
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2014.11.1357
AND ENGINEERING
Volume 11, Number 6, December 2014 pp. 1357–1373

A MODEL FOR THE NONLINEAR MECHANISM RESPONSIBLE

FOR COCHLEAR AMPLIFICATION

Kimberly Fessel and Mark H. Holmes

Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, NY 12180-3590, USA

(Communicated by Qing Nie)

Abstract. A nonlinear model for the mechanism responsible for the amplifi-

cation of the sound wave in the ear is derived using the geometric and material

properties of the system. The result is a nonlinear beam equation, with the
nonlinearity appearing in a coefficient of the equation. Once derived, the beam

problem is analyzed for various loading conditions. Based on this analysis it is

seen that the mechanism is capable of producing a spatially localized gain, as
required by any amplification mechanism, but it is also capable of increasing

the spatial contrast in the signal.

1. Introduction. The fundamental open question in understanding how we hear
concerns the role of a nonlinear feedback mechanism known as the cochlear amplifier.
To provide some background on how it works, the cochlea is a fluid-filled tubular
structure that is subdivided by a partition. A simplified two-chamber illustration is
shown in Fig. 1. The partition is rigid except for a flexible portion that is comprised
of the basilar membrane (BM), the organ of Corti, and the tectorial membrane (the
latter two are not shown in the figure). Within the organ of Corti there are two
types of cells which contain mechanically gated ion channels that are capable of
responding to the deformation of the partition. What are called the inner hair cells
are responsible for transmitting the sound signal to the brain, while the outer hair
cells (OHCs) are responsible for the amplifier. What is of interest here is developing
a model for the nonlinear forcing on the BM due to the OHCs and to provide an
explanation of how this can give rise to an amplification mechanism.

It is thought that OHC forcing is due to electromotility, which refers to the fact
that the length of a OHC changes in response to changes in its receptor potential.
The assumption is that these in vitro length changes translate into in vivo forces
on the BM. The origin of this voltage-to-force conversion has been identified as a
motor protein known as prestin, which is located in the lateral plasma membrane
of the OHCs [4, 14]. Over the past few years, much has been learned about OHC
electromotility as well as prestin, and a recent review can be found in [1]. Note
that although the consensus is that OHC electromotility is the source of the active
hearing system; how electromotility affects the BM is still unknown.

Modeling the ear has a long history, going back to (at least) Helmholtz. Several
analytic models successfully described the passive cochlear dynamics by the 1980s
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Figure 1. The geometry used for modeling of the hearing process
is as found in [11]. For the purposes of this paper, the asterisks
may be disregarded.

[5, 11, 10, 23]. Since then there has been a considerable effort to derive a model for
the amplified cochlea, but with limited success. This is partly due to the incomplete
experimental characterization of the mechanism [2], and partly due to the difficulty
of analyzing the models that have been proposed. This is not to say that progress
has not been made, and significant contributions to the modeling effort include a
continuum model by Chadwick [6], the feed-forward model of Steele and his co-
workers [16, 26], and the comprehensive models considered by Grosh and his co-
workers [20, 17].

In this work we propose a new model for amplification which incorporates the
effects of OHC electromotility on the BM. Our assumption is that the force is
determined by the displacement of the BM, and the principal nonlinearity comes
from the nonlinear dependence of the OHC receptor potential on the deflection of
the hair bundle. This differs from the model in [16, 26], where the assumption
is made that the amplifier force is proportional to the total vertical force on the
partition, while in [6] a wavenumber dependent forcing function is postulated.

To incorporate the nonlinear forcing, we develop a geometric model for the organ
of Corti that is based on the work in [7]. With this, the amplification force is
decomposed into tangential and normal components, and these are then integrated
into a nonlinear beam model for the BM. In the presentation, numerous modeling
assumptions are made related to the effective contributions to the amplifier, and
reasons are provided for these assumptions. In the end, the essential elements of
the model are the nonlinear dynamic tension induced by the OHC forcing, and its
strong dependence on the angular deflection of the cilia bundle. It should be pointed
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out that it is not assumed that the BM is under tension, but rather that as the BM
deflects, the tangential component of the OHC forcing is the principal cause of the
amplification mechanism.

What is not considered is how the multi-dimensional fluid loading affects the
motion, and this is left for a future study. However, the analysis will provide strong
evidence that the proposed mechanism is capable of suppressing the motion of the
BM in certain regions, while amplifying it elsewhere. In this sense, it does not simply
increase the gain in the region associated with the amplification but it also has the
ability to increase the contrast between the amplified and unamplified regions.

2. Cochlear equations of motion. We consider an uncoiled cochlea which re-
sembles a long, narrow tube. The inside contains two fluid-filled sections separated
by a cochlear partition consisting of the basilar membrane and a rigid shelf. Figure
1 depicts this configuration along with the layout for the x-, y-, and z-directions.
The length and maximum width of the BM are characterized by the quantities L
and B, respectively. The BM width increases with longitudinal position and is
thus represented by a x-dependent function. It is also considered to be symmetric
about the x-axis. Thus, the BM is located in the z = 0 plane and is contained by
0 < x < L and −G(x) < y < G(x).

The equations for the cochlear fluid are

(∂t − ν∇2)v = −1

ρ
∇p, (1)

∇ · v = 0, (2)

and for the BM (where z = 0)

L(η) + µ∂2
t η = −[[p]]. (3)

In these equations, v is the velocity, p is the pressure, ν is the kinematic viscosity,
ρ is the mass density of the fluid, while η is the z-displacement and µ is the mass
per unit area of the BM. Also, L is a nonlinear beam operator that will be derived
shortly, and [[p]] is the pressure jump across the partition.

