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Abstract. In this paper, we formulate an SIR epidemic model with hybrid
of multigroup and patch structures, which can be regarded as a model for

the geographical spread of infectious diseases or a multi-group model with

perturbation. We show that if a threshold value, which corresponds to the
well-known basic reproduction number R0, is less than or equal to unity, then

the disease-free equilibrium of the model is globally asymptotically stable. We

also show that if the threshold value is greater than unity, then the model is
uniformly persistent and has an endemic equilibrium. Moreover, using a Lya-

punov functional technique, we obtain a sufficient condition under which the

endemic equilibrium is globally asymptotically stable. The sufficient condition
is satisfied if the transmission coefficients in the same groups are large or the

per capita recovery rates are small.

1. Introduction. From the beginning of the 20th century, for the sake of clarifying
the pattern of disease spread, various mathematical models have been formulated
as systems of differential or difference equations (see, for instance, Anderson [1]
and Diekmann and Heesterbeek [6]). Studying the mathematical properties of such
models contributes to obtain a suitable measure for the control of diseases and
therefore, authors have studied various epidemic models and obtained many results
on the analytical properties such as the existence, uniqueness of solutions and sta-
bility of each equilibrium of the models (see [1–3, 6–10, 12, 13, 16–21, 23, 24, 26, 27]
and references therein).

The recent development of worldwide transportation is thought to be one of
the causes of the global pandemic of diseases. Thus, some types of space-structured
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Figure 1.1. Diagram of the SIR epidemic model (1.1) with hybrid
of multi-group and patch structures

models are expected to play an important role in clarifying how such transportation
affects the pattern of disease prevalence. In this paper, we focus on the dynamics of
the following SIR epidemic model with hybrid of multi-group and patch structures,
which can be regarded as a type of space-structured model:

dSk

dt
= bk −

µk +

n∑
j=1

(1− δjk)αjk

Sk − Sk

n∑
j=1

βkjIj +

n∑
j=1

(1− δkj)αkjSj ,

dIk
dt

= Sk

n∑
j=1

βkjIj −

µk + γk +

n∑
j=1

(1− δjk)αjk

 Ik +

n∑
j=1

(1− δkj)αkjIj ,

dRk

dt
= γkIk −

µk +

n∑
j=1

(1− δjk)αjk

Rk +

n∑
j=1

(1− δkj)αkjRj ,

k = 1, 2, · · · , n
(1.1)

with initial condition{
Sk (0) = φk1 , Ik (0) = φk2 , Rk (0) = φk3 , k = 1, 2, · · · , n,(
φ11, φ

1
2, φ

1
3, · · · , φn1 , φn2 , φn3

)
∈ R3n

+ ,

where R3n
+ :=

{
(x1, y1, z1, · · · , xn, yn, zn) ∈ R3n : xk, yk, zk ≥ 0, k = 1, 2, · · · , n

}
.



THRESHOLD DYNAMICS OF A HYBRID SIR MODEL 1377

In system (1.1), Sk(t), Ik(t) and Rk(t) denote the densities of susceptible, infec-
tive and recovered individuals in group k at time t, respectively. bk > 0 denotes
the number of newborns per unit time in group k, µk > 0 denotes the per capita
mortality rate for individuals in group k (we do not consider the disease-induced
mortality rates here), γk ≥ 0 denotes the per capita recovery rate for infective in-
dividuals in group k, αkj ≥ 0 denotes the per capita rate at which an individual
in group j moves to group k, βkj ≥ 0 denotes the disease transmission coefficient
between a susceptible individual in group k and an infective individual in group
j, and δkj denotes the Kronecker delta such that δkj = 1 if k = j and δkj = 0
otherwise. For a diagram of system (1.1), see Figure 1.1.

Note that Li and Shuai [17] investigated the case βkj = 0, j 6= k, k = 1, 2, . . . , n
with three restricted cases for more general patch structures than (1.1). In this
model (1.1), the disease transmission can occur not only individuals in the same
groups but also different groups, that is, it can occur that βkj > 0 for some k 6= j.
We call this kind of system the model with hybrid of multi-group (see, for instance,
Guo et al. [9]) and patch (see, for instance, Arino [2], Wang and Zhao [26], Jin and
Wang [12] and Li and Shuai [17]) structures. One of the previous studies on such a
model was done by Bartlett [3, Section 8]. In the reference, the author considered
the following two-group model:

dS1

dt
= b1 − S1 (β1I1 + β2I2) +mS (S2 − S1) ,

dI1
dt

= S1 (β1I1 + β2I2)− (d+ ρ)µI1 +mI (I2 − I1) ,

dS2

dt
= b2 − S2 (β1I1 + β2I2) +mS (S1 − S2) ,

dI2
dt

= S2 (β1I1 + β2I2)− (d+ ρ)µI2 +mI (I1 − I2) .

Here the symbols are slightly modified from the original ones. In Bartlett [3, Section
8], this system was explained as the model for the “interaction” of the actual diffu-
sion or migration of individuals between groups and the chance of infection over the
groups due to the visit of infective individuals to other groups and then returning.
In Faddy [7], this type of model with hybrid of multi-group and patch structures was
also studied. In the reference, such a system with hybrid structure was proposed as
the model for considering both the mobility of infective individuals with respect to
the space-region system and the contact infection among the neighborhood of each
region. Recently, Muroya et al. [20] investigated a multi-group SIR epidemic model
with general patch structure and Kuniya and Muroya [14] established the complete
global dynamics of a multi-group SIS epidemic model.

Under (i) of the following assumption, system (1.1) can be regarded as the gen-
eralization of usual patch models such that βkj = 0 for k 6= j and βkj > 0 for k = j
and therefore, the analysis would have much mathematical interest:

Assumption 1.1. Either one of the following conditions holds.

