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Abstract. In the transcription process, elongation delay is induced by the
movement of RNA polymerases (RNAP) along the DNA sequence, and can

result in changes in the transcription dynamics. This paper studies the tran-

scription dynamics that involved the elongation delay and effects of cell division
and DNA replication. The stochastic process of gene expression is modeled

with delay chemical master equation with periodic coefficients, and is studied
numerically through the stochastic simulation algorithm with delay. We show

that the average transcription level approaches to a periodic dynamics over cell

cycles at homeostasis, and the elongation delay can reduce the transcription
level and increase the transcription noise. Moreover, the transcription elonga-

tion can induce bimodal distribution of mRNA levels that can be measured by

the techniques of flow cytometry.

1. Introduction. Transcription is the first step of gene expression, through which
genetic information encoded in DNA is transcribed to mRNA by RNA polymerases
(RNAP). Transcription begins with the binding of RNAP to the promoter in DNA
sequence, followed by the movement of the transcription bubble along the DNA
sequence in which RNAP creates an RNA copy through base pairing complemen-
tarity with the DNA template, and finally the nascent RNA is released when RNAP
reaches the termination sequence [27]. The elongation is frequently interrupt by
sequence-specific pauses that are thought to play important roles in this process
and therefore cause transcription delays in gene expression [19, 41]. Elongation
pauses allow precise controls in the transcription regulation and the rate of RNA
chain synthesis [3, 4, 22, 35, 51]. The typical rate of transcription elongation varies
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over a broad range of 10− 100 nucleotides per second [10, 14, 26, 32, 46]. The elon-
gation delays significantly contribute to the timing mechanisms during development
[45], and is tightly controlled by the rate of translation [32]. Such a cooperation
mechanism ensures that transcription is always adjusted to translational needs at
different genes and under various growth conditions [32].

Gene expression is an inherently stochastic process due to the low copy number
of DNA and mRNA molecules [5, 7, 13, 16, 28, 31]. The stochasticity of gene
expression and other molecular processes contributes to heterogeneity in populations
of isogenetic cells, for example, in phenotypic expression and differentiation pathway
selections [1, 8, 43, 49]. Noise in gene expression can induce switching and coordinate
cellular decision during developmental patterning [56].

The stochasticity in gene expression has been extensively studied in recent years,
both experimentally and theoretically. Real-time kinetics of gene expression at
single molecule level can be tracked by fluorescent proteins and microscopy tech-
niques [7, 50], and observations have shown obvious discrete transcriptional events
[7, 10, 16, 31]. The processes of gene expression that associate with transitions be-
tween promoter states, production of mRNA and protein molecules and degradation
of the molecules can be modeled with chemical master equations. The statistical
properties of gene expressions, including promoter dynamics, average expression
levels, noise strength and distributions have been well documented by both anal-
ysis and stochastic simulations [15, 20, 29, 30, 40, 52, 54, 55]. Extrinsic noise in
gene expression arise when there are perturbations in the growth condition. In this
situation, both intrinsic and extrinsic noises are important for stochastic gene ex-
pression [13, 44], and fluctuations in the kinetic parameters have to be considered
in modeling the gene expression process [23, 39].

Noise and delays are important parts of normal operating constraints in gene
regulation networks. Recently, many studies have focused on the effects of elon-
gation delay to the stochastic dynamics in gene networks [36, 45, 21]. Stochastic
gene expression models with delays in transcription have been studied by many
researches [11, 38, 58, 37] (refer [36] for a review). Stochastic simulations showed a
linear correlation between the variance and mean of protein numbers [58]. Ribeiro
studied a delayed stochastic model of transcription at single nucleotide level that
includes the promoter complex formation, pausing, arresting, disincorporation and
editing, pyrophosphorolysis, and premature termination [34, 37]. Simulations based
on their model showed that mRNA production exhibits bursting and pulses dynam-
ics, and the elongation dynamics can shape the bursting transcription [11, 34]. In
additional to studies of single-gene expression, delay and stochasticity are also in-
corporated into gene regulation networks, and the introducing of delay into gene
network can produce significant dynamics such as oscillations and bi-directional
switches [6, 9, 24, 42, 48].

