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Abstract. We study the long term dynamics and the multiscale aspects of a
within-host HIV model that takes into account both mutation and treatment

with enzyme inhibitors. This model generalizes a number of other models that

have been extensively used to describe the HIV dynamics. Since the free virus
dynamics occur on a much faster time-scale than cell dynamics, the model has

two intrinsic time scales and should be viewed as a singularly perturbed system.

Using Tikhonov’s theorem we prove that the model can be approximated by
a lower dimensional nonlinear model. Furthermore, we show that this reduced

system is globally asymptotically stable by using Lyapunov’s stability theory.

1. Introduction. The Acquired Immunodeficiency Syndrome (AIDS) epidemic
was one of the most devastating health issues during the last decades of the XX
century and remains a challenge as the XXI century ushers in [23]. The problem
is even more striking in less developed areas [44]. The accumulated sequence of
difficulties associated to the AIDS epidemics ranging from social and cultural to
biological and modeling issues makes the topic highly relevant for research [1, 21].

As a consequence, mathematical tools have been applied to help understand the
complex dynamics of the immune system and its response to viral infection [2].
Indeed, a better understanding of this dynamics seems to be an important factor
in the development of effective long-term therapies or possibly preventive vaccines
for deadly diseases such as the Human immunodeficiency virus (HIV) infection [21].
From the mathematical point of view, there have been several research lines and
approaches [26, 27, 1, 9, 15, 20, 21, 16, 37, 25, 4, 5, 34, 42, 38]. Among those,
we shall consider in the present article the within host dynamics of the HIV virus.
It has received a considerable amount of attention. See for example [27, 26] and
references therein.

It has been known for a while that the virus dynamics is much faster than the
dynamics of the cells that host the viruses as well as of the uninfected cells [10,
17, 15, 12, 35, 28, 18]. Furthermore, it is well documented that one of the elusive
characteristics of the HIV biological behavior is the regular change of its genetic
signature by constant mutation [7, 11, 19, 30, 29]. Thus leading to different strains
of the same viruses. Mathematical models incorporating such aspect have been
studied by a number of authors. See [37] and references therein.
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In this article we consider a differential equation model for the within-host dy-
namics of the HIV that takes into account mutation, treatment with enzyme in-
hibitors and the different time scales that are relevant to a realistic analysis of the
problem. To incorporate such different time scales, we make use of the multiscale
analysis techniques that have been used in many other areas [24, 43, 14, 41] and in
the context of biological modeling of infectious diseases in [3, 36, 32]. We prove the
existence of a reduced system whose dynamics approximates in a suitable way that
of the relevant variables in the full system. We also prove global stability of such
system by exhibiting an appropriate Lyapunov function. Such function is inspired
by the one used in [37].

1.1. The HIV dynamics. As the human immunodeficiency viruses are not ca-
pable of reproducing themselves, they manipulate the CD4+ T cells to generate
numerous copies of themselves. The replication cycle begins with free virus con-
necting to the target cell and injecting HIV RNA into the cell. Once the HIV RNA
is inside the cell, it makes a DNA copy of its viral RNA. The viral DNA is then
inserted in the CD4+ T cells DNA.

After that, host cells will produce viral particles and assemble new HIV virions.
The final step of the viral cycle is the release of these virions. The release of viral
genetic material into host cells triggers a complex immune response. This process
results in the activation of cytotoxic T cells (or CD8+ T cells) that will bind to
infected cells and induce apoptosis.

AIDS treatments consist of antiretroviral drugs capable of inhibiting (at least
partially) the enzymes required during the replication cycle. Entry inhibitors pre-
vent entry of the virus into the cell. Integrase inhibitors block the activity of the
enzyme integrase, responsible for the insertion of HIV DNA to human DNA. Re-
verse Transcriptase Inhibitors directly block the action of this enzyme and virus
multiplication. Protease inhibitors of HIV, prevent infected cells from producing
infectious virus particles. Thus, the new copies of HIV will not be able to infect
new cells.

1.2. The mathematical model. Several models have been proposed in order to
describe the HIV in-vivo dynamics [22, 21, 27, 1, 6, 9, 15, 20, 26]. The basic model
of virus dynamics, proposed by Nowak and Bangham [22], considers three variables:
susceptible CD4+ T cells (X), infected CD4+ T cells (Y ), and virions (V ). These
variables denote the abundance of the corresponding quantities in a given volume of
blood or tissue. The model assumes that uninfected CD4+ T cells are produced at
a constant rate λ and die at rate dX. Each strain of free virus particles infects the
uninfected cells at a rate proportional to the product of their concentrations, βXV .
Infected cells produce free virus particles at a rate proportional to their abundance,
kY , and die at a rate aY . Free viral particles die at rate uV . Considering the
immune system, the model will have one more variable: cytotoxic T cells (Z).
These cells have a proliferation rate given by cY Z and, in absence of stimulation,
decay at rate bZ. Furthermore, infected cells are killed by cytotoxic T cells at rate
pY Z. The Figure 1 summarizes the HIV replication cycle described above.

As mentioned before, one of the main characteristics of HIV is its extensive ge-
netic variability, that is, the replication process can generate virions with slightly
modified genetic content. Aiming to incorporate the interplay between immune
response and virus diversity for a number of different strains, Nowak and Bang-
ham [22] considered n different strains of virus, infected cells and cytotoxic T cells.
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Figure 1. Description of the HIV model with the parameters described
in Table 1.