(i) The n-square matrix A := (αkj)1≤k,j≤n is irreducible.
(ii) The n-square matrix B := (βkj)1≤k,j≤n is irreducible.

(i) of Assumption 1.1 implies that there exists a path such that an individual in
each group can move to any other group. (ii) of Assumption 1.1 implies that there
exists an infection path such that an infective individual in each group can contact
to a susceptible individual in any other group. Note that now we are also assuming
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that the rates αkj , k, j = 1, 2, . . . , n are independent of the class (that is, S, I or
R) of each individual. Similar assumption is found in, for instance, Arino [2] and
Hyman and LaForce [11]. Note also that we have

n∑
k=1

n∑
j=1

(1− δjk)αjkSk =

n∑
k=1

n∑
j=1

(1− δkj)αkjSj (1.2)

(similar equalities hold also for Ij and Rj , j = 1, 2, . . . , n) and hence, in each class,
the total emigration is always in balance with the total immigration and the only
input to the system is the recruitment of newborns.

Biologically, we can regard system (1.1) as a model for the geographical spread
of disease (see Section 7.1). In this case, as explained in Bartlett [3] and Faddy [7],
βkj , k 6= j can imply the effect of contact infection among the neighborhood of each
region, which is not due to the actual diffusion or migration. On the other hand,
we can also regard (1.1) as a multi-group model with perturbation with respect to
coefficient αkj . In this case, as in the model of a sexually transmitted disease in
Section 7.2, αkj , k 6= j imply the transfer rate from a state to other states (e.g.,
sexual transformation).

Due to the complex form, to our knowledge, there are very few studies on the
models with hybrid of multi-group and patch structures (see for example, Muroya
et al. [20] for a general SIR model with patch structure). In this paper, we study
the global dynamics of system (1.1) and obtain a threshold condition which can
determine the global asymptotic stability of each equilibrium. From the viewpoint
of application, we expect that the threshold condition can play an important role
in controlling the geographical spread of diseases.

Note that the first and second equations of system (1.1) are independent from
Rk, k = 1, 2, . . . , n. This allows us hereafter to consider only the following reduced
system:

dSk

dt
= bk −

µk +

n∑
j=1

(1− δjk)αjk

Sk − Sk

n∑
j=1

βkjIj +

n∑
j=1

(1− δkj)αkjSj ,

dIk
dt

= Sk

n∑
j=1

βkjIj −

µk + γk +

n∑
j=1

(1− δjk)αjk

 Ik +

n∑
j=1

(1− δkj)αkjIj ,

k = 1, 2, · · · , n
(1.3)

with initial condition{
Sk (0) = φk1 , Ik (0) = φk2 , k = 1, 2, · · · , n,(
φ11, φ

1
2, φ

2
1, φ

2
2, · · · , φn1 , φn2

)
∈ R2n

+ .

We define the feasible region for system (1.3) by

Γ :=

{
(S1, I1, · · · , Sn, In) ∈ R2n

+ : Sk ≤ S0
k,

n∑
k=1

(Sk + Ik) ≤ b̄

µ
, k = 1, 2, · · · , n

}
,

(1.4)
where b̄ :=

∑n
k=1 bk and µ := min1≤k≤n µk.

As in the previous studies of multi-group epidemic models (see, for instance,
[9,10,18,19,21,23,27]), we can expect that a threshold value for the global dynamics
of system (1.3) is obtained as the spectral radius of a nonnegative irreducible matrix,
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which corresponds to the well-known next generation matrix (see, for instance, van
den Driessche and Watmough [24]). Let H and b be a matrix and a vector defined
by

H :=


µ1 + α̃11 −α12 · · · −α1n

−α21 µ2 + α̃22 · · · −α2n

...
...

. . .
...

−αn1 −αn2 · · · µn + α̃nn

 and b :=


b1
b2
...
bn

 , (1.5)

respectively, where

α̃kk :=

n∑
j=1

(1− δjk)αjk. (1.6)

We define a positive n-column vector S0 := (S0
1 , S

0
2 , · · · , S0

n)T by

S0 = H−1b, (1.7)

where T denotes the transpose operation for a vector or a matrix. Note that it
follows from (1.6) that H is an M -matrix and hence, the positive inverse H−1

exists (see, for instance, Berman and Plemmons [4] or Varga [25]). Let Ṽ be an
n-dimensional diagonal matrix defined by

Ṽ := diag1≤k≤n (µk + γk + α̃kk)

=


µ1 + γ1 + α̃11 0 · · · 0

0 µ2 + γ2 + α̃22 · · · 0
...

...
. . .

...
0 0 · · · µn + γn + α̃nn

 (1.8)

and F̃ be a matrix-valued operator on Rn
+ defined by

F̃(S) :=


S1β11 S1β12 + α12 · · · S1β1n + α1n

S2β21 + α21 S2β22 · · · S2β2n + α2n

...
...

. . .
...

Snβn1 + αn1 Snβn2 + αn2 · · · Snβnn

 ,
where S := (S1, S2, · · · , Sn)T . Under these settings, we define a matrix M̃(S) := Ṽ−1F̃(S) = (M̃kj)n×n,

M̃kj :=
Skβkj + (1− δkj)αkj

µk + γk + α̃kk
, k, j = 1, 2, · · · , n

and a threshold value
R̃0 := ρ(M̃(S0)), (1.9)

where ρ denotes the spectral radius of a matrix. The definition of this value R̃0

is slightly different from that of the well-known basic reproduction number R0 (see
Diekmann and Heesterbeek [6] or van den Driessche and Watmough [24]). But

on analysis of multi-group SIR epidemic models, a lot of researchers used this R̃0

in place of R0 (see for example, Guo et al. [9]). In this paper, we shall use R̃0

in our analysis mainly for a technical reason such that we can construct a suitable
Lyapunov function Lmaking use of the form of matrix M̃(S) (see Section 3), because

we shall show that R̃0 has an equivalent threshold condition to that of R0, Hence,
we can use both of them as the threshold value for system (1.3) (see Section 5). The
main purpose of this paper is to establish the following theorem which states that
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R̃0 (and thus, R0) plays the role of the threshold value for the global asymptotic
stability of equilibria of system (1.3):

Theorem 1.1. Let Γ and R̃0 be defined by (1.4) and (1.9), respectively.