Despite extensive studies of delay and stochastic gene expression, to the best
of our knowledge, it remains unclear how elongation delay affects the stochastic
properties of single gene expression. In this paper we study the effects of elongation
delay to transcription kinetics of RNA production, both analytically and numeri-
cally. Main results in this study show that elongation delay can induce decreases in
the transcription level and increase the noise strength. Furthermore, long elongation
delay can induce bimodal distributions in RNA numbers even for a constitutive ex-
pression gene, and thus provides a novel mechanism of having bimodal distribution
in gene expression.
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2. Model and methods. Figure 1 shows the model of transcriptional process
studied in this paper, which refers the computational models proposed in [37, 57, 58].
In the model, transcription begins with the binding of RNAP to the promoter.
RNAP engages in abortive initiation prior to the productive initiation, during which
RNAP synthesizes the first ∼ 8 − 15 nucleotides of RNA and form an RNAP-
promoter initial transcribing complex, and then escapes to enter the synthesis of
RNA product as an RNAP-DNA transcription elongation complex [17]. Abortive
initiation is common for both eukaryotes and prokaryotes and a critical stage in
order to clear the promoter and to release signals to the next initiation after the
abortive initiation [12]. During the process of RNA synthesis, the RNAP-DNA
transcription elongation complex moves along the DNA sequence from 5’ to 3’, dur-
ing which the double helix DNA molecule splits into two strands of unpaired DNA
nucleotides, and one strand of the DNA is used as a template for RNA synthesis.
RNAP adds matching RNA nucleotides that are paired with complementary DNA
nucleotides. Soon after RNAP initiates transcription, the nascent RNA is modified
by the addition of a “cap” structure at 5’ [27]. RNA transcription can involve mul-
tiple RNAPs on a single DNA template and multiple rounds of transcription. Upon
reaching the end of a gene, RNAP stops transcription (“termination”), the newly
synthesized RNA is cleaved and the polyadenosine tail is added to the 3’ end [33].

Figure 1. Illustration of a model of transcription including pro-
moter initiation, RNAP elongation along the DNA sequence, and
termination of the RNA synthesis. See the text for details.

Biochemical reactions in the transcription are summarized below, including the
promoter initiation, abortive initiation, elongation, termination and RNA degrada-
tion:

Promoter + RNAP
λ1

GGGGGGA RNAP-Promoter

RNAP-Promoter
λ2

GGGGGGA Promoter + RNAP-DNA

RNAP-DNA 99Kτ RNA + RNAP

RNA
δ2

GGGGGGA∅.

(2.1)

Here the dashed arrow 99Kτ means a process of time τ . Here we consider the
situation of constitutive gene expression in which the promoter is always active and



1434 XUAN ZHANG, HUIQIN JIN, ZUOQIN YANG AND JINZHI LEI

ready to bind to RNAP with a rate λ1. The abortive initiation starts once an
RNAP is bound to the promoter to form a complex RNAP-Promoter. As a result
of abortive initiation, RNAP escapes from the promoter to form an RNAP-DNA
transcription elongation complex, and at the same time releases the promoter with
a rate λ2. Once the RNAP-DNA transcription elongation complex is formed, the
elongation process procedures automatically until the terminator is reached (at time
τ of the elongation process). Termination of transcription occurs immediately at
the terminator where both RNA product and free RANP are released. Hence, the
RNA production rate is determined by the formation rate of elongation complex
[37]. RNA products degrade at a rate δ2. Here we assume that the number of
total number RNAP molecule is large enough so that the number of free RNAP is
approximately unchanged during the process. Hence, the system state is given by
the numbers of bounded RNAP-Promoter complex (X1) and RNA molecules (X2).

The effect of cell cycle is also considered in our model (refer [44]). Let T the
period of one cell cycle, the genome doubles at time (chosen arbitrarily) td = 0.4T
into a cell cycle. The promoter is reset to free state right after cell division, and non-
DNA molecules are divided into two cells randomly with binomial partitioning. One
daughter cell is followed at each division. These processes are basic assumptions in
following analysis and simulations.

The simulations are performed using the stochastic simulation algorithm with
delay [6].

3. Results.

3.1. Chemical master equation with delay and analytical results. Let X =
(X1, X2) the system state, with X1 the number of RNAP-Promoter complex and
X2 the number of RNA products. Let P (x, t; x0, t0) the probability of X(t) = x
given X(t0) = x0. When t = 0 (the starting point of a cell cycle), the promoter is
free (X1(0) = 0). The number of DNA copies is given by a step function as

n(t) =

{
1, 0 < t ≤ td
2, td < t < T

(3.1)

Time evolution of P (x, t|x0, 0) within one cell cycle (0 < t < T ) is formulated by a
chemical master equation ([47], also see Appendix A)

∂

∂t
P (x1, x2, t|x01, x02, 0)

= λ1(n(t) + 1− x1)P (x1 − 1, x2, t|x01, x02, 0)− λ1(n(t)− x1)P (x1, x2, t|x01, x02, 0)

+ λ2(x1 + 1)P (x1 + 1, x2, t|x01, x02, 0)− λ2x1P (x1, x2, t|x01, x02, t)
+
∑
y1,y2

λ2H(t− τ)y1P (y1, y2, t− τ |x01, x02, 0)P (x1, x2 − 1, t|y1, y2, t− τ)

−
∑
y1,y2

λ2H(t− τ)y1P (y1, y2, t− τ |x01, x02, 0)P (x1, x2, t|y1, y2, t− τ)

+ δ2(x2 + 1)P (x1, x2 + 1, t|x01, x02, 0)− δ2x2P (x1, x2, t|x01, x02, 0) (3.2)

Here H(s) is a Heaviside function

H(s) =

{
0, s < 0
1, s ≥ 0.

