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Abstract. In this paper, we develop a stochastic differential equation model

to simulate the movement of a social/subsocial spider species, Anelosimus stu-
diosus, during prey capture using experimental data collected in a structured

environment. In a subsocial species, females and their maturing offspring share

a web and cooperate in web maintenance and prey capture. Furthermore, ob-
servations indicate these colonies change their positioning throughout the day,

clustered during certain times of the day while spaced out at other times. One

key question was whether or not the spiders spaced out “optimally” to coop-
erate in prey capture. In this paper, we first show the derivation of the model

where experimental data is used to determine key parameters within the model.
We then use this model to test the success of prey capture under a variety of

different spatial configurations for varying colony sizes to determine the best

spatial configuration for prey capture.

1. Introduction. It is known that only a few dozen species of spiders show signs
of cooperative behavior [1] including cooperative foraging or prey capture, web
maintenance, and brood rearing. One such species is Anelosimus studiosus. A.
studiosus is an arboreal social cobweb weaver found in the Southeastern United
States exhibiting two distinct behavioral phenotypes: social and subsocial. The
subsocial phenotype was first described by Brach in 1977 [4]. In this more common
phenotype, an adult female is driven out of the parental web upon maturation and
builds a new web of her own. This may occur before or after mating. She lays her
eggs in an egg case here and guards the egg case until the juveniles emerge. Juveniles
are first regurgitation-fed by their mother. As they mature they are able to eat prey
that their mother has caught for them, and eventually actively participate in prey
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capture. The juveniles remain in the parental web, cooperating in prey capture
and web maintenance until they reach adulthood, regardless of the survival of the
mother.

The social phenotype of A. studiosus was not described until 1998 by Furey
[7]. The costs and benefits of this system were later analyzed by Jones et al. in
2007 [11]. In this phenotype, social adult females share a web and not only tolerate
each other, but purposely aggregate without any evidence of an external motivating
factor. They cooperate in prey capture, web maintenance, and brood rearing. The
social phenotype is thought to be evolutionarily advantageous in cooler climates
where adult mortality is higher. If a female dies before her brood is old enough to
survive on their own, they will still be provided for by other adult females in the
the social web, giving her a higher average expected fitness than if she had reared
her brood alone.

Being from the Family Theridiidae, A. studiosus are cobweb weavers. Their
arboreal webs display three distinct structures: knockdown threads, a capture sheet,
and a retreat. As implied by their name, knockdown threads serve to disrupt the
flight path of prey, causing them to fall onto the capture sheet. The capture sheet
is densely woven thread that lies predominantly in the horizontal plane. Unlike orb
weavers, this thread is not coated with any sticky resin, and prey is often able to
freely walk across it. Note, however, that prey do not usually fly out of the web due
to the knockdown threads above the capture sheet (unpublished data). The only
means of escape is by crawling to the edge or by falling through a damaged section
of the capture sheet. Most of the chasing and capturing happens on the capture
sheet.

This species cooperatively forages with capture success depending on how quickly,
and how many, spiders reach the prey [1]. Thus, we hypothesize that spatial ar-
rangement of mother and spiderlings will affect prey capture success, and, further,
that there exists some optimal spatial arrangement for a given colony size. Con-
sider a single spider within the web. There exists some circular area around her
such that she can effectively detect, locate, and capture prey that falls into this
area with some success rate (see Fig. 1). Note that this area is best thought of
as a gradient, with the area closest to the spider as having a success rate of nearly
1.0, and decreasing as the radius of the circle increases. For demonstrative pur-
poses, lets consider a clearly defined circle, delineating the 0.90 success rate area.
We will term this circular area as her individual foraging area (IFA). The IFAs of
all individuals in the colony as a whole will combine to form a collective foraging
area (CFA) in which they have a 0.90 success rate of apprehending prey. Fig. 1
below helps us visualize the advantages and disadvantages of hypothetical spatial
arrangements in the web. Spiders are shown in black with their IFAs shown as the
gray circles around them.

Observations indicate these colonies change their positioning throughout the day,
clustered during certain times of the day while spaced out at other times [21]. It is
hypothesized that the colony potentially spaces out more during times in which prey
might be more abundant thus maximizing their ability to capture prey. However,
it is difficult to determine experimentally the optimal spatial configuration which
maximizes prey capture, because we have no control over an individual spider’s
position or movement within a web. Therefore, to determine the optimal spacing
configuration, we develop a model to simulate a spider’s trajectory during prey
capture. Using this model, we can test the success of prey capture when a prey
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Figure 1. Possible spatial positions of juveniles illustrating an in-
dividual’s foraging area. The combination of all individual foraging
areas define the collective foraging area for the colony.

is randomly dropped in the web given different spatial configurations for varying
colony sizes.

However, modeling animal movement is a difficult task. Two classic modeling
approaches are the use of Lagrangian models or Eulerian models [23]. Lagrangian
models are based on random walk behavior and typically applied when modeling tra-
jectories for single animals; whereas Eulerian models describe the expected behavior
across an ensemble of individuals. In this paper, we are interested in modeling a
single spider trajectory during prey capture, and thus employ Lagrangian modeling
strategies. In trying to model a particular animal movement, there are many vari-
ables which typically influence an individual’s trajectory. Furthermore, even if one
could include each of these influences in a model, given the exact same conditions
at two different times, it is unlikely the animal will follow the exact same trajectory
both times. Given this variability, many of the existing models for single individuals
are based on random walks and diffusion processes. Some existing models include
modeling movement of female elk [2, 3, 19], elephant-seals [5, 6], deer [3], Pacific
coho salmon [17], birds [9, 12], and butterflies [13].