(1) If R̃0 ≤ 1, then the disease-free equilibrium E0 = (S0
1 , 0, S

0
2 , 0, · · · , S0

n, 0) of
system (1.3) is globally asymptotically stable in region Γ.

(2) If R̃0 > 1, then system (1.3) is uniformly persistent in the interior Γ0 of Γ
and has at least one endemic equilibrium E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 , · · · , S∗n, I∗n) in

Γ0. Moreover, if

min
1≤k≤n

{βkk(S∗k + I∗k)− γk} ≥ 0, (1.10)

then the endemic equilibrium E∗ is globally asymptotically stable in Γ0.

Remark 1.1. Condition (1.10) holds if βkk is large or γk is small (for details, see
Corollary 6.1). Moreover, this condition (1.10) is a sufficient condition of (4.16)
which is satisfied for a sufficiently small patch parameters of αjk. In this meaning,
the condition (1.10) can be seen as a perturbation result from a well known result
of Guo et al. for a multi-group SIR epidemic model.

For the proof of Theorem 1.1, we shall use a Lyapunov functional method (see also
Korobeinikov [13]). One of the core ideas of the construction of such a Lyapunov

function is using a Laplacian matrix B̃ and linear system B̃v = 0 as in Guo et
al. [9]. The other one of the core ideas is using function g(x) = x − 1 − lnx to
evaluate the derivative of the Lyapunov function in an appropriate way. Then, we
succeed in omitting the argument about the cycles, which was needed in the graph
theoretic approach in Guo et al. [9]. The result would remind us the importance of
using function g(x) = x− 1− lnx in the Lyapunov functional methods to analysis
for epidemic models.

The organization of this paper is as follows: In Section 2, we show the positivity
and boundedness of solutions of system (1.3). In Section 3, we prove (1) of Theorem
1.1. In Section 4, we prove (2) of Theorem 1.1. In Section 5, we derive the basic
reproduction number R0 for system (1.3) and show that it has a similar threshold

property as R̃0 in the sense that R0 ≤ 1 if and only if R̃0 ≤ 1. In Section 7, we
perform some numerical simulations to show the validity of Theorem 1.1.

2. Positivity and boundedness of solutions. In this section, we prove the fol-
lowing proposition.

Proposition 2.1. For system (1.3), it holds that

Sk (t) > 0, Ik (t) ≥ 0, ∀k = 1, 2, · · · , n, t ∈ (0,+∞)

and 
lim sup
t→+∞

n∑
k=1

{Sk (t) + Ik (t)} ≤ b̄

µ
,

lim sup
t→+∞

Sk (t) ≤ S0
k, k = 1, 2, · · · , n,

(2.1)

where b̄ > 0 and µ > 0 are positive constants defined in (1.4).

Proof. It follows from the first equation of (1.3) that limSk→+0
d
dtSk ≥ bk > 0.

Hence, initial condition Sk (0) = φk1 ≥ 0 implies that there exists a positive constant
tk0 such that Sk (t) > 0 for all 0 < t < tk0. Let t0 := min1≤k≤n tk0.
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First, we claim that Sk (t) > 0 for all k = 1, 2, · · · , n and 0 < t < +∞. In fact,
if it is not true, then there exist a positive constant t1 > t0 and a positive integer
k1 ∈ {1, 2, · · · , n} such that Sk1

(t1) = 0 and Sk1
(t) > 0 for all 0 < t < t1. However,

the first equation of (1.3) yields d
dtSk1

(t1) ≥ bk1
> 0, which contradicts to the fact

that Sk1(t) > 0 = Sk1(t1) for all 0 < t < t1.
Next, we claim that Ik(t) ≥ 0 for all k = 1, 2, · · · , n and 0 < t < +∞. In

fact, if it is not true, then there exist positive constant t2 > 0 and positive integer
k2 ∈ {1, 2, · · · , n} such that Ik2

(t2) < 0. Let s2 := inf {0 < t < t2 : Ik2
(t) < 0},

which must satisfy 0 ≤ s2 < t2 and Ik2
(s2) = 0. However, the second equation of

(1.3) yields d
dtIk2(s2) ≥ 0, which contradicts to the fact that Ik2 (t) < 0 = Ik2(s2)

for all s2 < t < t2.
Finally, we prove (2.1). It follows from (1.2) and (1.6) that

d

dt

{
n∑

k=1

(Sk + Ik)

}

=

n∑
k=1

bk − (µk + α̃kk)Sk − (µk + γk + α̃kk) Ik +

n∑
j=1

(1− δkj) (αkjSj + αkjIj)


=

n∑
k=1

{bk − µkSk − (µk + γk) Ik} ≤
n∑

k=1

bk −
(

min
1≤k≤n

µk

) n∑
k=1

(Sk + Ik) ,

from which we obtain the first inequality of (2.1). It follows from the first equation
of (1.3) that

dSk

dt
≤ bk − (µk + α̃kk)Sk +

n∑
j=1

(1− δkj)αkjSj , k = 1, 2, · · · , n.