The subindex i denotes each strains. We consider a generalized form of this model,
since we consider that the parameters a, p, u, c and b can be depend of the strain.

Upon considering the enzyme inhibitors described above, defective viruses (Hi)
also are part of the model with dynamic analogous to the dynamics of active virions.
Furthermore, the efficiency of the inhibitors affects the process of cell infection and
virion production. Thus we obtain the following first-order ODE system

Ẋ =λ− dX − (1− EE)X
∑
i∈N

βiVi

Ẏi =(1− EE)XβiVi − aiYi − piYiZi
V̇i =(1− ET )(1− EP )(1− EI)kiYi − uiVi
Ḣi =EP kiYi − uiHi

Żi =ciYiZi − biZi

(1)

for i ∈ N = {1, . . . , n}. Table 1 summarizes the biological meaning of the parame-
ters.

Parameter Meaning

λ CD4+ T cells supply rate

βi Infection rate for the i-th strain
ki Free virus production rate for the i-th strain
ci cytotoxic T cells production rate for the i-th strain

ET efficiency of the reverse transcriptase inhibitor
EE efficiency of the entry inhibitor

EP efficiency of the protease inhibitor
EI efficiency of the integrase inhibitor

1/d average life-time of uninfected CD4+ T cells
1/ai average life-time of infected CD4+ T cells for the i-th strain
1/ui average life-time of free virus for the i-th strain
1/bi average life-time of cytotoxic T cells for the i-th strain

Table 1. Description of parameters meaning in the compartmental model (1).
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1.3. Outline of the article. This work is organized as follows: In Section 2
we introduce an extended version of the model previously studied by Nowak and
Bangham[22, 21] and also Souza and Zubelli [37]. In practical situations such model
displays different scales and in order to obtain good quantitative results it is cru-
cial to perform a perturbation analysis. The first step consists in writing down
a dimensionless version of the system. In this section we also review some of the
model’s key properties such as equilibria, global stability and introduce some defini-
tions that will be used throughout the text. In Section 3, we provide the necessary
background on Tikhonov’s theorem. This result is then applied in Section 4 where
we also present the reduced system associated to our model. Then, we describe the
equilibria of the reduced system and prove global stability results using a Lyapunov
function. The use of Tikhonov’s theorem leads to a way of approximating the solu-
tions of the full model by solutions of the reduced system that can be very useful in
practical applications. We conclude with some numerical examples and a brief anal-
ysis of the performance of the systems involved in our result, thus substantiating
the applicability of our results.

2. Model properties. Many properties of the System (1) are already known. In-
deed, Pastore [25] showed that the solutions to a similarly system are invariant on
the positive orthant and identified the equilibrium points. Souza and Zubelli [37]
studied the equivalent model that does not consider enzyme inhibitors. They charac-
terized the stable equilibrium points and also showed that model is globally asymp-
totically stable by using appropriate Lyapunov functions. Before we review these
properties in detail, we shall rewrite the system in a dimensionless form.

2.1. The dimensionless system. Since the equation describing the evolution of
Hi is uncoupled from the other ones in System (1), we can analyze the system
without such equation. Moreover, we can embed (1− EE) in the constants βi and
rename (1− ET )(1− EP )(1− EI)ki by the constants ki, for i ∈ N . Letting

(x, yi, vi, zi) =

(
d

λ
X,

ai
λ
Yi,

βi
d
Vi,

pi
ai
Zi

)
and t = d · T , we obtain the system (where the derivatives are taken w.r.t. t):

ẋ =1− x− x
∑
i∈N

vi

ẏi =γi (xvi − yi − yizi)
v̇i =ηi

(
Ri0yi − vi

)
żi =σi

(
Ii0yizi − zi

)
(2)

for i ∈ N , where Ri0 = βiλki/daiui denotes the basic reproductive ratio of each
strain and

γi =
ai
d
, ηi =

ui
d
, σi =

bi
d
, and Ii0 =

ciλ

aibi
.

2.2. System properties: Equilibrium points and global stability. In this
section we will introduce some properties of the System (2). This result will be
used in Section 4.1 to show that the equilibria of the reduced System (9) are the
projections of the original System (1).
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Before stating the main results, we introduce some notation. It is well known [22,
21, 37] that some quantities involving the system parameters are important in de-
termining the global equilibria of the system. The first one is the basic reproductive
ratio, defined above. Following [37], without loss of generality, we assume that the
strains are indexed in a nonincreasing order of the constants Ri0. Similarly, we
define the basic reproductive ratio in the presence of the immune response

RiI = 1 +
Ri0
Ii0
.

Given a set of indices I ⊆ N , let us denote

RII = 1 +
∑
i∈I

Ri0
Ii0
.

For a more concise notation, y will denote the vector (y1, y2, ..., yn) (similarly for v
and z).

System (2) has a variety of equilibria. In order to deal with such equilibrium
points, we shall follow the notation used in [37]

WjJ = (xjJ , yjJ , vjJ , zjJ )

where J is a subset of N and j ∈ {N −J }. From the biological point of view, J is
the set of indices of the strains that remain in the organism and are fought by the
immune system while j is the strain index that remains in the organism without
being fought by the immune system

Theorem 2.1. [37] If the basic reproductive ratios of the virus strains are distinct,
then System (2) has 2n−1(2 + n) equilibrium points WjJ where

1. For J = ∅ and j = 0, we have x0∅ = 1 and yi0∅ = vi0∅ = zi0∅ = 0, ∀i ∈ N .

2. For J = ∅ and j ∈ N , we have xj∅ = 1/Rj0, yjj∅ = 1 − 1

Rj
0

, vjj∅ = Rj0 − 1,

zjj∅ = 0, and yij∅ = vij∅ = zij∅ = 0, ∀i 6= j.