In Section 2, we formulate a stochastic differential equation (SDE) model for the
movement of a spider from the species Anelosimus studiosus during prey capture
using a combination of drift and diffusion terms [2, 3, 19]. We then fit the model to
experimental data using an inverse problem methodology in Section 3. We briefly
discuss the simulation of prey for use in testing spatial configuration in Section 4.
In Section 5, we use the model to test multiple spatial configurations and analyze
the success of prey capture for each configuration and various colony sizes. We then
make some conclusions and some remarks about future directions in Section 6.
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2. Model derivation. Following the work by Brillinger et. al. [2, 3] and Preisler
et. al. [19], we derive a SDE model for the spider movement of the form

dr(t) = µ{r(t), t}dt+ Σ{r(t), t}dW(t) (1)

where r(t) = [Xs(t), Ys(t)]
′ denotes the location of the spider at time t, µ is a drift

parameter, Σ is a diffusion parameter, and W is assumed to be a Brownian process.
In this model, we assume that the only directional influence in the movement

comes from the vibrational cues of the prey, and all other directional influences
are negligible. Unlike predators with good vision, spiders can only obtain their
directional cues through vibrations in the web. A. studiosis behaves similarly to
Hololena curta [16] in which prey localization usually requires several pauses where
the spider stops and feels for the prey. After each pause, the spider reorients itself
closer in line with the direction it perceives the prey is located. However, there
is generally error in the perceived prey direction and the actual prey direction,
possibly due to the distance from the spider to the prey, debris in the web, the force
exerted by the movement (or lack of movement) of the prey, or even the spider’s
own movement.

Let θo(t) denote the optimal direction the spider should travel to capture the
prey at time t, i.e., the direction directly from the spider to the prey. Let ε = ε(d)
represent the error in the direction of travel due to noise in directional cues which
we assume to depend on d, the distance between the spider and prey. Then the
actual direction the spider will travel in the next time step is given by θa(t) where
θa(t) = θo(t) + ε(t, d). See Fig. 2 for an illustration. As mentioned previously,
the spider stops to feel for cues and then reorients its direction after these pauses.
We let τ be the mean time the spider will travel before pausing to reorient and
{tu1

, tu2
, ..., tun

} be a sequence of times at which the spider will update its direction.
Here tui+1

= tui
+ τi where τi is taken from an exponential distribution with mean

τ . Then the directional component µ in Equation (1) at time t, tui
< t < tui+1

, is
given by

µ{r(t), t} = vs

[
cos (θo(tui

) + ε(tui
, di))

sin (θo(tui) + ε(tui , di))

]
where vs represents the average speed of the spider (including time for pauses) and
di represents the distance between the prey and spider at update time tui . We use
experimental data (see below) to estimate the values vs, τ (mean update time), and
ε(tui

, di) (directional error of the spider). The diffusion component in Equation (1)
is given by

Σ{r(t), t} =

[
σx 0
0 σy

]
where we take σx = σy = σ and determine the value of σ which best fits the model
to the experimental data (see below). Substituting the directional and diffusion
terms in Equation (1), we have for t, tui

< t < tui+1
, the model is given by[

dXs(t)
dYs(t)

]
= vs

[
cos (θo(tui

) + ε(t, di))
sin (θo(tui

) + ε(t, di))

]
dt+

[
σ 0
0 σ

]
dW(t). (2)

3. Data collection and parameter estimation. In order to estimate the param-
eters for the model, experimental data was collected for four video-taped feedings
on a wired web within a laboratory setting; see Fig. 3. The wire structures on which
the spiders constructed their webs consisted of a single length of pliable wire ma-
nipulated into a circular arena with a semicircular vertical arch. The circular arena
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Figure 2. Schematic illustrating the optimal direction from the
spider’s current location to the prey and the actual direction the
spider may take given error in directional cues from the prey.

was then covered with a hairnet to provide substrate for capture sheet construction.
One adult female A. studiosus was maintained on each of these structures for sev-
eral weeks prior to video-taped feedings to permit web development. We note that
although uniformity was maintained for the wire frame upon which the web was
developed, there was no mechanism in place to assure uniformity of the actual web
construction. Video-taped feedings were recorded from below the capture sheet us-
ing a camcorder. During these feedings a flightless Drosophila hydei (fly) was blown
into the knockdown threads and allowed to fall onto the capture sheet. The spider
would then emerge from the retreat, chasing and eventually subduing the fly. The
videos were then digitized using Tracker software [18] and imported into Matlab
[14]. Any lag time in the spider’s initial response to the prey was neglected; the
recording of data began only after there was an initial response of the spider.

Figure 3. Wired webs in the laboratory setting. These webs were
used to simulate actual webs. Video recordings were made based
on feedings within the web.

In determining the error, ε(t, d), for the directional component, we assume that
the mean of ε(t, d) will decrease as the distance d to the spider decreases. Therefore,
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using experimental data, for a given distance d, we seek e(d), a function representing
the expected value of ε(t, d), i.e. E(ε(t, d)) = e(d). Since spiders determine the
direction based on vibrations, we assume the prey is a vibrational point source.
The amplitude of the vibrations of a point source will decrease as a function of 1

r
where r is the distance from the point source [10]. As the amplitude of the signal
from the prey decreases, the error in the direction the spider travels should increase.
Therefore, the mean error function for the model should have an inverse relationship
to the amplitude function. We define the error function as

e(d) =
αd

d+ β
(3)

where α and β are constants. (Note: (e(d))−1 = f(1/d) which is the correct rela-
tionship.) The constants α and β are determined by measuring the error in each
step from the digitized data for each of the four videos. The errors are then ordered
as a function of the distance between the prey and spider and grouped in 0.5 cm
bins. The median error in each bin for an individual spider is calculated and plot-
ted against its associated distance. For example, consider a single spider, spider k,
k = 1, 2, 3, 4, and the bin consisting of distances between the spider and prey, d,
such that 2 ≤ d < 2.5. Assume there are m time steps such that 2 ≤ d < 2.5, and

let e
(k)
1 , e

(k)
2 , ..., e

(k)
m be all the directional errors associated with these time steps.