(3.3)
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In experiments, we are mainly interested at the average transcription level of a
group of cells, which can be represented by the average level over one cell cycle.

Let the average numbers

xi(t) =
∑
x1,x2

xiP (x1, x2, t|x01, x02, 0), i = 1, 2.

From the master equation (3.2), and note that∑
x1,x2

xi [P (x1, x2 − 1, t|y1, y2, t− τ)− P (x1, x2, t|y1, y2, t− τ)] =

{
0, i 6= 2
1, i = 2,

we obtain a delay differential equation for xi(t) in the first cell cycle (see Appendix
A) { dx1

dt
= λ1(n(t)− x1)− λ2x1

dx2
dt

= λ2H(t− τ)x1(t− τ)− δ2x2
0 < t < T.

x1(0) = x01, x2(0) = x02.

(3.4)

The equation (3.4) gives the equation for average numbers x1(t) and x2(t) at the
first cell cycle. Now, we assume that the promoter is free at t = 0 (x01 = 0) and
is reset to free state after cell division, and the mRNA molecules are divided into
two cells randomly with binomial partitioning so that on average limt→kT+ x2(t) =
1
2 limt→kT− x2(t). Therewith, it is easy to extend the above arguments to any cell

cycles, and we can obtain a delay differential equation for xi(t) with discontinuous
boundary condition for each cell cycle:{ dx1

dt
= λ1(n(t− kT )− x1)− λ2x1

dx2
dt

= λ2H(t− kT − τ)x1(t− kT − τ)− δ2x2
kT < t < (k + 1)T

x1(0) = 0, x2(0) = x02,
x1(kT ) = 0, x2(kT+) = x2(kT−)/2, (k = 1, 2, · · · ).

(3.5)
Hereinafter

x2(a+) = lim
t→a+

x2(t), x2(a−) = lim
t→a−

x2(t).

The equation (3.5) gives the dynamics of the average transcription level. In
the following we show that any solution of (3.5) converges to a limit cycle at the
stationary state.

Theorem 3.1. For any initial condition x2(0) = x02, the solution of (3.5) converges
to a periodic solution when t→ +∞.

Proof. First, it is easy to see that the solution x1(t) is periodic, and

x1(t) = λ1

∫ t−kT

0

e−(λ1+λ2)(t−kT−s)n(s)ds, kT < t < (k + 1)T. (3.6)

From the equation for x2(t),

dx2
dt

= λ2H(t−kT−τ)x1(t−kT−τ)−δ2x2, x2(kT+) = x2(kT−)/2, k = 1, 2, · · ·

we obtain a transformation from x2(kT+) to x2((k + 1)T+) that gives a Poincaré
mapping of the solution over one cell cycle:

x2((k + 1)T+) =
1

2
(e−δ2Tx2(kT+) + λ2

∫ T−τ

0

x1(s)e−δ2(T−τ−s)ds). (3.7)
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Since e−δ2T /2 < 1, the transformation (3.7) is a contractive mapping and has a
unique fix point

x2(kT+) ≡ λ2

2− e−δ2T

∫ T−τ

0

x1(s)e−δ2(T−τ−s)ds.

Since the transformation (3.7) is contractive, the solution x2(t) tends to a periodic
solution that is given by the solution of

dx2
dt

= λ2H(t− kT − τ)x1(t− kT − τ)− δ2x2,
x2(kT+) = λ2

2− e−δ2T
∫ T−τ
0

x1(s)e−δ2(T−τ−s)ds
k = 0, 1, 2, · · · ,

at each cell cycle. The theorem is proved.

From Theorem 3.1, we only need to consider the periodic solution of (3.5) while
we are interested at stationary dynamics. In one cell cycle, the periodic solution
satisfies following boundary value problem{ dx1

dt
= λ1(n(t)− x1)− λ2x1

dx2
dt

= λ2H(t− τ)x1(t− τ)− δ2x2
0 < t < T

x1(0) = 0, x2(0) = x2(T )/2.

(3.8)

Explicitly, the solution of (3.8) is given by

x1(t) = λ1

∫ t

0

e−(λ1+λ2)(t−s)n(s)ds (3.9)

x2(t) = λ2

∫ T

τ

G2(s, t)x1(s− τ) ds (3.10)

where

G2(s, t) =


2e−δ2(t−s)

2− e−δ2T
, τ < s < t, τ < t < T,

e−δ2(T+t−s)

2− e−δ2T
, 0 ≤ t ≤ T, s > max{τ, t}.

(3.11)

The above solutions give the stationary transcription dynamics (see Fig. 2 for
stochastic simulations).