3. For J 6= ∅ and j = 0, we have x0J = 1/RJI , yi0J = 1
Ii0

, vi0J =
Ri

0

Ii0
, zi0J =

Ri
0

RJ
I

− 1, ∀i ∈ J , and yi0∅ = vi0∅ = zi0∅ = 0 , ∀i /∈ J .

4. For J 6= ∅ and j ∈ N−J , we have xjJ = 1/RJI , yjjJ = 1−RJ
I

Rj
0

, vjjJ = Rj0−RJI ,

zjjJ = 0. Furthermore if i ∈ J , we have yijJ = 1
Ii0

, vijJ =
Ri

0

Ii0
, zijJ =

Ri
0

RJ
I

− 1,

and yijJ = vijJ = zijJ = 0 otherwise.

To state the result of global stability we need some definitions. Following [37],
let us define the set of strong responders as

S = {i ∈ N ;Ri0 > RiI}.

We shall say that this set S is consistent if j ∈ S implies i ∈ S for all i ∈ N such
that i < j. We shall say that I ⊆ S is antigenic set if Ri0 > RII for all i ∈ I. In
addition, if Ri0 6 RII for all i /∈ I also holds, we shall say that I is a purely antigenic
set. Finally, let l be the largest integer such that I = {1, 2, ..., l} is an antigenic set.
If I 6= ∅, then we shall say that I is the maximal antigenic set.
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Theorem 2.2. [37] Assume that Ri0 > Ri+1
0 for i = 1, ..., n− 1 and that the set of

strong responders is consistent. Then, System (2), defined on R3n+1
>0 , with initial

condition in its interior, has a globally asymptotically stable equilibrium given as
follows:

1. W0∅ if R1
0 6 1;

2. W1∅ if R1
0 > 1 and R1

0 6 R1
I ;

3. If R1
0 > R1

I , let J be the antigenic maximal set.
a. W0J if J is a purely antigenic set;
b. WjJ otherwise, where j is the smallest integer outside J .

The proof of Theorems 2.1 and 2.2 can be found in [37]. See also [4].
Note that for the case of the system with inhibitors the basic reproductive ratio

of each strain is Ri0(1−EE)(1−ET )(1−EP )(1−EI), therefore lower than in the case
without inhibitors. This reduction may cause change in the type of globally stable
equilibrium point. For certain values of the inhibitors efficiencies it is possible that
the immune system fails to fight certain strains that would have been fought without
the inhibitors. Despite of that, the presence of the inhibitor will not increase the
viral load component of the new globally stable limit.

3. Tikhonov’s theorem. In practical situations, the presence of different scales
in System (2) leads to a singularly perturbed system. In this context, we shall see
that Tikhonov’s theorem is applicable. We start with Tikhonov’s theorem in its
general form.

The singularly perturbed system that we are interested on possesses two charac-
teristic time scales one of order 1 and another one of order ε� 1. The system then
takes the form

ẋ =f(t, x, y), x(0) = x0

εẏ =g(t, x, y), y(0) = y0
(3)

where f and g are sufficiently regular functions from open subsets of R×Rm1×Rm2

to Rm1 and Rm2 . Tikhonov’s theorem gives conditions ensuring that the solution
(x(t, ε), y(t, ε)) of Eq. (3) converges to (x̄(t), ȳ(t, x̄)) where (x̄, ȳ) is the the solutions
of the degenerate system:

ẋ =f(t, x, y), x(0) = x0

0 =g(t, x, y)
(4)

The interest in such a reduction lies on the fact that the degenerate system forms
an algebraic differential system and, in many cases, the complexity of the problem
is greatly reduced. Note also that, for small ε, the System (3) becomes very stiff
and the solution to (4) offers a much better and more robust approximation.

To apply Tikhonov’s theorem we need several assumptions as described below.

Assumption 1. Assume that the functions

f : [0, T ]× Ū × V 7→ Rm1and g : [0, T ]× Ū × V 7→ Rm2

are continuous and satisfy the Lipschitz condition w.r.t. the variables x and y in
[0, T ]× Ū × V, where Ū is a compact set in Rm1 , V is a bounded open set in Rm2 ,
and T > 0.
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Assumption 2. Assume that there exists a vector function φ(t, x) continuous in
[0, T ]× Ū such that φ(t, x) ∈ V and

g(t, x, φ(t, x)) ≡ 0.

This function will be referred to as a root of the equation g(t, x, y) = 0. Further-
more, the root φ is isolated in [0, T ] × Ū , that is, there exists δ > 0, independently
of x, such that

0 < ||y − φ(t, x)|| < δ

implies g(t, x, y) 6= 0 in [0, T ]× Ū .

The system of differential equations

dỹ

dτ
= g(t, x, ỹ) (5)

for which t and x are treated as parameters, is called the boundary layer equation
associated to the System (3).