Then the error in direction for spider k and this bin is given by the median of

{e(k)1 , e
(k)
2 , ..., e

(k)
m }. Figure 4 displays the collection of all the median errors for all

spiders plotted against its associated distance within the bin. A curve of the form
in Equation (3) is then fitted to the error data using Minitab [15]. The fitted curve
is shown in Fig. 4. In instances where the spider is initially greater than 10cm
from the prey, the error function given by Equation (3) with α = 0.83 and β = 0.51
did not result in a good fit of the model realizations to the experimental data. We
assume that for larger distances, the spider may have knowledge of the prey in
the web but cannot determine with much accuracy the location of the prey. More
experiments must be done to confirm this assumption. Nonetheless, multiplying
the mean error function e(d) by a factor of 2.5 for only those values of d such that
d > 10cm resulted in a reduction of over 25% error in the model realizations versus
experimental data. We note that a statistical comparison test shows there is no
significant difference between the error function modeled by Equation (3) and a
constant error function e(d) = e0. However, there is a difference biologically as we
expect the spider to be able to localize the direction of the prey better when it is
closer to the prey. Moreover, to accomplish the goal of the model in this paper (to
simulate the movement of a spider towards a prey), initial derivations of the model
(not presented in this paper) suggest we should not expect successful localization
of the simulated spider to the prey if a constant error function is implemented.

The directional vector in our model (see Equation (2)) for any time t is given by
the term [cos (θa), sin (θa)] where θa = θo(tui) + ε(tui , di). Therefore, to simulate
the direction the spider will travel from time t to time t + dt where dt is some
incremental unit of time, we first determine ~usp = [xp(tui

)−xs(tui
), yp(tui

)−ys(tui
)]

which is the directional vector from the spider to the prey at the time of the last
pause, i.e., at time t = tui

, where (xp(tui
), yp(tui

)) is the location of the prey and
(xs(tui), ys(tui)) is the location of the spider at the pause time t = tui . The angle θo
is simply the angle ~usp makes with the positive x-axis and the distance di =‖ ~usp ‖
is the distance from the spider to the prey at the start of the pause. The error is
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assumed to be normally distributed with mean e(di) as determined by Equation (3)
and is calculated using the normrnd command in Matlab.

Figure 4. Directional errors from experimental data and a fitted
function of the form given in Equation (3).

The remaining parameters in Equation (2) are estimated using a least squares
inverse problem formulation. Since the goal is to use the model to predict the success
or failure of prey capture depending on spatial configurations, the time required for
the spider to reach the prey and the total distance traveled by the spider are the most
important elements for analysis. Moreover, we already mentioned that the spider is
likely to take a slightly different route each time even if all other conditions remain
constant. Therefore, we seek parameters τ and σ which minimize the error in total
time and total distance traveled between the simulated spider using the model and
actual spiders using experimental data. We note here that data was only collected
for the trajectory of a spider in a successful prey capture. No data was not collected
on unsuccessful attempts as we are not concerned about optimal starting locations
for a single spider. For a single spider, the optimal position of a circular web will
always be the center of the web if there are enough trials taken. Therefore, the
data collected was intended to capture the trajectory taken and more generally the
total distance traveled by the spider to the prey and the time required to travel this
distance. If the spider reaches the prey fast enough, the prey will not be able to
escape.

For each of the four videos, k = 1...4, we compute the total time Tk which it
takes for the spider to reach the prey once in motion and the total distance Dk the
spider travels during that time. The data was collected used the Tracker software
as mentioned previously which collects the location of the spider at fixed time
increments ∆t. Therefore, if n is the number of total data points, Tk = (n− 1)∆t.
The calculation of Dk requires calculating each incremental distance traveled and
then adding these incremental distances, i.e.

Dk =

n−1∑
l=1

‖ [xs(tl+1)− xs(tl), ys(tl+1)− ys(tl)] ‖,
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where (xs(tl), ys(tl)) is the position of the spider at time tl, l = 1, 2, ..., n. Since
Brownian motion is included in the model, each realization of the model is unique,
i.e., each realization will result in a slightly different path taken by the simulated
spider. Therefore, we compare the variables Tk and Dk with the average of these
variables across one thousand realizations of the model. Let q = [σ, τ ]. For an
individual spider, we let the initial position of the simulated spider equal the initial
position of the actual spider. The model given by Equation (2) is then used to
estimate the location of the simulated spider at each subsequent time t = ti + ∆t
given the specified parameter q until the distance between the simulated spider and
actual prey is less than the distance between the actual spider and actual prey. Then
Tj(q) and Dj(q), the total time and total distance traveled by the simulated spider
for realization j, are calculated for each simulation j = 1, 2, ..., 1000, in the same
manner as Tk and Dk for the actual spider above. We then use an optimization
algorithm fminsearch in Matlab [14] to estimate the parameters which minimize the
cost function

J(q) =

4∑
k=1


∑1000

j=1 (Tj(q))

1000 − Tk
Tk

2

+

∑1000
j=1 (Dj(q))

1000 −Dk

Dk

2
 . (4)

In order to determine the best parameters describing our data, for each video,
we use the exact data for the trajectory of the prey including any pauses in prey
movement. Doing this allows us to fix any possible additional error which might be
incurred by modeling the prey. For certain parameter values q, the simulated spider
may take more time steps than given in the original data for the prey. Therefore,
to alleviate this problem, we repeat the same prey movement as the original data
by only varying the starting location which is defined as the ending location given
by the original data. Moreover, the average velocity for each spider in each video is
different. Each spider has a unique variable ‘running’ speed and different number
and duration of pauses. We do not incorporate pauses or varying running speed in
this formulation of the model for the spider, but instead we consider total average
speed which accounts for both varying running speeds and pauses. In other words,
we assign vs = (vs)k to the average velocity of the specific spider in video k which
is calculated by

(vs)k =
Dk

Tk

where Dk and Tk are as described above. Note that Tk is the total time it takes for
spider k to reach the prey including the time in which the spider was paused.