Then, it follows from (1.7) and the theory of linear differential equations that

dS

dt
≤
(
S (0)− S0

)
exp (−Ht) + S0.

Since H defined by (1.5) is an M -matrix, all of its eigenvalues have negative real
parts. Therefore, we have

lim sup
t→+∞

exp (−Ht) = 0

and hence, lim supt→+∞ Sk (t) ≤ S0
k, k = 1, 2, · · · , n.

3. Global stability of the disease-free equilibrium E0 for R̃0 ≤ 1. In this
section, we give the proof of (1) of Theorem 1.1.

Proof of (1) of Theorem 1.1. First we show that there do not exist any endemic
equilibria E∗ in Γ. Since solutions belong to Γ, we have 0 < Sk ≤ S0

k for 1 ≤ k ≤ n
and hence 0 ≤ M̃ (S) ≤ M̃(S0). Assumption 1.1 guarantees the irreducibility of

matrices M̃ (S), M̃(S0) and M̃ (S) +M̃(S0). Therefore, it follows from the Perron-
Frobenius theorem on nonnegative irreducible matrices (see, for instance, Berman
and Plemmons [4, Corollary 2.1.5]) that

ρ(M̃ (S)) < ρ(M̃
(
S0
)
) = R̃0 ≤ 1

for S 6= S0. Hence,

M̃ (S) I = I
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has only the trivial solution I = 0. This implies that the disease-free equilibrium
E0 is the only equilibrium of system (1.3) in Γ.

Let (ω1, ω2, · · · , ωn) be a left eigenvector of matrix M̃
(
S0
)

corresponding to the

eigenvalue ρ(M̃(S0)), that is,

(ω1, ω2, · · · , ωn) M̃
(
S0
)

= (ω1, ω2, · · · , ωn) ρ(M̃
(
S0)
)
.

The irreducibility of matrix M̃
(
S0
)

yields the strict positive vector (ω1, ω2, · · · , ωn)
with ωk > 0 for k = 1, 2, · · · , n (see Berman and Plemmons [4, Theorem 2.1.4]).
Let L be a Lyapunov function on Rn

+ defined by

L := (ω1, ω2, · · · , ωn)

×


µ1 + γ1 + α̃11 0 · · · 0

0 µ2 + γ2 + α̃22 · · · 0
...

...
. . .

...
0 0 · · · µn + γn + α̃nn


−1 

I1
I2
...
In

 .
The derivative along the trajectories of system (1.3) is

L′ = (ω1, ω2, · · · , ωn)
[
M̃ (S) I− I

]
≤ (ω1, ω2, · · · , ωn)

[
M̃
(
S0
)
I− I

]
=

{
ρ
(
M̃
(
S0
))
− 1
}

(ω1, ω2, · · · , ωn) I

=
(
R̃0 − 1

)
(ω1, ω2, · · · , ωn) I ≤ 0. (3.1)

Thus, for R̃0 < 1, we have that L′ = 0 if and only if I = 0. For R̃0 = 1, we see from
the first equality of (3.1) that L′ = 0 implies

(ω1, ω2, · · · , ωn) M̃ (S) I = (ω1, ω2, · · · , ωn) I. (3.2)

In this situation, if S 6= S0, then we have

(ω1, ω2, · · · , ωn) M̃ (S) < (ω1, ω2, · · · , ωn) M̃
(
S0
)

= (ω1, ω2, · · · , ωn) ,

and hence, (3.2) has only the trivial solution I = 0. Consequently, for R̃0 ≤ 1,
we have that L′ = 0 if and only if I = 0 or S = S0. This implies that the only
compact invariant subset of the set where L′ = 0 is the singleton

{
E0
}

. Therefore, it
follows from the LaSalle invariance principle (see LaSalle [15]) that the disease-free
equilibrium E0 is globally asymptotically stable in Γ.

4. Global stability of the endemic equilibrium E∗ for R̃0 > 1. We first prove
the following proposition.

Proposition 4.1. Let Γ and R̃0 be defined by (1.4) and (1.9), respectively. If

R̃0 > 1, then the disease-free equilibrium E0 =
(
S0
1 , 0, · · · , S0

n, 0
)
∈ Γ is unstable.

Proof. Let ωk, k = 1, 2, . . . , n and L be as in the proof of (1) of Theorem 1.1. Since

(ω1, ω2, · · · , ωn) M̃
(
S0
)
− (ω1, ω2, · · · , ωn) =

{
ρ
(
M̃
(
S0
))
− 1
}

(ω1, ω2, · · · , ωn)

=
(
R̃0 − 1

)
(ω1, ω2, · · · , ωn) > 0,

it follows from the continuity of M̃ (S) with respect to S that

L′ = (ω1, ω2, · · · , ωn)
[
M̃ (S) I− I

]
> 0

in a neighborhood of E0 in Γ0. This implies that E0 is unstable.
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From Freedman et al. [8], using an argument as in the proof of Proposition 3.3
of Li et al. [16], we can prove that the instability of E0 implies the uniform persis-
tence of system (1.3). From Smith and Waltman [22, Theorem D.3], we see that
the uniform persistence of system (1.3) together with the uniform boundedness of
solutions in Γ0 implies the existence of an endemic equilibrium in Γ0. Consequently,
from Propositions 2.1 and 4.1, we obtain the following proposition.

Proposition 4.2. Let Γ and R̃0 be defined by (1.4) and (1.9), respectively. If

R̃0 > 1, then system (1.3) is uniformly persistent and has at least one endemic
equilibrium E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 , · · · , S∗n, I∗n) in the interior Γ0 of Γ.