Assumption 3. Assume that the singular point φ(t, x) of the boundary layer Equa-
tion (5) is an asymptotically stable equilibrium, uniformly w.r.t. (t, x) ∈ [0, T ]× Ū ,
that is, for any η > 0 there exists δ > 0 such that for all (t, x) ∈ [0, T ] × Ū the
inequality ||ỹ(0, t, x)− φ(t, x)|| < δ implies

||ỹ(τ, t, x)− φ(t, x)|| < η and lim
τ→∞

ỹ(τ, t, x) = φ(t, x), ∀τ > 0

where the above convergence is uniform for (t, x) ∈ [0, T ]× Ū .

Consider now the reduced system, that is, the first equation of the degenerate
System (4), replacing a root φ(t, x)

˙̄x = f(t, x̄, φ(t, x̄)), x̄(0) = x0. (6)

Assumption 4. Assume that the function (t, x) 7→ f(t, x, φ(t, x)) satisfies the Lip-
schitz condition w.r.t. x in [0, T ] × Ū and that the unique solution of the reduced
System (6) on [0, T ] satisfies x̄(t) ∈ int(Ū) for all t ∈ (0, T ).

Assumption 5. Assume that y0 belongs to the basin of attraction of the solution
y = φ(0, x0) of equation g(0, x0, y) = 0, that is, the solution ŷ = ŷ(τ) of the
simplified initial layer equation

dŷ

dτ
= g(0, x0, ŷ), ŷ(0) = y0 (7)

satisfies ŷ(τ) ∈ V for all τ > 0 and

lim
τ→∞

ŷ(τ) = φ(0, x0).

Theorem 3.1 (Tikhonov’s Theorem). Under Assumptions 1-5, there exists ε0 > 0
such that for any ε ∈ ]0, ε0] there exists a unique solution (x(t, ε), y(t, ε)) of the
singularly perturbed System (3) on [0, T ] satisfying

lim
ε→0

x(t, ε) = x̄(t), t ∈ [0, T ]

and

lim
ε→0

y(t, ε) = ȳ(t), t ∈ (0, T ],

where (x̄(t), ȳ(t)) is the solution of the degenerate System (4).
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Tikhonov’s theorem connects the solutions of the singularly perturbed system
and the degenerate system. Note that only the first convergence in Tikhonov’s
theorem is uniform (w.r.t. t ∈ [0, T ]). However, in the second limit, the convergence
is uniform on any interval [T0, T ] with T0 > 0. This is the so-called initial layer
effect and one can include the initial layer term to obtain the uniform convergence
on [0, T ].

Proposition 1. Let Assumptions 1-5 be satisfied. Then,

lim
ε→0

[y(t, ε)− ȳ(t)− ŷ(t/ε) + φ(0, x0)] = 0, t ∈ [0, T ],

where ȳ(t) is the solution of the degenerate System (4), ŷ(t/ε) is the solutions of
the simplified initial layer Equation (7), and φ is the root of Assumption 2.

We now add one extra assumption, namely:

Assumption 6. Suppose that |δ1| < µ and |δ2| < µ where µ is a sufficiently small
but fixed number independently of ε. Assume that, for t ∈ [0, T ], f(t, x̄+δ1, ȳ+ŷ+δ2)
and g(t, x̄ + δ1, ȳ + ŷ + δ2) are continuous together with their derivatives w.r.t. δ1
and δ2 up and including the second order.

Under this further assumption, one can prove the stronger result:

Theorem 3.2. Let Assumptions 1-6 be satisfied and suppose that ∂g
∂y (t, x, y)

∣∣∣
y=φ(t,x)

exists, is continuous and is negative for t ∈ [0, T ]. Then, we have the following
estimates

x(t, ε) =x̄(t) +O(ε)

y(t, ε) =ȳ(t) + ŷ (t/ε)− φ(0, x0) +O(ε)

uniformly on [0, T ].

For the proof of the above results we refer the reader to [40, 43, 3, 41].

4. The asymptotic expansion of the model. As discussed in the Introduction,
the dynamics of free virus occurs on a time scale much faster than the dynamics of
the cells of the host organism. While the cells have a half-life of the order of days,
virions have a half-life of about a few hours [35, 28, 18]. This implies that ηi is
much bigger than γi and σi. Therefore, it is natural to consider the dynamics of
System (2) for ηi = ηi/ε where ε is a small parameter and ηi has the same order of
magnitude of γi and σi. On the order hand the healthy CD4 + cells have a half-life
of about 35 days while the virions have a half-life of 6 hours. This leads to ε of the
order of 7× 10−3. The System (2) takes the form

ẋ =1− x− x
∑
i∈N

vi

ẏi =γi (xvi − yi − yizi)
εv̇i =ηi

(
Ri0yi − vi

)
żi =σi

(
Ii0yizi − zi

)
(8)

subject to initial conditions x0, y
i
0, v

i
0 and zi0.
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We now have written System (8) in the form of System (3) and we are ready to
use Tikhonov’s theorem to connect the solutions of (8) and the reduced system

ẋ =1− x− x
∑
i∈N

Ri0yi

ẏi =γi
(
xRi0yi − yi − yizi

)
żi =σi

(
Ii0yizi − zi

) (9)

with initial conditions x0, yi0 and zi0.
Note that the reduced system has the form of a food chain system [13], where the

susceptible CD4+ T cells act as the environmental resources, the infected CD4+ T
cells as prey and immunological response cells as predators.

4.1. Reduced system properties. Before we apply Tikhonov’s theorem, we shall
prove some properties of the reduced System (9). Note that the non-negative or-
thant of R2n+1 is invariant by the flow of the system. Moreover, if the initial
conditions are in the interior of R2n+1

>0 , then all solutions will remain in this open
set for all t > 0. We also have that the solutions are bounded, as stated in the
proposition below. The proof follows the ideas of [25].