The optimal parameters found were τ = 0.30 and σ = 1.06. Using these optimal
parameter values in Equation (2), we have the average errors in T and D given in
Table 1 for one thousands realizations of the model. For three of the four videos,
the percent relative error is close to or less than 5% which indicates a very good fit
between the model and experimental data. The distributions across the thousand
simulations for total time and total distance traveled for each realization are plotted
in Fig. 5 where the red line indicates the total time and total distance traveled for
the actual spider. For videos 1-3, the distributions also indicate a good fit for
the model; however, for video 4, the actual data appears to be an outlier of the
model and hence the model does not incorporate all aspects of the spider movement
necessary to accurately mimic the spider in video 4. We will hypothesize on the
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reasons for this below when we compare realizations of the model to the actual
spider trajectories.

Table 1. Goodness of Fit of the Model to Experimental Data
using Optimal Parameters

Video k Tk(s) E(Tj)(s) Rel Error Dk(cm) E(Dj)(cm) Rel Error

1 5.2720 5.1817 0.0171 8.1806 7.9779 0.0248
2 18.9190 19.1397 0.0117 20.0717 20.0261 0.0023
3 2.4690 2.6060 0.0555 5.8780 6.1435 0.0452
4 7.6740 3.9121 0.4902 17.4791 8.8003 0.4965
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Figure 5. Videos 1, 2, 3, and 4: Distribution for the total time
and total distance traveled by the simulated spider using Equation
(2) with optimal parameter values τ = 0.03 and σ = 1.06. The red
line indicates the value for same value for the actual spider from
the data.

Fig. 6 illustrates realizations of the model given by Equation (2) using optimal
parameter values. As expected, each realization has a different trajectory; however,
the path of the simulated spiders and actual spiders are quite similar. For Video
4, we note that in each of the simulations shown in Fig. 6, the simulated spider
reaches the prey faster than the actual spider. Upon examining Video 4, after the
spider has traveled approximately halfway between its starting location and the
prey, it reorients itself in the wrong direction, travels until it pauses again and then
reorients itself back in the appropriate direction. In the derivation of the model, we
assume the spider will always reorient itself in a more precise direction assuming
the distance between the prey and spider is decreasing. It may be the case that
there is a slight probability that the spider will veer off in the wrong direction even
if the spider is close to the prey. More data must be taken to test this assumption
and quantify the associated probability if it happens in multiple cases. Therefore,
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we do not incorporate this in the model at this time. We also note that Video 4
is the only video in which the prey makes a significant attempt at escape as noted
by the longer blue line in Figure 6 . This may also play a role in the parameter
estimation. Again, more data must be taken to test this assumption.
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Figure 6. Videos 1, 2, 3 and 4: The figure shows the trajectory for
the prey (short solid blue line), the actual spider trajectory (green
dashed line) and realizations for the simulated spider trajectory
(long solid red lines) using Equation (2) with optimal parameters
τ = 0.03 and σ = 1.06.

4. Prey simulation. In the previous section, we used the actual prey data to
determine optimal parameters for the model in Equation (2) of spider movement
during prey capture. We need to be able to simulate prey movement as well in
order to test possible spatial configurations for successful prey capture. Unlike we
did in the previous section, we do not use quantitative prey data to fit a model for
prey movement. However, we make certain assumptions on prey movement based
on observations. We note that for simulating prey movement, our assumptions are
based on observations of Drosophila hydei (flightless flies) during feeding times; the
assumptions may be different for other types of prey.

Currently there is no data to verify in natural settings whether the prey lands
in one location more frequently than any other. Therefore, the starting location for
the prey is chosen by generating a uniformly random point on a circle of radius R
where R is the radius of the web. Observations indicate the prey typically does not
pick an ideal direction to move (such as to the nearest edge of the web); instead, the
prey is observed to pick a random direction. Furthermore, the prey is observed to
‘walk’ in the given direction for a period of time and then change to another random
direction. Although there is no observed correlation in the previous direction and
new direction, we assume that the prey will not make a 180◦ change in direction
and, therefore, restrict the mean amount of change in prey direction. We assume
the new direction, θpi+1 is chosen so that θpi+1 = θpi + Θ where Θ is a random
variable with mean π/4.
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A ‘death chase’ was typically observed once the spider was ‘close enough’ to the
prey. During the death chase, the prey changed direction (normally in the opposite
direction of the spider) and increased its velocity. We account for this in the prey
model by assuming that if d < 3cm, where d is the distance between spider and
prey, the velocity of the prey, vp, doubles and θp is chosen so the prey moves in the
opposite direction of the spider. Similar to the model of spider movement in the
previous section, we let τp be the mean time the prey will travel before changing
directions and {tpu1 , tpu2 , ..., tpun} be a sequence of times at which the prey will
change its direction. In this case, we assume the prey does not change directions as
often as the spider, and therefore, we set τp = 1.5 ∗ τ where τ is the mean update
time for the spider movement model in the previous section. Therefore, in the prey
model, the directional component, µ, in Equation (1) for time t, ti ≤ t < ti+1, is
given as

µ{r(t), t} = vp

[
cos (θpi

)
sin (θpi)

]
where θpi is the direction of prey movement at time t as discussed above. The
diffusion component for the prey model is assumed the same as in the spider model.
Thus, the model for the prey based on observations is given for time t, ti ≤ t < ti+1,
by [

dXp(t)
dYp(t)

]
= vp

[
cos (θpi

)
sin (θpi

)

]
dt+

[
σ 0
0 σ

]
dW(t). (5)

In the next section, we also consider an informed prey where θp is chosen so the
prey is always heading in the direction of the nearest edge of the web at all times
until the death chase. When the death chase begins (at d < 3 cm), the prey behaves
as above and moves in the opposite direction from the spider.