In the remainder of this section, we assume that R̃0 > 1. It follows from (1.3) that
each component of the endemic equilibrium E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 , · · · , S∗n, I∗n) ∈ Γ0

satisfies the following equations:

bk = (µk + α̃kk)S∗k +

n∑
j=1

{
βkjS

∗
kI
∗
j − (1− δkj)αkjS

∗
j

}
, (4.1)

(µk + γk + α̃kk) I∗k =

n∑
j=1

{
βkjS

∗
kI
∗
j + (1− δkj)αkjI

∗
j

}
, k = 1, 2, · · · , n. (4.2)

Let
β̃kj := {βkjS∗k + (1− δkj)αkj} I∗j , 1 ≤ k, j ≤ n,

B̃ :=


∑

j 6=1 β̃1j −β̃21 · · · −β̃n1
−β̃12

∑
j 6=2 β̃2j · · · −β̃n2

...
...

. . .
...

−β̃1n −β̃2n · · ·
∑

j 6=n β̃nj


and

(v1, v2, · · · , vn) := (C1, C2, · · · , Cn) ,

where Ck denotes the cofactor of the k-th diagonal entry of B̃. Using arguments as
in Guo et al. [9], we have

B̃v = 0

and hence, from (4.2), we have
n∑

j=1

vj{βjkS∗j + (1− δjk)αjk} = vk(µk + γk + α̃kk), k = 1, 2, · · · , n. (4.3)

Using (v1, v2, · · · , vn), we define a Lyapunov functional on R2n
+ by

U :=

n∑
k=1

vk

{
S∗kg

(
Sk

S∗k

)
+ I∗kg

(
Ik
I∗k

)}
, (4.4)

where g (x) := x− 1− lnx is a function defined on (0,+∞). Note that g (x) ≥ 0 for
all x > 0 and the global minimum g (x) = 0 is attained if and only if x = 1. The
derivative of U along the trajectories of system (1.3) is

U ′ =

n∑
k=1

vk

{(
1− 1

xk

)
dSk

dt
+

(
1− 1

yk

)
dIk
dt

}
, (4.5)

where

xk =
Sk

S∗k
, yk =

Ik
I∗k
, k = 1, 2, · · · , n.
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It follows from the first equation of (1.3) and (4.1) that

dSk

dt
= bk − (µk + α̃kk)Sk −

n∑
j=1

{βkjSkIj − (1− δkj)αkjSj}

= − (µk + α̃kk) (Sk − S∗k)−
n∑

j=1

{
βkj

(
SkIj − S∗kI∗j

)
− (1− δkj)αkj

(
Sj − S∗j

)}
= − (µk + α̃kk)S∗k (xk − 1)−

n∑
j=1

{
βkjS

∗
kI
∗
j (xkyj − 1)− (1− δkj)αkjS

∗
j (xj − 1)

}
.

(4.6)

Furthermore it follows from the second equation of (1.3) and (4.2) that

dIk
dt

=
n∑

j=1

{βkjSkIj + (1− δkj)αkjIj} − (µk + γk + α̃kk) Ik

=

n∑
j=1

{
βkjS

∗
kI
∗
j xkyj + (1− δkj)αkjI

∗
j yj
}
− (µk + γk + α̃kk) I∗kyk

=

n∑
j=1

{
βkjS

∗
kI
∗
j (xkyj − yk) + (1− δkj)αkjI

∗
j (yj − yk)

}
. (4.7)

Substituting (4.6) and (4.7) into (4.5), we have

U ′ =

n∑
k=1

vk

[(
1− 1

xk

){
− (µk + α̃kk)S∗k (xk − 1)

−
n∑

j=1

{
βkjS

∗
kI
∗
j (xkyj − 1)− (1− δkj)αkjS

∗
j (xj − 1)

}}

+

(
1− 1

yk

){ n∑
j=1

{
βkjS

∗
kI
∗
j (xkyj − yk) + (1− δkj)αkjI

∗
j (yj − yk)

}}]

=−
n∑

k=1

vk

[
(µk + α̃kk)S∗k

(
1− 1

xk

)
(xk − 1)

−
n∑

j=1

(1− δkj)αkjS
∗
j

(
1− 1

xk

)
(xj − 1)

]

+

n∑
k=1

vk

[ n∑
j=1

βkjS
∗
kI
∗
j

{(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

}

+

n∑
j=1

(1− δkj)αkjI
∗
j

(
1− 1

yk

)
(yj − yk)

]
. (4.8)

Now we prove the following lemma.

Lemma 4.1. For k, j = 1, 2, · · · , n, the following relations hold:(
1− 1

xk

)
(xj − 1) = g (xj)− g

(
xj
xk

)
+ g

(
1

xk

)
, (4.9)(

1− 1

xk

)
(xk − 1) = g (xk) + g

(
1

xk

)
, (4.10)



THRESHOLD DYNAMICS OF A HYBRID SIR MODEL 1385(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

= −g
(

1

xk

)
− g

(
xkyj
yk

)
+ {g (yj)− g (yk)} , (4.11)(

1− 1

yk

)
(yj − yk) = −g

(
yj
yk

)
+ {g (yj)− g (yk)} . (4.12)

Proof. For k, j = 1, 2, · · · , n, we have(
1− 1

xk

)
(xj − 1) = xj −

xj
xk

+
1

xj
− 1 = g (xj)− g

(
xj
xk

)
+ g

(
1

xk

)
and hence, (4.9) holds. In particular, since g(

xj

xk
) = g(1) = 0 when j = k, (4.10)

holds. Moreover, we have(
1− 1

xk

)
(1− xkyj) +

(
1− 1

yk

)
(xkyj − yk)

=

(
1− 1

xk
− xkyj + yj

)
+

(
xkyj −

xkyj
yk
− yk + 1

)
=2− 1

xk
+ yj −

xkyj
yk
− yk

=− g
(

1

xk

)
− g

(
xkyj
yk

)
+ {g(yj)− g(yk)}

and(
1− 1

yk

)
(yj − yk) = yj −

yj
yk
− yk + 1 = −g

(
yj
yk

)
+ {g (yj)− g (yk)} .