Proposition 2. Let ψ : [0,∞) → R2n+1 solution of the System (9) with ψ(t0) ∈
R2n+1

>0 . Then, ψ ∈ L∞[t0,∞).

Proof. As the system is positively invariant, we have

ẋ(t) = 1− x(t)− x(t)
∑
i∈N

vi(t) 6 1− x(t)

so d
dt (e

tx(t)) 6 et and integrating from t0 to t we have

x(t) 6 1− et0−t + et0−tx(t0) 6 1 + x(t0).

For yi note that

ẏi(t) =γi
(
xRi0yi − yi − yizi

)
6γi

(
xRi0 − 1

)
yi

6
(
γMxR

i
0 − γm

)
yi,

where γM = maxi∈N {γi} and γm = mini∈N {γi}. Denoting Y(t) =
∑
i∈N yi(t) we

have

Ẏ(t) + γmY(t) 6γMx(t)
∑
i∈N

Ri0yi(t) = γM (−ẋ+ 1− x(t)),

whence

Y(t) 6Y(t0)eγm(t0−t) + γMe
−γmt

∫ t

t0

(1− ẋ(s)− x(s)) eγmsds

6Y(t0) +
γM
γm

+ γMx(t0) +
γM
γm

(γm − 1) (1 + x(t0)) e−γmt0

where we use eγm(t0−t) 6 1, x(t) > 0 and∫ t

t0

x(s)eγm(s−t)ds 6
1 + x(t0)

γm
e−γmt0

since x(t) 6 1 + x(t0). Therefore Y(t) is limited and, as yi(t) > 0 for all t > t0, it
follows that yi(t) is limited.
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Similarly, we can prove that

Z(t) 6 Z(t0) +
σM
σm

+ σMx(t0) +
σM
σm

(σm − 1) (1 + x(t0)) e−σmt0 ,

where σM = maxi∈N {σi}, σm = mini∈N {σi} and Z(t) =
∑
i∈N zi(t). This and the

positivity of each zi(t) implies the result.

Using the same notation for the index for equilibrium points that was previously
used, we have the following result:

Theorem 4.1. If the basic reproductive ratios of each virus strain are distinct, then
System (9) admits 2n−1(2+n) equilibrium points WjJ that correspond to the points
described in Theorem 2.1 omitting entries of vi.

The proof of this theorem follows the same idea of the analogous theorem pre-
sented in [37]. Finally, we prove the global stability for the System (9) using Lya-
punov Theory.

Theorem 4.2. Assume that Ri0 > Ri+1
0 for i = 1, ..., n−1 and that the set of strong

responders is consistent. Then, System (9), defined on R2n+1
>0 , with initial condition

in its interior, has a globally asymptotically stable equilibrium given as follows:

1. W0∅ if R1
0 6 1;

2. W1∅ if R1
0 > 1 and R1

0 6 R1
I ;

3. If R1
0 > R1

I , let J the antigenic maximal set.
a. W0J if J is a purely antigenic set;
b. WjJ otherwise, where j is the smallest integer outside J .

Proof. The existence of the j mentioned in the case (3.a) is proved in [37]. For each
asymptotically stable equilibrium point W ∗ = (x∗, y∗1 , ..., z

∗
n) consider the following

function

V = x− x∗ ln
x

x∗
+
∑
i∈N

[
1

γi

(
yi − y∗i ln

yi
y∗i

)
+

1

σiIi0

(
zi − z∗i ln

zi
z∗i

)]
,

where the term with logarithm should be omitted if the corresponding coordinate
is zero. Then,

V̇ = 1− x− x∗

x
+ x∗ +

∑
i∈N

[
x∗yiR

i
0 − yi −Ri

0y
∗
i x+ y∗i + ziy

∗
i − z∗i yi +

z∗i
Ii0

− zi
Ii0

]
. (10)

For each case, we will replace the respective equilibrium point in the Equation (10)

and we will prove that V̇ 6 0, that is, V is a Lyapunov function. In addition, we have
that, for each case, the set for which the equality V̇ = 0 is satisfied contains only
one positively invariant subset and this subset is exactly the respective equilibrium
point. This proves the theorem.
Case (1)

V̇ =1− x− 1

x
+ 1 +

∑
i∈N

[
yiR

i
0 − yi −

zi
Ii0

]
=− (1− x)2

x
+
∑
i∈N

[
yi(R

i
0 − 1)− zi

Ii0

]
6 0

since Ri0 6 R1
0 6 1.
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Case (2)

V̇ =1− x− 1

R1
0x

+
1

R1
0

−R1
0x+ x+ 1− 1

R1
0

+ z1

(
1− 1

R1
0

)
− z1
I10
−

n∑
i=2

zi
Ii0

=− 1

R1
0x

(R1
0x− 1)2 + z1

(
1− R1

I

R1
0

)
−

n∑
i=2

zi
Ii0

6 0

since R1
0 6 R1

I .

Case (3.a)

V̇ =1− x− 1

RJI x
+

1

RJI
+
∑
i∈J

[
−R

i
0

Ii0
x+

Ri0
RJI

1

Ii0

]
+
∑
i/∈J

[(
Ri0
RJI
− 1

)
yi −

zi
Ii0

]

=− 1

RJI x

(
RJI x− 1

)2
+
∑
i/∈J

[(
Ri0
RJI
− 1

)
yi −

zi
Ii0

]
6 0

where we use 1 +
∑
i∈J

Ri
0

Ii0
= RJI and, since J a purely antigenic set,

Ri
0

RJ
I

− 1 6 0.