5. Testing of Spatial Configurations for optimal prey capture. In this sec-
tion, we use the models developed in Sections 2 - 4 to test the success of prey
capture given various initial spatial configurations for the spider colony. We ana-
lyze the effects of spatial configurations for both a social colony (adult spider colony
which cooperates in prey capture) and a subsocial colony (a mother and juvenile
colony which cooperate in prey capture). In the case of a social colony, we make
the assumption that all adult spiders behave the same and according to the model
in Equation (2). It is well-known for certain species of animals, directional cues
are also given by neighbors within their flock or herd [9]. In these simulations, we
assume any additional cues given by other spiders within the colony are negligi-
ble but should be included in future updates to the model. Grinstead et. al. [8]
also gave evidence that spiders exhibiting behavioral characteristics for boldness are
more likely to actively participate in prey capture than other adult spiders in the
colony. This differentiation of behavior is not included in the current model but
should be explored in the future. Furthermore, in the case in which the prey is a
fly, we assume only one adult female is needed to capture the prey. We do not make
assumptions about larger prey in this paper since we do not have data on which to
base a prey model for larger species.

In the subsocial colony, we assume the juvenile behaves according to Equation
(2) during prey capture with only a difference in speed and ability to capture the
prey individually. Observations indicate juveniles move at a slower speed than their
mother, and more juveniles are required to effectively capture the prey. For the
simulations in this section, the juveniles are assumed to travel at half the speed
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of the mother, i.e. vj = vs/2 where vs is chosen to be the average of all spider
velocities, (vs)k, from the experimental data, k = 1, ...4. We further assume that
one juvenile cannot capture a prey by itself; however, it will slow down the prey.
Therefore, if one juvenile reaches the prey, the prey’s speed is reduced by 1/4. If
two juveniles reach the prey, the speed of the prey is reduced by 3/4 of the original
speed. If three or more juveniles or the mother reach the prey, the prey is assumed
to be captured, i.e., a success for the spider. On the other hand, if the prey reaches
the edge of the web before being captured, the prey is considered to have escaped,
i.e. a failure for the spider colony.

In determining possible spatial configurations the spiders might form in the web,
we consider two distinct factors that might influence an individuals position: prefer-
ence of proximity with respect to certain structures within the web, and distribution
with respect to other members in the colony. For preference, we consider that in-
dividuals might prefer the interior of the web, the edges of the web, or have no
preference. In subsocial colonies, we also consider that spiderlings might prefer to
be close to or far from their mother. Fig. 7 below shows the five different prefer-
ences under a random distribution with n = 25. In this case, spiders were placed
directly on the edge, or within half the radius of the center of the web for the edge
and interior preferences. A 4.0 cm radius around mom was used for the close to and
far from mom preferences, and mom was given the position of (2.665, 0) based on
data taken in a related project [21]. There are biological advantages to the different
preferences considered.

Figure 7. The five different preferences from left to right: none,
edge, interior, close to mom, far from mom. Mom is indicated by
a red star, and the 4.0cm circle around her is shown in red. The
5cm circle is shown to indicate the interior in the middle image.
All shown with a random distribution and n = 25.

The interior of the web could provide more protection from predators and para-
sites. It would allow the spider to feel the vibrations from crawling predators, and
be surrounded by knockdown threads which might offer some protection against
flying predators and parasitic wasps. It may also be beneficial for individuals to be
in the center of the web, which is equidistant from all the edges where prey might
escape. Being in the center would minimize the maximum possible initial distance
prey could land from the spider. If the spider was on the edge, the spider may have
a maximum possible initial distance to the prey equal to the diameter of the web;
whereas, if the spider was located in the center of the web, the maximum possible
initial distance to any prey would be cut in half, i.e., the radius of the web.

Being on the edge, however, might also be beneficial since most prey items will
have to crawl to the edge to escape. If members of a colony cooperated, they could
increase the collective foraging area (CFA) by lining the edges of the web so that
their individual foraging areas (IFAs) are adjacent, such as in Fig. 1D. Since prey
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must crawl to the edge, the interior of this ring would also be part of the CFA. In
a natural environment, many edges of the web are anchored to leaves or other solid
structures that could provide protection from weather and predators/parasites.

In terms of the juveniles’ positioning with respect to mom, being close to mom
might provide some protection, especially at younger ages. Mom also is the sole food
source for spiderlings when they are young, and remains the predominant hunter
while she survives. On the other hand, since mom is the most efficient hunter, it
might be best if the spiderlings are further from mom to aid in slowing down or
apprehending prey that lands outside of mom’s IFA. When spiderlings are close
to mom, they are nearly useless in aiding in prey capture since they have a much
slower velocity.

For distributions, we consider the traditional spatial distributions of regular, ran-
dom, and clustered, with the addition of a grouped distribution. Examples of these
distributions are shown below in Fig. 8 with no preference and n = 25. Clustering
can happen in many different ways. While a clustered distribution in this instance
contains all points randomly distributed in a 1 cm radius circle, a grouped distribu-
tion consists of several small clusters, the center of which are randomly distributed
within the preference. Thus, the grouped distribution is between a clustered and
random distribution. The size of clusters was set to be four since laboratory ob-
servations led us to believe that it would take at least three spiderlings to subdue
and kill a prey item, and when there were leftover individuals they were placed into
clusters to make groups of five until the colony size was achieved.

Figure 8. The four different distributions from left to right: clus-
tered, grouped, random, and regular. All shown with no preference
and n = 25.