3.2. Elongation delay can reduce the transcription level. The question of
how the elongation delay changes the transcription dynamics and transcription level
is important for understanding the role of elongation to transcription process. When
there is no transcription elongation, RNAs are produced at a constant rate λ2 and
destroyed in a first-order reaction with a rate δ2, with a kick in the RNA number
due to genes doubling at td = 0.4T in each cell cycle [44]. After a sufficient number
of divisions, the RNA number tends to a periodic behavior (Fig. 2, τ = 0, also refer
[44]).

When transcription elongation is included, we see a three-phases dynamics of
transcription: a decrease in the RNA number right after cell division with a rate δ2
during which RNA is not produced due to the lag time τ of transcription elongation,
followed by an increasing phase when the transcription elongation is completed, and
finally a kick in RNA number due to gene doubling (Fig. 2). The two increase phases
start at time t = τ and t = td+τ in each cell cycle, respectively. We note that there
is a delay τ for the second increasing phase that is induced by gene doubling, and
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Figure 2. Dynamics of average RNA number with transcrip-
tion delay τ various from 0 to 30min. There is only one copy
of the gene on the chromosome. Gene replication occurs every
td = 0.4T into the cell cycle and is marked with shadow regions.
Binomial partitioning of mRNA molecules are includes and one
daughter cell is followed at each division. Parameters used are:
λ1 = 0.05 s−1, λ2 = 0.12 s−1, δ2 = 0.005 s−1, T = 60 min. The
mean values are calculated from 100 independent sample trajecto-
ries.

this increasing phase may not appear if the transcription elongation is long enough
so that td + τ > T .

As a direct consequence of the decreasing phase in the RNA number during the
transcription elongation, the average RNA number exponentially decreases with a
rate δ2 shortly after cell division. The RNA number reaches the minimum value
and starts to increase when the transcriptional process is complete. Thus, it is
possible to have extreme low transcription level in the case of long elongation delay.
To analytically examine the effect of elongation delay on the transcription level, we
define the average transcription level over one cell cycle M as

M =
1

T

∫ T

0

x2(t)dt. (3.12)

A tedious calculation shows that if

δ2(T − τ)� 1, (λ1 + λ2)(T − τ)� 1, δ2td � 1, (λ1 + λ2)td � 1, (3.13)

the average transcription level linearly depends on the elongation time as (see Ap-
pendix B for details)

M ≈


λ1λ2

δ2(λ1 + λ2)

(
1− τ

T + T − τ − td
T

)
, τ < T − td

λ1λ2
δ2(λ1 + λ2)

(
1− τ

T

)
, τ > T − td.

(3.14)

Hence, the average transcription level linearly decreases with respect to the elonga-
tion delay (Fig. 3A).

3.3. Elongation delay can increase the transcription noise. To investigate
how the elongation delay affects the transcription noise, we define the stationary



1438 XUAN ZHANG, HUIQIN JIN, ZUOQIN YANG AND JINZHI LEI

0 20 40 60
0

2

4

6

8

10

12
(A)

A
ve

ra
ge

 o
f R

N
A

 n
o.

Delay (min)
0 20 40 60

0

2

4

6

8

10

C
V

 o
f R

N
A

 n
o.

Delay (min)

(B)

Figure 3. Effects of elongation delay on transcription dynamics.
(A) Dependences of RNA number with the elongation delay. Mark-
ers are obtained from stochastic simulation, and the solid line is
given by (3.14). (B) Dependences of the coefficient of variance
(CV) for RNA number with the elongation delay. Markers are ob-
tained from stochastic simulation, and the solid line is given by
(3.16). Parameters are same as Fig. 2.

fluctuations of RNA number by the coefficient of variance η as

η2 =

1

T

∫ T

0

〈(X2(t)− 〈X2(t)〉)2〉dt(
1

T

∫ T

0

〈(X2(t)− 〈X2(t)〉)〉dt

)2 . (3.15)

Here 〈·〉 means the ensemble average and is defined as

〈·〉 =
∑
x1,x2

·P (x1, x2, t;x
0
1, x

0
2, 0).

Thus, from the master equation (3.2), we obtain (see Appendix C for details), when
(3.13) is satisfied,

η2 ≈ 1

M
≈


δ2(λ1 + λ2)

λ1λ2

(
1− τ

T + T − τ − td
T

)−1
, τ < T − td

δ2(λ1 + λ2)
λ1λ2

(
1− τ

T

)−1
, τ > T − td

. (3.16)

Stochastic simulations show good agreement with the above analytical result (Fig.
3B).

