q(z), Case A and Case B.

Case A. The function z/q(z) is strictly increasing, limz→+0 z/q(z) = 0 and
limz→∞ z/q(z) =∞. In the case, we put s(z) = mz/q(z).

Case B. q(z) = qz for some positive constant q.

Appendix B. We present some results on the existence of an interior equilibrium
of the model (9) in Section 2.2 for Case A and Case B.

First we consider Case A. We assume that R0 > 1. We follow the argument in
[2]. We consider the following equations:

λ− dx− ϕ(x, v) = 0, ϕ(x, v)− ay = 0, ary − bv − pzv = 0, vq(z)−mz = 0.

From the above equations, we have the following equations of x and v using z =
s−1(v):

ϕ(x, v)− 1

r
(bv + ps−1(v)v) = 0,

x =
1

d
{λ− ϕ(x, v)} =

1

d

{
λ− 1

r
(bv + pzv)

}
=

1

d

{
λ− 1

r
(bv + ps−1(v)v)

}
.

Here s−1(v) is the inverse function of s(z) = mz/q(z). There uniquely exists v0 > 0
such that λ− (1/r)(bv0 +ps−1(v0)v0) = 0, and it holds λ− (1/r)(bv+ps−1(v)v) > 0
for 0 < v < v0. We put

H(v) = f

(
1

d

(
λ− 1

r
(bv + ps−1(v)v)

)
, v

)
− 1

r
(bv + ps−1(v)v).

Then we have H(0) = 0, H(v0) = −(1/r)(bv0 + s−1(v0)v0) < 0, and the right
derivative of H at 0

H ′+(0) =
∂f

∂v
(x0, 0)− ∂f

∂x
(x0, 0)

b

dr
− b

r

=
∂f

∂v
(x0, 0)− b

r
=
b

r
R0 −

b

r
=
b

r
(R0 − 1) > 0.

We note that the right derivative of (s−1)′+(v) at v = 0 is 0 from

(s−1)′+(v)(0) = lim
v→+0

s−1(v)

v
= lim
z→+0

z

s(z)
= lim
z→+0

q(z)

m
= 0.

Then there exists at least one 0 < v̂ < v0 with H(v̂) = 0. We have ẑ = s−1(v̂) > 0,
x̂ = 1

d

{
λ− 1

r (bv̂ + ps−1(v̂)v̂)
}

, ŷ = (1/a)ϕ(x̂, v̂). Since v̂ < v0, we have x̂ > 0, then
ŷ > 0. We conclude that if R0 > 1, their exists an interior equilibrium.

Next we consider Case B. We consider the following system of equations:

λ− dx− ϕ(x, v) = 0, ϕ(x, v)− ay = 0, ary − bv − pzv = 0, vqz −mz = 0.

Put v̂ = m/q. Then there exists unique 0 < x̂ < λ/d with λ − dx̂ − ϕ(x̂, v̂) = 0.
The third equation is rewritten as r(λ − dx) − bv − pzv = 0. Then the interior
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equilibrium exists if and only if r(λ − dx̂) − bv̂ > 0. It is equivalent to each of the
following:

x̂ <
1

d

(
λ− bm

rq

)
= x, λ− dx− ϕ(x,m/q) < 0.

Then the interior equilibrium exists if and only if

bm

rq
< f

(
1

d

(
λ− bm

rq

)
,
m

q

)
.

Appendix C. We show the existence of the unique interior equilibrium of the
model (16). We consider the equations:

λ− dx− ψ(x)v = 0, ψ(x)v − ay = 0, ary − uψ(x)v − bv = 0.

From the second equation, it follows y = ψ(x)v/a. Substituting it to the third
equation, we have ψ(x) = b/(r−ρ). Since R0 > 1 is equivalent to ψ(x0) > b/(r−ρ),
there exists a unique x∗ with ψ(x∗) = b/(r − ρ) and 0 < x∗ < x0. We get v∗ =
d(x0 − x∗)/ψ(x∗) > 0 by the first equation. We also have y∗ = ψ(x∗)v∗/a > 0.
Then (x∗, y∗, v∗) is the unique interior equilibrium.

Appendix D. We show the existence results of an interior equilibrium of the model
(23). We treat case A and case B separately. We note that R0 = rψ(x0)/(ρψ(x0)+b)
with x0 = λ/d.

We consider Case A. We assume R0 > 1. We use s(z) = mz/q(z) and its inverse
s−1(z). We consider the following system of equations:

λ− dx− ψ(x)v = 0, ψ(x)v − ay = 0,

ary − ρψ(x)v − bv − pvz = 0, vq(z)−mz = 0.
(31)

From these, assuming v > 0 we have

ψ(x) =
b+ pz

r − ρ
,

λ− dx
ψ(x)

= s−1(z). (32)

We not that we assume ρ < r. The first equation is rewritten as:

z =
r − ρ
p

(
ψ(x)− b

r − ρ

)
.

We note that the function (λ− dx)/ψ(x) of x is strictly decreasing for 0 < x and

lim
x→+0

λ− dx
ψ(x)

= +∞, λ− dx
ψ(x)

∣∣∣∣
x=λ/d

= 0.