Thus, (4.11) and (4.12) hold.

Using Lemma 4.1, we give the proof of (2) of Theorem 1.1.

Proof of (2) of Theorem 1.1. Substituting (4.9)-(4.12) into (4.8), we have

U ′ =−
n∑

k=1

vk (µk + α̃kk)S∗k

{
g (xk) + g

(
1

xk

)}

+
n∑

k=1

vk

n∑
j=1

(1− δkj)αkjS
∗
j

{
g (xj)− g

(
xj
xk

)
+ g

(
1

xk

)}

−
n∑

k=1

vk

n∑
j=1

[
βkjS

∗
kI
∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}
+ (1− δkj)αkjI

∗
j g

(
yj
yk

)]

+

n∑
k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)αkj) I

∗
j {g (yj)− g (yk)} . (4.13)

The last term of the right-hand side of (4.13) is rewritten as

n∑
k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)αkj) I

∗
j {g(yj)− g(yk)}

=

n∑
k=1

vk

n∑
j=1

(βkjS
∗
k + (1− δkj)αkj) I

∗
j g (yj)
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−
n∑

k=1

vk


n∑

j=1

(βkjS
∗
k + (1− δkj)αkj) I

∗
j

 g (yk)

=

n∑
j=1

vj

n∑
k=1

(
βjkS

∗
j + (1− δjk)αjk

)
I∗kg (yk)−

n∑
k=1

vk (µk + γk + α̃kk) I∗kg (yk)

=

n∑
k=1


n∑

j=1

vj
(
βjkS

∗
j + (1− δjk)αjk

)
− vk (µk + γk + α̃kk)

 I∗kg (yk) . (4.14)

Substituting (4.14) into (4.13), we have

U ′ =−
n∑

k=1

vk (µk + α̃kk)S∗k

{
g (xk) + g

(
1

xk

)}

+

n∑
k=1

vk

n∑
j=1

(1− δkj)αkjS
∗
j

{
g (xj)− g

(
xj
xk

)
+ g

(
1

xk

)}

−
n∑

k=1

vk

n∑
j=1

[
βkjS

∗
kI
∗
j

{
g

(
1

xk

)
+ g

(
xkyj
yk

)}
+ (1− δkj)αkjI

∗
j g

(
yj
yk

)]

+

n∑
k=1


n∑

j=1

vj
(
βjkS

∗
j + (1− δjk)αjk

)
− vk (µk + γk + α̃kk)

 I∗kg (yk)

=−
n∑

k=1

vk (βkkI
∗
k + (µk + α̃kk))−

n∑
j=1

vj (1− δjk)αjk

S∗kg (xk)

−
n∑

k=1

vk


 n∑

j=1

βkjI
∗
j + (µk + α̃kk)

S∗k −
n∑

j=1

(1− δkj)αkjS
∗
j

 g

(
1

xk

)

−
n∑

k=1

vk

n∑
j=1

(1− δkj)αkjS
∗
j g

(
xj
xk

)

−
n∑

k=1

vk

n∑
j=1

{
βkjS

∗
kI
∗
j g

(
xkyj
yk

)
+ (1− δkj)αkjI

∗
j g

(
yj
yk

)}

+

n∑
k=1


n∑

j=1

vj
(
βjkS

∗
j + (1− δjk)αjk

)
− vk (µk + γk + α̃kk)

 I∗kg(yk).

Hence, from (4.1) and (4.3), we have

U ′ =−
n∑

k=1

vk (βkkI
∗
k + (µk + α̃kk))−

n∑
j=1

vj (1− δjk)αjk

S∗kg (xk)

−
n∑

k=1

vkbkg

(
1

xk

)
−

n∑
k=1

vk

n∑
j=1

(1− δkj)αkjS
∗
j g

(
xj
xk

)

−
n∑

k=1

vk

n∑
j=1

{
βkjS

∗
kI
∗
j g

(
xkyj
yk

)
+ (1− δkj)αkjI

∗
j g

(
yj
yk

)}
. (4.15)
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We note that assumption (1.10) implies
n∑

j=1

vjβjkS
∗
j ≥ vk(γk − βkkI∗k), ∀k = 1, 2, · · · , n,

which is equivalent to

vk(βkkI
∗
k + (µk + α̃kk))−

n∑
j=1

vj(1− δjk)αjk ≥ 0, ∀k = 1, 2, · · · , n. (4.16)

From (4.15) and (4.16), it follows that U ′ ≤ 0. Furthermore, we see that the equality
U ′ = 0 holds if and only if

xk = 1 and yk = yj ∀k, j = 1, 2, · · · , n. (4.17)

(4.17) implies that there exists a positive constant c > 0 such that

Ik
I∗k

= c ∀k = 1, 2, · · · , n.

Thus, substituting

Sk = S∗k and Ik = cI∗k ∀k = 1, 2, · · · , n
into the first equation of system (1.3), we have

0 = bk − (µk + α̃kk) + c

n∑
j=1

βkjS
∗
kI
∗
j − (1− δkj)αkjS

∗
j , ∀k = 1, 2, · · · , n. (4.18)

Since the right-hand side of (4.18) is strictly monotone decreasing with respect to
c, equality (4.18) holds if and only if c = 1. This implies that the only compact
invariant subset where U ′ = 0 is the singleton {E∗}. From a similar argument as
in Section 3, we can conclude that E∗ is globally asymptotically stable in Γ0.