From (3.16), the stationary fluctuation is inverse proportional to the RNA num-
ber, which is similar to the situation with no elongation delay [23]. Thus, increasing
the elongation delay τ can increase the transcription noise through the decreasing
of transcription level. Finally, define the Fano factor F as

F =

1

T

∫ T

0

〈(x2(t)− 〈x2(t)〉)2〉dt

1

T

∫ T

0

(x2(t)− 〈x2(t)〉)dt
= η2M, (3.17)

then (3.16) indicates F ≈ 1, and hence the transcription delay would not change
the Fano factor.
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3.4. Elongation delay can induce bimodal distribution of RNA levels.
Techniques such as flow cytometry are often used to measure the variability among
a group of cells. The experimental results, integrated with discrete stochastic mod-
els, can provide a sensitive “fingerprint” to explore fundamental equations of gene
regulation [25]. The experiment data generated by flow cytometers often give a
histogram of cell distributions. Thus, when applying flow cytometry to explore
stochastic gene expression, we ask how transcriptional controls can affect the distri-
butions of RNA and protein levels, whether different types of cell-to-cell variability
can be induced by changing the transcription elongation, and how the RNA dis-
tributions depend on the chemical reaction rates? To answer these questions with
our discrete model, we randomly chose control parameters and for each set of the
parameters we numerically investigated the resulting distribution of RNA from a
group of cells. We note that cells analyzed in flow cytometry can be at different
phases of a cell cycle so that the generated data correspond to quantities at different
time points along a trajectory in model simulations. Thus, experimental data of a
single gene expression by flow cytometry can be represented by the distribution of
mRNA levels along a trajectory in model simulations.

The results are given by Fig. 4. When the binding of RNAP to promoter is fast,
the system gives continuous production and unimodal RNA distributions (class I).
When the binding of RNAP to promoter is slow, the system gives occasional RNA
bursts and long distribution tails (class III). Class II distribution is induced by large
elongation delay that the RNA number decreases to a very low level after cell divi-
sion. When the binding of RNAP to promoter is fast and with long elongation delay,
we see bimodal distributions (class II) with clearly delineated continuous production
together with RNA degradation during the early transcription elongation. These
three distribution classes can be characterized by two non-dimensional parameters
λ1/δ2 and τ/T as shown at Fig. 4A. Hence, the binding efficiency and elongation
delay are important in interpreting the experimental data for RNA number distri-
butions obtained by techniques of flow cytometry. It is obvious from Fig. 4 that,
based on the model and parameters used in our simulations, nonzero transcription
delay is required for the bimodal distribution.

Here we note that concentration rather than absolute molecule number is more
closely related to measurements such as flow cytometry, while the distribution in
Fig. 4 is given for RNA numbers. Nevertheless, the above classification of distribu-
tions is not changed when we calculate the concentration distribution by considering
growing cell volumes (Fig. 4B insets). In addition, Fig. 4A indicates that greater
τ/T means more likely to have bimodal distributions. However, Fig. 3A shows that
when the elongation delay is large, the average RNA number approaches zero and
hence the probability with positive RNA number becomes very small. Therefore,
the bimodal distribution is not obvious for large τ/T , and is likely to be seen only
in certain range of τ/T .

An analytic study of gene expression dynamics have shown that a constitutive
gene expression (two-stage model) only has class I or class III distribution, while
regulated gene expression (three-stage model) can have bimodal distribution (class
II) [25, 40]. Complex promoter structure (i.e., promoter dynamics and transition
pattern) can also lead to bimodal or multimodal transcriptions [54, 55]. Our re-
sults show that constitutive gene expression with elongation delay can also induce
bimodal distribution by slow down the RNA production. This suggests a new
mechanisms while we explain the experimental observation of bimodal distribution
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in RNA number. We should note that according to Fig. 4A, the ratio τ/T needs to
be at least 1/6 in order to induce bimodal distribution. This value is significantly
larger than the values for both bacteria and mammalian cells. In bacteria, the av-
erage time to transcribe a gene is 1min and the minimum cell generation time is
around 30min, and in mammalian cells, average time to transcribe gene is 20min
and the minimum cell generation time is 20hr [2, 10].
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Figure 4. Effects of transcriptional delay on RNA distributions.
(A) Three classes (I,II,III) distributions on RNA numbers in the
parameter space characterized by the RNAP binding efficiency
(λ1/δ2) and elongation delay (τ/T ). Green dots for class I dis-
tribution, blue dots for class II distribution, and red dots for class
III distribution. (B) Distributions of RNA number with parameters
taken from regions I, II and III in (A). Insets show the distributions
in concentrations by assuming linear growth of cell volume from an
initial value until cell division and halves upon division.

4. Discussion. In this paper, we have studied the transcription dynamics with
elongation delay through chemical master equation and stochastic simulation with
delay. The transcription dynamics including transcription initiation and elongation,
RNA production and degradation were considered in this study. To study the long
time behavior, cell division and DNA replication were also included in the model,
which yield a time dependent periodic coefficient master equation with transcription
delay in the mathematical model. The effects of elongation delay to the stochasticity
of transcription dynamics were studied both analytically and numerically.

Our results showed that there are serval effects of the elongation delay in gene
expression. The transcription elongation induces a decrease phase in RNA number
after cell division, hence decreases the average transcription over a cell cycle and
increases the intrinsic noise. Both analysis and simulation showed that the average
transcription linearly decreases with the elongation delay, and the stationary fluc-
tuation (square of the coefficient of variance) inverse proportional to the elongation
delay. Transcription delay can also regulate the shape of RNA distribution, and
provides a new mechanism of inducing bimodal distribution in the RNA numbers.