Case (3.b)

V̇ =1− x− 1

xRj0
+

1

Rj0
+
∑
i∈J

[
−R

i
0

Ii0
x+

Ri0

Rj0I
i
0

]
+

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi −

zi
Ii0

]

+

[
−Rj0x

(
1−

RJI
Rj0

)
+

(
1−

RJI
Rj0

)
+ zj

(
1−

RJI
Rj0

)
− zj

Ij0

]

+
∑

i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi −

zi
Ii0

]

=− 1

Rj0x

(
Rj0x− 1

)2
+
zj

Rj0

(
Rj0 −RJI −

1

Ij0

)
+

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi −

zi
Ii0

]

6
zj

Rj0

(
Rj0 −RJI −

Rj0
Ij0

)
+

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi

]

where we use
∑
i∈J

Ri
0

Ii0
= RJI − 1. Note that if j belongs to the set of strong

responders then Rj0 − RJI −
Rj

0

Ij0
6 0 (since J is maximal). Otherwise we have

Ri0 − 1 6 Rj
0

Ij0
and then Rj0 −RJI −

Rj
0

Ij0
6 −(RJI − 1) 6 0. Furthermore,

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi

]
6 0

since ∀i /∈ J ∪{j} we have i > j and then, Ri0 < Rj0. Therefore, we have V̇ 6 0.
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4.2. Main result. We shall now apply Tikhonov’s theorem in order to show that
as ε → 0 the solution of the System (8) approaches the solution of the degenerate
system.

We know that solutions of System (8) are bounded (see [25]) and only the bounds
on vi depend on ε. However, for fixed ε0 > 0, we have that for all ε 6 ε0 the
concentrations of vi are bounded by constants independently of ε. Since the solution
of the degenerate system is also bounded (independently of ε), we can choose a
compact set in Ū ⊂ R2n+1 and a bounded open set V ⊂ Rn such that the solutions
of both systems belong to Ū × V for all t > 0. Moreover, for initial conditions in
the interior of R3n+1

>0 , we can choose Ū such that the solutions (x, y, z) will remain
in the interior of this compact set for all t > 0.

Theorem 4.3. Let Ū and V be the sets described above. Then, there exists ε0 > 0
such that for any ε ∈ ]0, ε0] we have a unique solution (x(t, ε), y(t, ε), v(t, ε), z(t, ε))
of the Problem (3) with initial conditions in the interior of the corresponding sets.
Moreover,

lim
ε→0

[x(t, ε)− x̄(t)] = 0

lim
ε→0

[yi(t, ε)− ȳi(t)] = 0

lim
ε→0

[
vi(t, ε)−Ri0ȳi(t)−

(
vi0 −Ri0yi0

)
e−t/ε

]
= 0

lim
ε→0

[zi(t, ε)− z̄i(t)] = 0

where (x̄, ȳ, z̄) is the solution of the reduced System (9).

Proof. The result follows from Tikhonov’s Theorem 3.1 and the Proposition 1 since
the Assumptions 1− 5 are valid, as we show below.

We write System (8) as

ẋ =f1(t, x, y, z, v)

ẏ =f2(t, x, y, z, v)

ż =f3(t, x, y, z, v)

εv̇ =g(t, x, y, z, v)

where f and g are the appropriate entries of the RHS of Equation (8).

Assumption 2: Let the φ : [0, T ] × Ū 7→ Rn be defined by φi(t, x, y, z) = Ri0yi(t).
Then φ is an isolated root of g since given δ > 0 we have, for any (t, x, y, z) ∈
[0, T ]× Ū

0 < ||v − φ|| < δ ⇔0 < |vi −Ri0yi| < δ ∀i ∈ N
⇔gi(t, x, y, z, φ) 6= 0 ∀i ∈ N .

Assumption 3: The boundary layer equation is given by

dṽ

dτ
= g(t, x, y, z, ṽ)

where t, x, y, and z are treated as parameters. Then, ṽi(τ, t, x, y, z) = Ri0yi(t) +
cie
−ηiτ , with ci constants. Given ν > 0, let’s choose δ = ν. So, if |ṽi(0, t, x, y, z)−

φi(t, x, y, z)| < δ (that is |ci| < δ), then

|ṽi(τ, t, x, y, z)− φi(t, x, y, z)| = |cie−ηiτ | 6 δe−ηiτ 6 δ = ν

for all i ∈ N and (t, x, y, z) ∈ [0, T ]× Ū .
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Furthermore,

lim
τ→∞

ṽi(τ, t, x, y, z) = Ri0yi(t) = φi(t, x, y, z).

Assumption 4: As Ū is bounded, the Lipschitz condition of f follows and the choice
of Ū yields the second part of the assumption.

Assumption 5: Note that the solution v̂ of the simplified initial layer equation is

v̂i(τ) = Ri0y
i
0 + (vi0 −Ri0yi0)e−ηiτ .

Thus, v̂i(τ) ∈ V, due to the choice of V, and

lim
τ→∞

v̂i(τ) = Ri0y
i
0 = φi(0, x0, y0, z0).

Therefore, v0 belongs to the basin of attraction of the solution v = φ(0, x0, y0, z0)
of equation g(0, x0, y0, z0, v) = 0.