Different distributions provide different advantages. A clustered distribution
might offer the most information sharing as well as food sharing. A regular distri-
bution would cover the most area, while a grouped distribution would allow spiders
to attack in bands, more effectively subduing the prey while covering more area
than a clustered distribution. We note that although these advantages are justifica-
tions for why these distributions might exist within a social or subsocial colony, we
do not incorporate any of these advantages within the model itself. For example,
although a clustered distribution might offer the most information sharing, we do
not specifically include any information sharing within the model, etc..

Since the prey is considered to be randomly placed in the web at various starting
locations and the paths of the spiders will be different for every run, we want to
quantify the variation expected in the number of successful captures. Therefore, we
run 100 simulations ten times for each combination of preference and distribution
to determine the average percentage the spider successfully captures the prey as

well as the standard deviation about the mean for each configuration. Let n
(k)
s
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indicate the number of successful spider captures during the 100 simulations for
trial k, k = 1, .., 10 (note that this number is also the percent of successful captures
for trial k). We assume ns is normally distributed and use the mean and std
commands in Matlab to calculate the mean and standard deviation respectively
for each spatial configuration. We perform simulations for both social colonies
and subsocial colonies with both uninformed and informed prey for five different
colony sizes, n = 5, 10, 15, 20, 25, where n is the number of adults in a social
colony or the number of juveniles in a subsocial colony. The uninformed prey is as
described in Section 4 in which the prey randomly changes directions as observed
in experimental settings. The informed prey is assumed to move in the direction of
the nearest edge. Table 2 gives the results for social colonies, and Table 3 gives the
results for subsocial colonies for the varying colony sizes.

Table 2. Social Colony with Uninformed and Informed Prey:
Percent of Successful Prey Captures for Various Spatial Configura-
tions with Standard Deviations given in Parenthesis

Uninformed Prey
Pref.∗ Distr.∗ n = 5 n = 10 n = 15 n = 20 n = 25
Edge Regular 94.9 (2.18) 98.0 (1.63) 99.3 (0.82) 99.4 (0.70) 99.3 (0.95)
Edge Random 93.9 (2.60) 95.6 (1.84) 97.8 (1.22) 97.8 (1.81) 98.6 (1.35)
Edge Grouped 85.9 (1.60) 88.8 (3.61) 91.2 (2.90) 92.3 (2.00) 94.2 (2.44)
Edge Clustered 83.6 (3.57) 83.6 (3.78) 85.1 (3.84) 87.0 (2.31) 86.5 (3.98)
Center Regular 81.1 (2.92) 80.6 (2.07) 80.9 (3.00) 80.3 (3.23) 80.8 (5.05)
Center Random 81.4 (4.45) 80.2 (4.24) 80.9 (3.87) 81.8 (3.39) 81.9 (3.84)
Center Grouped 81.8 (4.29) 81.4 (3.81) 81.5 (2.76) 80.3 (5.70) 82.7 (3.86)
Center Clustered 82.2 (3.29) 81.0 (4.06) 79.3 (3.97) 81.8 (6.27) 81.9 (2.69)
None Regular 84.6 (3.92) 81.7 (3.74) 88.1 (3.07) 93.5 (3.63) 90.1 (2.64)
None Random 86.5 (2.76) 88.8 (3.64) 89.1 (2.51) 91.7 (1.57) 92.3 (1.83)
None Grouped 85.6 (4.09) 83.2 (4.05) 86.8 (3.05) 87.8 (3.89) 88.4 (2.12)
None Clustered 84.9 (2.69) 84.9 (2.13) 83.7 (3.23) 83.5 (3.84) 85.2 (2.62)

Informed Prey
Pref.∗ Distr.∗ n = 5 n = 10 n = 15 n = 20 n = 25
Edge Regular 93.9 (1.79) 97.7 (1.25) 99.2 (0.92) 99.2 (0.63) 99.1 (0.74)
Edge Random 87.2 (2.25) 93.9 (2.60) 97.5 (1.27) 98.6 (0.97) 98.1 (1.20)
Edge Grouped 57.4 (5.58) 72.8 (5.35) 79.2 (4.73) 81.9 (2.08) 85.0 (3.50)
Edge Clustered 56.8 (4.61) 58.9 (5.90) 61.4 (3.98) 61.4 (4.35) 63.3 (5.35)
Center Regular 75.5 (3.06) 72.0 (4.14) 77.4 (4.40) 77.0 (4.24) 76.0 (4.45)
Center Random 73.3 (2.50) 75.0 (3.27) 74.3 (4.19) 77.8 (4.16) 77.1 (4.63)
Center Grouped 67.1 (3.73) 72.8 (4.16) 74.8 (3.82) 77.4 (2.80) 76.2 (3.88)
Center Clustered 67.6 (5.95) 70.5 (3.81) 71.8 (3.33) 68.8 (2.62) 70.2 (3.65)
None Regular 81.3 (4.37) 85.3 (3.40) 89.6 (2.32) 93.2 (2.62) 90.0 (3.27)
None Random 81.2 (3.05) 84.4 (2.84) 87.7 (4.81) 89.9 (2.92) 89.9 (3.35)
None Grouped 63.8 (3.58) 73.3 (5.03) 79.6 (4.03) 83.8 (2.57) 83.5 (5.19)
None Clustered 62.7 (5.27) 62.4 (5.82) 68.0 (5.27) 64.7 (4.57) 65.6 (5.87)

∗Pref. stands for spatial preference within the web. Distr. stands for distribution