Transcription delay is known to affect the stochastic dynamics in gene networks.
The current study quantitatively clarifies the effects of elongation delay to stochas-
ticity of single gene expression. The results and methods here are valuable for
understanding the stochastic dynamics in gene network with elongation delay. The
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bimodal RNA distribution with large elongation delay is first predicted here and
remains justification by experiments.

The bimodal RNA distribution in this study comes from the combined effects of
cell division and transcription elongation. For non-dividing cells, however, elonga-
tion delay has no effect to the transcription level (data not shown). This is because
that the RNAP number is assumed to be large enough and therefore the transcrip-
tion level is mainly determined by the promoter dynamics and the formation rate of
elongation complex. Nevertheless, if the RNAP number is small, elongation delay
may decrease the RNA production due to the high occupancy of RNAP in the elon-
gation process (personal communication). In addition, delay can lead to complex
gene expression dynamics when there are feedback regulations [47, 53].

Main results in this study were obtained by considering a point delay for tran-
scription elongation. Such a simplification enables us to perform mathematical
analysis, but might not realistic biologically. In transcriptions, distribute delay is
more realistic because of variance in the RNA polymerases movement along the
DNA sequence and possible pauses due to DNA damage. We have also numeri-
cally studied the situation of distributed delay by assuming different delays for each
RNAP, and shown no significant difference in the main results in the previous study.
In our stimulations, an elongation process starts at ti and terminates at ti + τi. We
assume t1 < t2 < · · · , and the delays are taken so that ti + τi < ti+1 + τi+1 with
∆τi = τi+1 − τi a gamma distribution shifted by a minimal value of −(ti+1 − ti)
[18]. Of course, other effects of the distribution delays are remained to be clarified.

Appendix A. Chemical master equation with delay. Consider a well-stirred
chemical reaction system that contains N molecular species {S1, · · · , SN} with num-
ber Xi(t) of the species Si at time t. There are M reaction channels {R1, · · · , RM}
each with a state change vector vj . Among which the first M1 reactions {R1, · · · ,
RM1
} are assumed to have time delay {τ1, · · · , τM1

}, respectively. The last M−M1

reactions have no time delay. Let P (x, t) the probability function based on the
initial state X(t0) and the states involved with the time delay X(t) = Φ(t) (t ≤ t0):

P (x, t) = Prob{X(t) = x | X(t0) = x0, X(t) = Φ(t), t ≤ t0). (A.1)

In [47], a general form of stochastic delay differential equations for P (x, t) was
given as

∂

∂t
P (x, t) =

M1∑
j=1

∑
y∈I

aj(y)P (x− vj , t; y, t− τj)−
M1∑
j=1

∑
y∈I

aj(y)P (x, t; y, t− τj)

−
M∑

j=M1+1

aj(x)P (x, t) +

M∑
j=M1+1

aj(x− vj)P (x− vj , t), (A.2)

where P (x, t; y, t− τj) is the joint probability that the system is both in the state
x at t and in the state y at t− τj , and I is the set of all possible system states.

In [47], introducing the approximation

P (x− vj , t; y, t− τj) ≈ P (x− vj , t)× P (y, t− τj), (A.3)

the delay chemical master equation (A.2) can be simplified as

∂

∂t
P (x, t) =

M1∑
j=1

a(x(t− τj))P (x− vj , t)−
M1∑
j=1

a(x(t− τj))P (x, t)
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+

M∑
j=M1+1

aj(x− vj)P (x− vj , t)−
M∑

j=M1+1

aj(x)P (x, t), (A.4)

where

aj(x(t− τj)) =
∑
y∈I

a(y)P (y, t− τj). (A.5)

From (A.4), [47] derived the equations for the mean of X(t)

dX(t)

dt
=

M1∑
j=1

vjaj(X(t− τj)) +

M∑
j=M1+1

vjaj(X(t)). (A.6)

Nevertheless, the approximation (A.3) is not always satisfied when the delays τj
are small values. Here, we derive the equation (A.6) without the approximation
(A.3).

Let P (x − vj , t|y, t − τj) the conditional probability that the system is at the
state x− vj at t given the state y at t− τj , then

P (x− vj , t; y, t− τj) = P (x− vj , t|y, t− τj)P (y, t− τj). (A.7)

Hence, the equation (A.2) becomes

∂

∂t
P (x, t) =

M1∑
j=1

∑
y∈I

aj(y)P (x− vj , t|y, t− τj)P (y, t− τj)

−
M1∑
j=1

∑
y∈I

aj(y)P (x, t|y, t− τj)P (y, t− τj)

+

M∑
j=M1+1

aj(x− vj)P (x− vj , t)−
M∑

j=M1+1

aj(x)P (x, t).(A.8)