Applying Tikhonov’s Theorem, we have the limits for x, y and z. As for the limit
of v, just replace

v̄i = Ri0ȳi(t)

v̂i = Ri0yi(t) +
(
vi0 −Ri0yi(t)

)
e−tηi/ε

φi(0, x0, y0, z0) = Ri0y
i
0

in the limit of Proposition 1.

Theorem 4.4. Let (x(t, ε), yi(t, ε), vi(t, ε), zi(t, ε)) be the solution of the problem (3)
with initial condition in the interior of Ū × V and (x̄, ȳi, z̄i) be the solution of the
reduced System (9). Then, we have the following estimates

x(t, ε) =x̄(t) +O(ε)

yi(t, ε) =ȳi(t) +O(ε)

vi(t, ε) =Ri0ȳi(t) +
(
vi0 −Ri0yi0

)
e−tηi/ε +O(ε)

zi(t, ε) =z̄i(t) +O(ε)

uniformly on [0, T ].

Proof. Take f and g as in the proof of the previous theorem. Since yi0 > 0, we have
that

∂gi
∂v

(t, x, y, z, v)

∣∣∣∣
v=φ(t,x,y,z)

= −Ri0yi(t) < 0 .

Furthermore, it is continuous for all t ∈ [0, T ]. Also, since x̄, ȳ, z̄ and v̂ are contin-
uous, is easy to see that the Assumption 6 is valid. Applying the Theorem 3.2 we
obtain the above estimates.

The estimates relatives to the System (1) can be seen in Appendix.
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4.3. Numerical examples. In this section we present some numerical illustrations
of the results presented in this paper. Note that all parameters involved are non-
dimensional. It is worth pointing out that the numerical solutions of the original
problem have been computed with relative tolerance of 10−10 to avoid any numerical
instabilities. For simplicity, we consider first the case of one strain (n = 1) without
treatment.

Figure 2 shows the attractiveness of the quasi-steady state for viral load, that
is, it compares the solution of the quasi-steady state v̄(t) = R0ȳ(t) with the ap-
proximation of v(t, ε), given by Theorem 4.4, for different values of ε. Here ȳ is
the solution of the reduced System (9). This figure illustrates that the initial layer
term, given by (v0 −R0y0) e−t/ε, tends to disappear for ε small enough, except for
the very small times due to the difference in initial conditions.

0 0.5 1 1.5
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10
−1

10
0

10
1

10
2

V
ira

l L
oa

d

t

 

 
ε = 0.1
ε = 0.3
ε = 1
Quasi−steady state

Figure 2. Attractiveness of the quasi-steady state for viral load: the

continuous line is v̄(t) = R0ȳ(t), where ȳ is the solution of the reduced
System (9), and the dotted lines is the approximation of v(t, ε), that is,

R0ȳ(t) + (v0 −R0y0) e−t/ε for different values of ε. The parameters used are
γ = 62, σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1, z0 = 10−6, R0 = 3, I0 = 2 and

ε = 1, 0.3 and 0.1.

Figure 3 illustrates the expressions of Theorems 4.3 and 4.4 for the susceptible
cells (x), infected cells (y), viral load (v) and defense cells (z), respectively. Ac-
cording to our results, when we decrease ε, the right hand side of the expressions
approximate the solutions of Problem (8).
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(c) ε = 0.001
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Figure 3. Convergence of the asymptotic solution of Theorems 4.3 and 4.4.

The continuous line represents the solution of the System (8) while the dotted
lines are the respective approximations of x(t, ε), y(t, ε), v(t, ε), and z(t, ε)

given by the results of Section 4.2. The parameters used are γ = 62, σ = 5,

x0 = 1, y0 = 10−3, v0 = 10−1, z0 = 10−6, R0 = 3, I0 = 2, η̄ = 1 and
ε = 0.1, 0.01 and 0.001.
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Similarly to the previous ones, Figure 4 illustrates the expressions of Theo-
rems 4.3 and 4.4 when considering three strains. Note that the parameters were
chosen to represent the case (3.b) of the Theorem 2.2, where the set of strong re-
sponders is S = {1, 2} and the antigenic maximal set is J = {1} and it is not purely
antigenic. Then, the asymptotically stable equilibrium point is W2{1}, that is, the
virion whose index is 2 (red) remains in the organism without being fought by the
immune system, the virion of index 1 (yellow) also remains in the body but being
fought by the immune system, while the other virion (green) tends to disappear.
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Figure 4. Convergence of the asymptotic solution of Theorems 4.3 and 4.4

considering three virus strains. The continuous line represents the solution of
the System (8) while the dotted lines are the approximations of the solutions

x(t, ε), y(t, ε), v(t, ε) and z(t, ε) given by the results of Section 4.2. The pa-
rameters used are γi = 62, σi = 5, x(0) = 1, yi(0) = 10−3, vi(0) = 10−1,
zi(0) = 10−6, Ii0 = 2, η̄i = 1 for i = 1, 2 and 3, ε = 0.001, R1

0 = 5, R2
0 = 4 and

R3
0 = 0.9. The indices 1, 2 and 3 are represented by the colors yellow, red and

green, respectively.
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4.4. Computational performance. In this section we present a brief analysis of
the performance of the systems involved in our results. We compare the numerical
solution of the System (8) with the approximate solution of this system provided
by our result. For simplicity, in this section we call these systems, respectively,
by FS (full system) and RS (once uses the reduced system). For the analysis, we
disregard the treatment with inhibitors, since that may be interpreted as a change
of variables.