5. Relation between R̃0 and the basic reproduction number R0. In this
section, we calculate the basic reproduction number R0 for system (1.3) and inves-

tigate the relation between it and R̃0. First we derive the next generation matrix
(see van den Driessche and Watmough [24]) for system (1.3), whose spectral radius
is the desired R0. Let V be an n-square matrix defined by

V =


µ1 + γ1 + α̃11 −α12 · · · −α1n

−α21 µ2 + γ2 + α̃22 · · · −α2n

...
...

. . .
...

−αn1 −αn2 · · · µn + γn + α̃nn

 . (5.1)

Note that the diagonal entries of matrix V imply the rate of transfer of individ-
uals out of each group, and the nondiagonal entries imply the rate of transfer of
individuals into each group by means different from the new infection. Let F be a
matrix-valued operator on Rn

+ defined by

F(S) =


S1β11 S1β12 · · · S1β1n
S2β21 S2β22 · · · S2β2n

...
...

. . .
...

Snβn1 Snβn2 · · · Snβnn

 .
Note that the (k, j) entry of matrix F (S) implies the rate at which an infective
individual in group j produces a new infective individual in group k when the
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density of susceptible individuals is given by S. Since V is an M -matrix, the
positive inverse V−1 exists and hence, M(S) := F (S)V−1 exists. Following the
definition in [24], we obtain the next generation matrix as M

(
S0
)

and hence, the
basic reproduction number R0 is obtained by the spectral radius

R0 = ρ
(
M
(
S0
))
. (5.2)

Note that

F(S∗)−V = F̃(S∗)− Ṽ = 0, (5.3)

where S∗ = (S∗1 , S
∗
2 , · · · , S∗n)

T
. From (5.3) we have

F (S∗)V−1 = Ṽ−1F̃ (S∗) = E,

where E denotes the identity matrix. Hence

ρ(M(S∗)) = ρ(M̃(S∗)) = 1

and it follows from (1.9), (5.2), Proposition 2.1 and the theory of nonnegative
irreducible matrices (see, for instance, Varga [25, Chapter 2]) that

R0 < 1 if and only if R̃0 < 1,

that is,

sign(R0 − 1) = sign(R̃0 − 1).

Hence, we conclude that R0 plays the role of a threshold for system (1.3) similar to

R̃0 and Theorem 1.1 can be rewritten as follows.

Theorem 5.1. Let Γ and R0 be defined by (1.4) and (5.2), respectively.

(1) If R0 ≤ 1, then the disease-free equilibrium E0 = (S0
1 , 0, S

0
2 , 0, · · · , S0

n, 0) of
system (1.3) is globally asymptotically stable in region Γ.

(2) If R0 > 1, then system (1.3) is uniformly persistent in the interior Γ0 and
has at least one endemic equilibrium E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 , · · · , S∗n, I∗n) in Γ0.

Moreover, if (1.10) holds, then the endemic equilibrium E∗ is globally asymp-
totically stable in Γ0.

6. Corollary. In this section, we provide a sufficient condition under which con-
dition (1.10) holds. The condition is expressed only by given coefficients in (1.3)
and therefore, it plays an important role in checking whether the condition (1.10)
holds.

If R̃0 > 1 (or, equivalently, R0 > 1), then it follows from the first statement of
(2) of Theorem 1.1 (or Theorem 5.1) that system (1.3) has an endemic equilibrium
E∗ in Γ0. Adding the first and second equations of system (1.3), we have

d

dt
(Sk + Ik) = bk −

{
µk +

n∑
j=1

(1− δjk)αjk

}
(Sk + Ik)

+

n∑
j=1

(1− δkj)αkj (Sj + Ij)− γkIk, k = 1, 2, · · · , n.
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Thus, each component of the endemic equilibrium E∗ = (S∗1 , I
∗
1 , · · · , S∗n, I∗n) must

satisfy the following relation:

0 = bk −
{
µk +

n∑
j=1

(1− δjk)αjk

}
(S∗k + I∗k) +

n∑
j=1

(1− δkj)αkj

(
S∗j + I∗j

)
− γkI∗k

≥ bk −
{
µk + γk +

n∑
j=1

(1− δjk)αjk

}
(S∗k + I∗k) +

n∑
j=1

(1− δkj)αkj

(
S∗j + I∗j

)
for k = 1, 2, · · · , n. Thus, we have 0 ≥ b −V (S∗1 + I∗1 , · · · , S∗n + I∗n)

T
. Hence, it

holds that

(S∗1 + I∗1 , · · · , S∗n + I∗n)
T ≥ V−1b,

where b and V are given by (1.5) and (5.1), respectively. Thus, we obtain the
following sufficient condition:

min
1≤k≤n

{
βkk

(
V−1b

)
k
− γk

}
≥ 0, (·)k denotes the k-th entry of a vector, (6.1)

under which the condition (1.10) holds.

Corollary 6.1. Let Γ, R̃0 and R0 be defined by (1.4), (1.9) and (5.2), respectively.

If R̃0 > 1 (or, equivalently, R0 > 1) and (6.1) holds, then system (1.3) has a globally
stable endemic equilibrium E∗ in the interior Γ0 of Γ.

Since the left-hand side of (6.1) is explicitly expressed by the given coefficients
in (1.3), we can easily check whether it holds by performing numerical calculations.

7. Numerical examples. In this section, we perform numerical simulations to
verify the validity of Theorem 1.1. First, based on the interpretation in Bartlett [3]
and Faddy [7], we regard system (1.1) as a model for a geographically spreading
disease. Next, we regard system (1.1) as a multi-group model with perturbation
with respect to αkj and simulate the spread of a sexually transmitted disease.