Thus,

dX

dt
=
∑
x∈I

x
∂

∂t
P (x, t)

=
∑
x∈I

M1∑
j=1

∑
y∈I

xaj(y)P (x− vj , t|y, t− τj)P (y, t− τj)

−
∑
x∈I

M1∑
j=1

∑
y∈I

xaj(y)P (x, t|y, t− τj)P (y, t− τj)

+
∑
x∈I

M∑
j=M1+1

xaj(x− vj)P (x− vj , t)−
∑
x∈I

M∑
j=M1+1

xaj(x)P (x, t)



EFFECTS OF ELONGATION DELAY IN TRANSCRIPTION DYNAMICS 1443

=

M1∑
j=1

∑
y∈I

aj(y)P (y, t− τj)×
∑
x∈I

x [P (x− vj , t|xi, t− τj)− P (x, t|xi, t− τj)]

+

M∑
j=M1

vj
∑
x∈I

aj(x)P (x, t)

=

M1∑
j=1

∑
y∈I

vjaj(y)P (y, t− τj) +

M∑
j=M1

vj
∑
x∈I

aj(x)P (x, t)

=

M1∑
j=1

vjaj(X(t− τj)) +

M∑
j=M1

vjaj(X(t)).

We have re-obtained the delay differential equation (A.6) without the approximation
(A.3).

Appendix B. Proof of (3.14). From the definition of transcription level M and
(3.10), we have

M =
1

T

∫ T

0

x2(t)dt

=
λ2
δ2T

∫ T−τ

0

x1(t)dt− λ2e
−δ2(T−τ)

δ2T (2− e−δ2T )

∫ T−τ

0

eδ2tx1(t)dt. (B.1)

If τ > T − td, then∫ T−τ

0

x1(t)dt = λ1

∫ T−τ

0

∫ t

0

e−(λ1+λ2)(t−s)dsdt

=
λ1

λ1 + λ2

(
(T − τ)− 1− e−(λ1+λ2)(T−τ)

λ1 + λ2

)
,

and ∫ T−τ

0

eδ2tx1(t)dt = λ1

∫ T−τ

0

eδ2t
∫ t

0

e−(λ1+λ2)(t−s)dsdt

=
λ1

λ1 + λ2
eδ2(T−τ)

(
1− e−δ2(T−τ)

δ2
+
e−(λ1+λ2)(T−τ) − e−δ2(T−τ)

λ1 + λ2 − δ2

)
.

Thus, (B.1) yields

M =
λ1λ2

δ2T (λ1 + λ2)

(
(T − τ)− 1− e−(λ1+λ2)(T−τ)

λ1 + λ2

)
(B.2)

− λ1λ2

δ2T (2− e−δ2T )(λ1 + λ2)

(
1− e−δ2(T−τ)

δ2
+
e−(λ1+λ2)(T−τ) − e−δ2(T−τ)

λ1 + λ2 − δ2

)
.

If
δ2(T − τ)� 1, (λ1 + λ2)(T − τ)� 1, (B.3)

then
e−δ2(T−τ) ≈ 0, e−(λ1+λ2)(T−τ) ≈ 0,

and hence

M ≈ λ1
λ1 + λ2

λ2
δ2

(1− τ

T
). (B.4)
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When τ < T − td, then∫ T−τ

0

x1(t)dt = 2

∫ T−τ

0

x1(t)dt−
∫ td

0

x1(t)dt

= 2
λ1

λ1 + λ2

(
(T − τ)− 1− e−(λ1+λ2)(T−τ)

λ1 + λ2

)

− λ1
λ1 + λ2

(
td −

1− e−(λ1+λ2)td

λ1 + λ2

)
and ∫ T−τ

0

eδ2tx1(t)dt

= 2

∫ T−τ

0

eδ2tx1(t)dt−
∫ td

0

eδ2tx1(t)dt

= 2
λ1

λ1 + λ2
eδ2(T−τ)

(
1− e−δ2(T−τ)

δ2
+
e−(λ1+λ2)(T−τ) − e−δ2(T−τ)

λ1 + λ2 − δ2

)

− λ1
λ1 + λ2

eδ2td

(
1− e−δ2td

δ2
+
e−(λ1+λ2)td − e−δ2td

λ1 + λ2 − δ2

)
.

Thus, (B.1) yields

M =
2λ1λ2

δ2T (λ1 + λ2)

(
(T − τ)− 1− e−(λ1+λ2)(T−τ)

λ1 + λ2

)
(B.5)

− 2λ1λ2

δ2T (2− e−δ2T )(λ1 + λ2)

(
1− e−δ2(T−τ)

δ2
+
e−(λ1+λ2)(T−τ) − e−δ2(T−τ)

λ1 + λ2 − δ2

)
.

− λ1λ2
δ2T (λ1 + λ2)

(
td −

1− e−(λ1+λ2)td

λ1 + λ2

)

+
λ1λ2

δ2T (2− e−δ2T )(λ1 + λ2)
e−δ2(T−τ−td)

(
1− e−δ2td

δ2
+
e−(λ1+λ2)td − e−δ2td

λ1 + λ2 − δ2

)
.