We compare the solutions of the FS and the RS with respect to runtime and
number of one step of the ODE solver. We shall refer to that s one function evalu-
ation.

To analyze each of these aspects we consider different numbers of strains (n),
and for each fixed number of strains, we perform 1000 tests with parameters taken
randomly according to the Table 2. The time interval (dimensionless) considered is
[0, 15].

Parameter Interval
x(0) 1± 20%
yi(0) 6× 10−9 ± 20%
vi(0) 6× 10−9 ± 20%
zi(0) 4× 10−6 ± 20%
γi 29± 20%
ηi 350± 20%
σi 1± 20%
Ii0 7± 50%
Ri0 8± 50%

Table 2. Description of parameters used in the analysis of performance.

Figure 5 shows the quartiles of the quotient between the performance of the FS
and the RS with regard to runtime and number of evaluations. Note that in all cases,
the RS obtained a better performance than the FS. In the case of 250 strains, the
RS showed a run time approximately 18 times smaller and required about 15 times
fewer function evaluations. Although the running time of one system evaluation is
relatively small (we obtained 1.89s for the FS and 0.01073s for the RS, both with
250 strains), many methods of parameter estimation require the use of numerical
evaluations a large number of times.

Analogously, we verified the performance by varying the size of the time interval
(and setting the number of strains to 10). Again, the performance of the RS was
much better than that of the FS, as shown in Figure 6.

5. Conclusion. The existence of an asymptotic reduced dynamics for the model
that was proved in Section 4 allows a number of applications. One is the possibility
of solving a simpler system for numerical simulations and predictions. Indeed, the
full system leads to very stiff differential equations for realistic biological parameters
because some components of the solution decay much more rapidly than others. By
working with the reduced system we are avoiding this potential problem. Another
application is the possibility of using it to calibrate the model in a more robust
form. As presented in Subsection 4.4, we have that the time spent for the numerical
solution of system using our results are at least 5 times shorter than those expended
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(a) Runtime (b) Function Evaluations

Figure 5. Quartiles for the quotient between the performance of the FS and

the RS considering different numbers of strains. For each strain, the system is
evaluated 1000 times with parameters taken randomly according to the Table 2.

Figure (a) depicts performance with respect to runtime while figure (b) with

respect to the number of times that the ODE function was evaluated.

(a) Runtime (b) Function Evaluations

Figure 6. Quartiles for the quotient between the performance of the FS
and the RS considering different time intervals. For each time interval, the

system is evaluated 1000 times with parameters taken randomly according to
the Table 2 and 10 strains. Figure (a) depicts performance with respect to

runtime while figure (b) with respect to the number of times that the ODE
function was evaluated.

to solve the original system. In some cases (higher number of strains) it came to
be 17 times lower. The numerical solution of the system using the approach of
our results still showed a better performance by analyzing the required number
of function evaluations and the number of successful steps. This is very useful
especially when it is necessary to solve the system many times, which is common
in methods of parameter estimation. Yet another application is the possibility of
inferring R0 from the behavior and stability of the reduced dynamics in a simpler
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form. In fact, when we look at our result considering the original parameters without
strains or treatment (see 5) we obtain that V (t) ∼ k

uY (t). Since the average life-time
of free virus 1/u is a known parameter [35, 28, 18, 33], this allows us to estimate k
based on the values of infected cells Y and viral load V . Despite the clinical tests
for HIV used in large-scale provide the total CD4 count (infected and uninfected), a
clinical test capable of estimate the infected CD4 cell count is already used in some
research centers [31].

Note that, in the simplified case of only one strain, the system of ODEs discussed
in this article is similar (but not the same) to the model discussed in [36]. The
System (8) has one more equation (z - equation) and the second equation has one
more nonlinear term, correlating the infected cells (y) and the immune system (z).
Furthermore, even in the case z(t) ≡ 0, the two systems do not match. Indeed,
the equations involving the multiscale term do not have the same format. Thus
the results of the present paper are related to those of [36] but do not come as a
consequence thereof.

One natural follow up of the present work would be consider more general systems
than those described by the dynamics (3) and analyze then at the light of [39, 8].
We are currently pursuing such avenues.

Appendix. As mentioned in Section 4.2, we present here the main Theorem 4.4
adapted to the original variables of System (1).

Consider the reduced system below with respect to the System (1)

˙̄X =λ− dX̄ − (1− EF )(1− ET )(1− EP )(1− EI)X̄
∑
i∈N

βi
ki
ui
Ȳi

˙̄Yi =(1− EE)(1− ET )(1− EP )(1− EI)Xβi
ki
ui
Ȳi − aiȲi − piȲiZ̄i

˙̄Zi =ciȲiZ̄i − biZ̄i

for i ∈ N = {1, 2, ..., n}.
Then the estimates of the Theorem 4.4 can be rewritten in terms of the original

variables of System (1):

X(T, ε) =X̄(T ) +O(ε)

Yi(T, ε) =Ȳi(T ) +O(ε)

Vi(T, ε) =(1− ET )(1− EP )(1− EI)
ki
ui
Ȳi(T )

+

(
vi0 − (1− ET )(1− EP )(1− EI)

ki
ui
yi0

)
e−T/ε +O(ε)

Zi(T, ε) =Z̄i(T ) +O(ε)
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