The results indicate that prey capture success is affected by the colony demo-
graphics and spacing behavior, as well as the flys behavior (Tables 2 and 3). We
note that although the average number of successful prey captures is different for
subsocial spiders than social spiders, the trends across the varying distributions
are the same when comparing Tables 2 and 3. Therefore, to avoid redundancy, we
only discuss the general trends for the social spider in this paper and indicate that
trends for subsocial spiders are similar. Some general trends associated with the
spiders?preference for position and spacing in the web are mostly clearly illustrated
under the social spider/informed fly?scenario. Comparing different spacing distri-
butions for specific position preferences, the predominant trend was that regular
and random spacing tended to perform similarly higher than grouped and clustered
distributions (Fig. 9A-C). An exception in the case of edge preference was that
regular spacing performed better than random at smaller colony sizes (Fig. 9A).
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Table 3. Subsocial Colony with Uninformed and Informed
Prey: Percent of Successful Prey Captures for Various Spatial Con-
figurations with Standard Deviations given in Parenthesis

Uninformed Prey
Pref.∗ Distr.∗ n = 5 n = 10 n = 15 n = 20 n = 25
Edge Regular 94.1 (2.38) 98.5 (1.08) 99.9 (0.32) 100 (0.00) 100 (0.00)
Edge Random 92.3 (2.95) 96.0 (2.16) 97.3 (0.67) 97.2 (1.62) 98.7 (1.42)
Edge Grouped 87.4 (4.40) 87.8 (3.08) 89.5 (2.92) 92.1 (2.42) 92.6 (2.07)
Edge Clustered 88.5 (2.64) 87.5 (2.22) 87.7 (2.41) 88.8 (3.16) 88.5 (3.75)
Center Regular 84.6 (4.86) 83.3 (3.20) 73.7 (4.62) 72.4 (4.97) 74.1 (3.73)
Center Random 83.2 (4.49) 79.5 (4.03) 77.0 (2.62) 77.0 (6.13) 77.0 (4.37)
Center Grouped 83.8 (5.16) 83.2 (3.91) 81.9 (2.60) 81.5 (3.81) 77.7 (5.42)
Center Clustered 86.0 (3.40) 87.2 (4.59) 85.4 (3.72) 83.7 (2.67) 83.6 (3.17)
None Regular 74.8 (3.94) 70.9 (5.22) 76.9 (4.77) 85.4 (2.88) 73.5 (6.75)
None Random 81.4 (3.06) 79.1 (2.13) 75.9 (3.63) 79.4 (3.03) 77.6 (4.22)
None Grouped 84.0 (3.23) 82.6 (3.86) 80.6 (4.62) 78.0 (5.79) 78.7 (4.85)
None Clustered 83.8 (2.44) 83.2 (3.19) 83.5 (1.96) 84.8 (3.58) 86.8 (4.18)
CM∗∗ Regular 86.4 (4.33) 82.4 (2.01) 83.2 (4.32) 81.1 (4.07) 81.8 (3.26)
CM∗∗ Random 85.6 (3.17) 84.0 (2.98) 80.4 (3.47) 82.4 (3.31) 80.0 (4.35)
CM∗∗ Grouped 84.6 (4.79) 86.2 (3.29) 84.5 (3.98) 84.2 (1.62) 83.7 (4.37)
CM∗∗ Clustered 87.1 (3.14) 85.9 (2.69) 87.0 (3.02) 86.9 (3.21) 84.6 (3.92)
FM∗∗ Regular 71.0 (2.62) 72.8 (4.83) 72.8 (4.66) 75.2 (5.12) 73.9 (5.67)
FM∗∗ Random 77.5 (5.60) 78.0 (2.00) 80.0 (4.59) 79.6 (4.62) 80.4 (3.78)
FM∗∗ Grouped 83.0 (3.50) 82.6 (3.37) 79.8 (3.08) 80.4 (3.92) 77.1 (5.53)
FM∗∗ Clustered 85.2 (3.43) 85.5 (3.78) 84.2 (5.61) 83.5 (3.78) 83.3 (3.77)

Informed Prey
Pref.∗ Distr.∗ n = 5 n = 10 n = 15 n = 20 n = 25
Edge Regular 89.5 (2.17) 97.5 (1.78) 99.2 (0.92) 98.8 (1.14) 99.3 (1.06)
Edge Random 83.8 (3.55) 92.1 (2.13) 92.9 (3.41) 96.2 (1.99) 97.6 (1.08)
Edge Grouped 70.0 (5.16) 73.8 (4.10) 78.2 (4.21) 83.2 (4.64) 80.9 (5.22)
Edge Clustered 69.3 (5.14) 68.0 (6.43) 69.7 (4.60) 68.1 (5.70) 69.0 (5.27)
Center Regular 63.5 (4.28) 61.2 (5.07) 58.0 (2.98) 58.2 (3.55) 59.2 (4.61)
Center Random 61.8 (5.94) 61.6 (7.14) 57.7 (5.54) 60.3 (4.30) 55.8 (4.10)
Center Grouped 64.3 (5.81) 64.1 (4.04) 60.7 (5.38) 58.4 (4.43) 60.2 (5.22)
Center Clustered 67.3 (3.40) 67.4 (4.27) 65.5 (3.92) 66.8 (5.41) 67.3 (3.27)
None Regular 67.5 (5.06) 70.5 (3.87) 80.0 (5.70) 87.7 (1.83) 80.1 (3.84)
None Random 71.3 (6.30) 75.4 (4.40) 78.5 (2.99) 81.1 (3.28) 84.6 (3.86)
None Grouped 67.3 (4.11) 66.3 (4.24) 70.4 (3.34) 71.3 (4.03) 73.8 (2.94)
None Clustered 64.8 (3.68) 66.0 (4.24) 67.9 (5.28) 68.8 (6.78) 66.4 (6.19)
CM∗∗ Regular 65.8 (2.53) 61.4 (4.25) 60.5 (5.44) 61.1 (3.57) 65.3 (3.71)
CM∗∗ Random 62.6 (4.48) 64.0 (2.58) 64.1 (4.89) 62.5 (3.60) 64.5 (4.97)
CM∗∗ Grouped 64.3 (5.64) 66.9 (5.49) 63.6 (4.79) 62.1 (5.22) 64.4 (6.74)
CM∗∗ Clustered 64.7 (4.30) 66.9 (4.68) 67.1 (6.08) 69.7 (5.17) 64.7 (3.06)
FM∗∗ Regular 69.2 (3.82) 74.7 (6.24) 82.3 (3.83) 80.8 (3.12) 84.3 (2.71)
FM∗∗ Random 72.9 (3.18) 79.4 (3.90) 83.6 (3.92) 84.4 (3.37) 86.0 (3.77)
FM∗∗ Grouped 68.3 (4.57) 71.7 (4.14) 71.5 (3.66) 71.4 (4.45) 75.6 (3.13)
FM∗∗ Clustered 67.1 (3.48) 68.6 (3.66) 69.2 (3.88) 65.8 (4.80) 68.6 (5.08)
∗Pref. stands for spatial preference within the web. Distr. stands for distribution.
∗∗ CM stands for close to mom. FM stands for far from mom.