If
δ2td � 1, (λ1 + λ2)td � 1, (B.6)

then
e−δ2td ≈ 0, e−(λ1+λ2)td ≈ 0,

and hence

M ≈ λ1λ2
δ2(λ1 + λ2)

(
1− τ

T
+
T − τ − td

T

)
. (B.7)

Hence, the approximation (3.14) is proved.

Appendix C. Proof of (3.16). To calculate the stationary fluctuation, we define

σij =
∑
x1,x2

xixjP (x1, x2, t;x
0
1, x

0
2, 0), i, j = 1, 2. (C.1)

A tedious calculation gives

dσ

dt
= (Aσ + σAT ) +B, kT < t < (k + 1)T, (C.2)
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where

σ = (σij)2×2, A =

[
−(λ1 + λ2) 0

0 −δ2

]
,

B =

[
n(t− kT )− (λ1 − λ2)x2(t) 0

0 δ2x2(t) + λ2H(t− kt− τ)x1(t− kT − τ)

]
.

Explicitly, we have (kT < t < (k + 1)T ).

dσ11
dt

= −2(λ1 + λ2)σ11 + λ1(n(t− kT )− x1(t)) + λ2x2(t)
dσ12
dt

= −(λ1 + λ2 + δ2)σ12
dσ22
dt

= −2δ2σ22 + δ2x2(t) + λ2H(t− kT − τ)x1(t− kT − τ)

(C.3)

with boundary conditions

σ11(kT ) = 0, σ12(kT+) = σ12(kT−)/2, σ22(kT+) = σ22(kT−)/4.

Similar to Theorem 3.1, the solutions of (C.3) approaches to a periodic solution
when t → +∞. Hence, at the stationary state, the variance of mRNA number at
one cell cycle is given by the solution of equation{

dσ22
dt

= −2δ2σ22 + δ2x2(t) + λ2H(t− τ)x1(t− τ),

σ22(0) = σ22(T )/4,
(C.4)

where x1(t), x2(t) are given by (3.9) and (3.10). Solving the above equation gives

σ22(t) =

∫ T

0

K(s, t)ϕ(t)ds, (C.5)

where
ϕ(t) = δ2x2(t) + λ2H(t− τ)x1(t− τ),

and

K(s, t) =


4e−2δ2(t−s)

4− e−2δ2T
, 0 < s < t < T

e−2δ2(T+t−s)

4− e−2δ2T
, 0 < t < s < T.

(C.6)

Thus, the average variance over one cell cycle is given by

1

T

∫ T

0

σ22(t)dt =
1

2δ2T

∫ T

0

ϕ(t)dt− 3

2δ2T (4− e−2δ2T )

∫ T

0

e−2δ2(T−t)ϕ(t)dt. (C.7)

Since x2(t) satisfies

dx2
dt

= λ2H(t− τ)x1(t− τ)− δ2x2, x2(0) = x2(T )/2, (C.8)

we obtain ∫ T

0

(λ2H(t− τ)x1(t− τ)− δ2x2(t))dt =

∫ T

0

dx2(t)

dt
dt = x2(0),

and ∫ T

0

e−2δ2(T−t)(λ2H(t− τ)x1(t− τ)− δ2x2(t))dt

=

∫ T

0

e−2δ2(T−t)
dx2(t)

dt
dt

= x2(T )− e−2δ2Tx2(0)− 2δ2

∫ T

0

e−2δ2(T−t)x2(t)dt.
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Hence, ∫ T

0

ϕ(t)dt = 2δ2TM + x2(0)

and ∫ T

0

e−2δ2(T−t)ϕ(t)dt = x2(T )− e−2δ2Tx2(0).

Thus (here we note x2(T ) = 2x2(0)),

1

T

∫ T

0

σ22(t)dt = M − 1

δ2T

1− e−2δ2T

4− e−2δ2T
x2(0). (C.9)

Now, the average coefficient variance η is defined as

η2 =

1

T

∫ T

0

σ22(t)dt(
1

T

∫ T

0

x2(t)dt

)2 . (C.10)

From (C.9), we obtain

η22 =
1

M
− 1

δ2T

1− e−δ2T

4− e−2δ2T
x2(0)

M
. (C.11)

Hence, (3.13) is satisfied, we have

x2(0) =
λ+ 2e−δ2(T−τ)

2− e−δ2T

∫ T−τ

0

eδ2tx1(t)dt�M,

and therefore

η2 ≈ 1

M
≈


δ2(λ1 + λ2)

λ1λ2

(
1− τ

T + T − τ − td
T

)−1
, τ < T − td

δ2(λ1 + λ2)
λ1λ2

(
1− τ

T

)−1
, τ > T − td.

(C.12)

The relation (3.16) is proved.
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