On the other hand, the function ψ(x)− b/(r−ρ) is strictly increasing for 0 < x and

r − ρ
p

(
ψ(x)− b

r − ρ

)∣∣∣∣
x=0

< 0,
r − ρ
p

(
ψ(x)− b

r − ρ

)∣∣∣∣
x=λ/d

> 0,

because R0 > 1. Then the two curves defined by (32) have a unique intersection
in { (x, z) | 0 < x < λ/d, z > 0 }. There exist a unique (x̂, ẑ) satisfying (32) with
x̂ > 0, ẑ > 0. We can determine v̂ > 0 and ŷ > 0 from the second and firth
equations in (31). We conclude that if R0 > 1, there exists an interior equilibrium.
If R0 ≤ 1, there exists no interior equilibrium because

r − ρ
p

(
ψ(x)− b

r − ρ

)∣∣∣∣
x=λ/d

≤ 0.
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We consider Case B. When R0 > 1, it is shown in Section 3.1 that the model

dx

dt
= λ− dx− ψ(x)v,

dy

dt
= ψ(x)v − ay, dv

dt
= ary − ρψ(x)v − bv (33)

without z has an interior equilibrium (x∗, y∗, v∗), where

ψ(x∗) = b/(r − ρ), v∗ =
λ− dx∗

ψ(x∗)
.

We consider the following system of equations:

λ− dx− ψ(x)v = 0, ψ(x)v − ay = 0,

ary − ρψ(x)v − bv − pvz = 0, vqz −mz = 0.
(34)

If z > 0, v must be v = m/q(= v̂). For v = v̂, since f is strictly increasing and
ψ(0) = 0, we have a unique 0 < x̂ < λ/d = x0 with λ− dx̂− ψ(x̂)v̂ = 0. From the
second and third equation of (34), we have ((r − ρ)ψ(x) − b)v = pvz. Then there
exists a positive ẑ if and only if (r − ρ)ψ(x̂) − b > 0. The inequality shows that
R0 > 1, and (r−ρ)ψ(x̂)− b > 0 = (r−ρ)ψ(x∗)− b = 0. The condition is equivalent
to x̂ > x∗. The condition x̂ > x∗ is rewritten as λ − dx∗ − ψ(x∗)v̂ > 0, and using
ψ(x∗) = b(r − ρ), v̂ = m/q, and the monotonously of ψ, we can show that it is
equivalent to

f

(
1

d

(
λ− m

q

b

(r − ρ)

))
>

b

r − ρ
. (35)

We conclude that there exists an interior equilibrium if and only if (35) is satisfied.

Appendix E. We construct a Lyapunov function for the model (23) for some
boundary equilibrium for Case A and Case B, when an interior equilibrium does
not exist.

First we consider case A. If R0 ≤ 1, then the interior equilibrium does not exist.
We put

V (x) =

∫ x

x0

ψ(s)− ψ(x0)

ψ(s)
ds+

r

r − ρ
y +

1

r − ρ
v +

p

m(r − ρ)

∫ z

0

s(τ) dτ. (36)

Then the time derivative of V along (23) is

V̇ (x) = −d
(

1− ψ(x0)

ψ(x)

)
(x− x0) +

(
ψ(x0)− b

r − ρ

)
v − p

r − ρ
s(z)z. (37)

If R0 ≤ 1, ψ(x0)− b/(r − ρ) ≤ 0. Thus the time derivative of V (x) is nonpositive,
and V (x) is a Lyapunov function at (λ/d, 0, 0, 0).

Next, we consider Case B. For the case where R0 ≤ 1, exactly the same Lyapunov
function as in Case A for R0 ≤ 1 works. We assume 1 < R0 and the inequality (35)
does not hold. Then there exists an equilibrium (x∗, y∗, v∗, 0), which corresponds
to the interior equilibrium of (33), where x∗ > 0, y∗ > 0 and v∗ > 0. We use the
function V (x) in (22), and define W (x) by

W (x) =
(

1− ρ

r

)∫ x

x∗

ψ(ξ)− ψ(x∗)

ψ(ξ)
dξ + (y − y∗ log y) +

1

r
(v − v∗ log v) +

p

rq
z.

(38)
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Then by (21) the time derivative Ẇ (x) is

Ẇ (x) =dx∗
(

1− ρ

r

(
1 +

v∗ψ(x∗)

dx∗

))(
1− ψ(x∗)

ψ(x)

)(
1− x

x∗

)
+ ψ(x∗)v∗

(
3− ψ(x∗)

ψ(x)
− v∗y

vy∗
− y∗ψ(x)v

yψ(x∗)v∗

)
+
p

r
(v∗ − v̂)z.

(39)

When (35) is not satisfied, we have v∗ < v̂. Hence under the condition r >

ρ (1 + v∗ψ(x∗)/(dx∗)), it holds that Ẇ (x) ≤ 0, and W (x) is a Lyapunov function
at (x∗, y∗, v∗, 0). It is shown that (x∗, y∗, v∗, 0) is globally asymptotically stable.
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