Clustered spacing performed consistently lowest across preferences, and the level to
which grouped spacing outperformed clustered increased with colony size (Fig. 9A-
C). Comparing different preferences for position in the web across distributions, in
the cases of regular and random distributions, preference for the edge outperformed
the other preferences at all colony sizes, followed by no preference, with preference
for the center consistently performing the worst (Fig. 10A & B). In the grouped
distribution, preference for the center shows the highest performance at the smallest
colony size, but is similarly outperformed by preference for the edge and no prefer-
ence above colony sizes of 10 (Fig. 10C). In the clustered distribution, preference
for the center showed the highest performance across colony sizes, followed by no
preference and then preference for the edge (Fig. 10D).

As discussed in Section 1, prey typically must crawl to the edge of the capture
sheet to escape, which is generally supported by laboratory observations. However,
it has been occasionally observed that prey can fall through the capture sheet or
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Figure 9. Figures A-C illustrate the effect of different distribu-
tions on success of prey capture when assuming a fixed preference
for either the edge, center or no preference respectively. The fig-
ures were generated using the information given in Table 2 when
considering social colonies and an informed prey.

escape vertically. Thus, the time to prey capture may also play a role in natural
foraging success. Therefore, we considered a social colony of average size 10 and
examined the time taken for a simulated spider to capture the prey when arranged
in each of the configurations. The results are given in Fig. 11. When considering
the time taken for the simulated spiders to capture prey, the preferences for the web
center and no preference took less time than the preference for the edge consistently
among the different distributions (Fig. 11A). Regular and randomly distributed
spiders captured prey consistently fastest, followed by the group distribution, with
the clustered distribution taking the longest to capture prey (Fig. 11B). Whereas
preference for the edge resulted in the largest proportion of successful prey captures
(Table 2), preference for the edge also resulted in the longest time to the prey
(Fig. 11A). This indicates a tradeoff especially if larger prey might be more likely
to break through the capture sheet. A faster time may result in fewer successful
prey captures, but if the capture is a large prey, the nutritional benefit may be the
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Figure 10. Figures A-D illustrate the effect of different prefer-
ences on success of prey capture when assuming a fixed distribu-
tion of regular, random, grouped, or clustered respectively. The
figures were generated using the information given in Table 2 when
considering social colonies and an informed prey.

same. Therefore, in order to determine which spatial configuration is indeed more
beneficial, more studies may need to be conducted to determine the likelihood of
prey of various sizes to fall through the capture sheet.

Figure 11. Figures A and B illustrate the average time required to
reach the prey for a social colony of average size 10 under different
preferences (Figure A) and different distributions (Figure B). An
uninformed prey was assumed in these simulations.

6. Conclusions. This study suggests how spatial positioning in communal webs
can affect foraging success. Social spiders are particularly interesting in that the
web serves to facilitate cooperative prey capture [1] and also information sharing
[24]. In this paper, we developed a model to simulate the movement of Anelosimus
studiosus during prey capture. The model was fitted to quantitative experimental
data taken from four digitized video recordings during feedings in a laboratory
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setting. In three of the four videos, the average error between the model and actual
data for the variables total time for prey capture and total distance traveled during
that time was 5% or less. In the fourth video, the spider reoriented in an opposite
direction from that assumed in the model. More data must be taken to determine
if this behavior occurs frequently, and if so, this behavior would need to be included
in future models. Future models should also investigate the inclusion of actual
pauses in the movement of the spider. In the current model, average velocity was
used instead of using a ‘running’ velocity and pause times. However, this is an
important feature of prey localization for spiders and therefore warrants further
investigation.

A model for prey movement was also derived according to observations from
spider feedings of flies. A model for an average fly was derived as well as an ‘informed
fly’ in which we assumed the fly behaved most efficiently in its escape. Both models
in conjunction with the spider model were then used to test a variety of initial spatial
configurations for colonies of varying sizes to determine the best spatial orientation
for prey capture. The model predictions generally support our hypothesis that
these spiders can improve their communal prey capture success employing regular
or random distributions, thus increasing their collective foraging area. The model
also predicted that if the spiders position themselves around the perimeter of the
web they are more successful at capturing prey.

Nonetheless, we found potentially conflicting results when considering the time
required to capture the prey under different spatial configurations. While the model
often predicted that positioning around the edge of the web led to the highest
likelihood of success, that position had the longest time to capture. Further study
of how different types of prey behave in these webs, and how spiders handle them,
is warranted.

It is important to note, however, that this model only considers foraging success.
Optimal positioning would also reflect the relative risk of the spiders being preyed
upon [20]. Evidence suggests that exterior positions in spider groups are more
exposed to predation [22], again, further study is needed to interpret predictions
here with natural observations.
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