7.1. A geographically spreading disease. To model the geographical spread of
a disease, we fix n = 100 as the number of regions. We further fix the following
coefficients.

bk =

{
3 + 2 sin

(
2π

100
k

)}
× 10−2, µk = 3 + 2 sin

(
2π

100
k

)
,

γk =

{
1 + 0.5 sin

(
2π

100
k

)}
× 10−2,

αkj =

{
1 + 0.5 sin

(
2π

100
(k − j)

)}
× 102, k 6= j, αkj = 0, k = j,

βkj = p×
(
αkj × 10−1 + 1

)
, k, j = 1, 2, · · · , 100.

(7.1)

We observe the behavior of solution of (1.1) with varying p. Note that the asym-
metric case αkj 6= αjk for j 6= k is considered in (7.1). Under (7.1), we have

N (t) :=

100∑
k=1

{Sk (t) + Ik (t) +Rk (t)} → N∗ = 1 as t→ +∞

for any N (0) > 0. Thus, setting (Sk(0), Ik(0), Rk(0)) = (0.009, 0.001, 0) for all
k ∈ {1, 2, · · · , 100}, we let the total population N(t) attains its equilibrium N∗ = 1
at t = 0.
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Figure 7.1. Behavior of the solution of infective individuals of
system (1.1) for (7.1) and p = 1. In this case, R̃0 = 0.44046 · · · ≤ 1.
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Figure 7.2. Behavior of the solution of infective individuals of
system (1.1) for (7.1) and p = 5. In this case, R̃0 = 1.0052 · · · > 1.

First we set p = 0.1. In this case, we have R̃0 = 0.999797 · · · ≤ 1 and hence,
from (1) of Theorem 1.1, the disease-free equilibrium E0 of system (1.1) is globally
asymptotically stable in region Γ. In fact, we obtain Figure 7.1 which exhibits this
result.

Next we set p = 5. In this case, we have R̃0 = 1.0052 · · · > 1 and

min
1≤k≤100

{
βkk

(
V−1b

)
k
− γk

}
= 0.0348339 · · · > 0.

Hence, from Corollary 6.1, system (1.1) has a unique endemic equilibrium E∗ in Γ0

which is globally asymptotically stable. In fact, we obtain Figure 7.2 which exhibits
this result.

7.2. A sexually transmitted disease. Next, to model a sexually transmitted
disease, we let n = 2 and k = 1 and k = 2 be subscripts representing female and
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(a) Fractions of infective individuals I1 and

I2 versus time t for p = 5. In this case,

R̃0 = 0.881475 · · · < 1.
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(b) Fractions of infective individuals I1 and

I2 versus time t for p = 6. In this case,

R̃0 = 1.03231 · · · > 1 (I∗1 = 0.0170 · · · , I∗2 =
0.0062 · · · )

Figure 7.3. Behavior of the solution of infective individuals of
system (1.1) for (7.2)

male, respectively. Fix
b1 = b2 = 1.5, µ1 = µ2 = 3,

γ1 = γ2 = 0.01,

α11 = α22 = 0, α12 = α21 = 0.1,

β11 = p, β22 = 0.5× p, β12 = β21 = 1

(7.2)

and observe the behavior of solution of system (1.1) with varying p. Under (7.2),
we have

N (t) :=

2∑
k=1

{Sk (t) + Ik (t) +Rk (t)} → N∗ = 1 as t→ +∞

for any N (0) > 0. Thus, let us set the initial condition as (Sk(0), Ik(0), Rk(0)) =
(0.49, 0.01, 0) for k = 1, 2.

First we set p = 5. In this case, we have R̃0 = 0.881475 · · · ≤ 1 and hence,
from (1) of Theorem 1.1, the disease-free equilibrium E0 of system (1.1) is globally
asymptotically stable in region Γ. In fact, we obtain Figure 7.3 (a) which exhibits
this result.

Next we set p = 6. In this case, we have R̃0 = 1.03231 · · · > 1 and

min
1≤k≤100

{
βkk

(
V−1b

)
k
− γk

}
= 1.48502 · · · > 0.

Hence, from Corollary 6.1, system (1.1) has a unique endemic equilibrium E∗ in
Γ0 which is globally asymptotically stable. In fact, we obtain Figure 7.3 (b) which
exhibits this result.

8. Discussion. In this paper, we have formulated an SIR epidemic model (1.1)
with hybrid of multi-group and patch structures. We have defined a threshold
value R̃0 by the spectral radius of a nonnegative irreducible matrix M̃(S0) (see

(1.9)), and we have shown that if R̃0 ≤ 1, then the disease-free equilibrium E0 of

the system is globally asymptotically stable, while if R̃0 > 1, then the system is
uniformly persistent and there exists an endemic equilibrium E∗. Moreover, under
the condition (1.10), we have shown that if R̃0 > 1, then the endemic equilibrium
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E∗ is globally asymptotically stable. Moreover, we obtained a sufficient condition
for (1.10), which is expressed only by given coefficients and therefore, we can easily
testify whether it holds or not by numerical calculation (see Section 7). We have

also shown that R̃0 ≤ 1 if and only if R0 ≤ 1. This implies that we can use both
R̃0 and R0 to predict the eventual size of epidemic.

Compared to Li and Shuai [17], we see that from (6.1), the condition (1.10) holds
if the transmission coefficients βkk, k = 1, 2, . . . , n in the same groups are sufficiently
large and/or the per capita recovery rates γk, k = 1, 2, . . . , n are sufficiently small.
This situation seems to be realistic for a disease with high infectiousness and long
(or, lifelong) infection period. Thus, the geographical spread of HIV/AIDS infection
might be thought to be the one of important examples for applications of our
stability results.
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