Given that the principal issue considered here is the nonlinearity associated with
amplification, the question arises as to why the convective term in (1) is omitted.
The role of compressibility was considered in depth in [15], and the conclusion was
that, for the auditory frequency range, it does not significantly affect the motion of
the fluid.

2.1. Nonlinear beam model. The assumption made here is that the OHCs are
responsible for in-plane forcing on the BM. The theory used to obtain the resulting
equation of motion is based on [8]. To explain, the equations for a beam moving in
the y, z-plane are

∂2
yζ + (1 + σ)∂yη∂

2
yη = 0, (4)

EI∂4
yη − 2hE

[
(1 + σ)(2η2

y + ζy)∂2
yη + σ∂yη∂

2
yζ
]
= (1− σ2)f, (5)

where η, ζ are the displacements in the normal (z) and transverse (y) directions,
respectively, E is the Young’s modulus, I = 2h3/3, 2h is the thickness, σ is the
Poisson ratio, and f is the normal load. The horizontal traction will be incorporated
through the boundary condition. As with the BM, the above equations hold for
−G < y < G.



1360 KIMBERLY FESSEL AND MARK H. HOLMES

Integrating (4), it follows that ∂yζ + 1
2 (1 + σ)(∂yη)2 = A, and integrating this

yields

ζ = A0y +B0 −
1

2
(1 + σ)

∫ G

−G
(∂yη)2dy. (6)

Introducing this into (5) we get that

EI∂4
yη − 2h(1 + σ)E

[
A0 +

3

2
(1− σ)(∂yη)2

]
∂2
yη = (1− σ2)f. (7)

It remains to determine A0, and this is done using the boundary conditions. In
terms of its normal displacement, the beam is assumed to be simply supported, so
η = ∂2

yη = 0 at y = ±G. For the transverse displacement, the beam is assumed
fixed at y = −G and there is a loading, due to the OHCs, at y = G. Note that the
transverse stress is

σy =
E

1− σ2
(εy + σεz),

where εy = ∂yζ−z∂2
yη+ 1

2 (∂yη)2 and εz = 1
2 (∂yη)2. Letting Ph denote the imposed

stress at y = G, then it is found that

A0 = −1− σ2

E
Ph.

With this, (7) takes the form

D∂4
yη +

[
P − 3hE(∂yη)2

]
∂2
yη = f, (8)

where D = EI/(1 − σ2) is the bending rigidity and P = 2h(1 + σ)Ph. Note that
when P > 0 the beam is under compression and when P < 0 it is under tension.
The corresponding solution for the transverse displacement comes form (6), and the
boundary condition that requires that ζ = 0 for y = −G, and the result is

ζ = −(1− σ2)
Ph
E

(y +G)− 1

2
(1 + σ)

∫ G

−G
(∂yη)2dy. (9)

The associated strain induced by the lateral load is

εh = −(1− σ2)
Ph
E
. (10)

The normal load comes from the fluid as well as the OHCs. Consequently, from
(8) we have that (3) can be written as

D∂4
yη +

[
P − 3hE(∂yη)2

]
∂2
yη + µ∂2

t η = −[[p]] +K, (11)

where K is the normal component of the OHC loading. Assuming the BM is simply
supported then the boundary conditions are

η = ∂2
yη = 0 at y = ±G(x). (12)

The peak amplitude in the unamplified cochlea is determined by the balance
between the viscous dissipation and the growth in the wave caused by the gradient
in the BM width. Based on preliminary numerical studies for a reduced model,
it is expected that the transverse loading plays a more significant role than the
normal loading in modifying the properties of the peak amplitude of the wave.
Consequently, it is assumed here that K = 0, and we concentrate on determining
how P depends on η.
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3. Model for micromechanics. It remains to relate P in (8) to the OHC forc-
ing. This function is determined from the BM displacement and the sequence of
events outlining how this happens is shown in Figure 2. The model that is presented
does not account for the transients within the respective regimes shown. For ex-
ample, the deflection of a stereocilia bundle presumably generates viscoelastic and
internal forces with the bundle, and these are coupled with related expressions in
the other components of the organ of Corti, but these are not accounted for here.
The assumption is that displacement of the BM determines the angular deflection
uniquely.

Sound stimulus 
enters ear Basilar 

membrane 
movement

Stereocilia 
deflect

!" angle 
change Receptor 

potential

OHC force 
production

Motor protein: 
prestin

Tension/
compression force 
projected on BM

Figure 2. A chain of events allows entering sound stimuli to ac-
tivate OHC electromotility which produces tension/compression
force on the basilar membrane.

3.1. Deflection of stereocilia. We begin by considering the deflection of the
stereocilia as a result of basilar membrane displacement. A schematic of the situa-
tion is shown in Figure 3. What is shown is a transverse section within the organ of
Corti. We also assume that, at rest, the stereocilia are perpendicular to the retic-
ular lamina (RL). We also group the OHC and its supporting Deiters’ cell (DC)
into one entity. The DCs have been shown to contain cytoskeletal elements con-
sisting of microtubules and actin fibers which are thought to support the transfer
of OHC electromotive forces to the basilar membrane [25], so we assume complete
force transmission through the DC is possible.

Figure 3 details the simplified geometric setup of the cross section at rest and
during stimulation. The angles φ0, θ0, φ, and θ are defined in the figure. We
consider the lengths of the OHC/DC complex (L1) and the stereocilia (L2) to be
fixed. Although we are modeling the electromotive process which results in OHC
length changes in vitro, we assume electromotility results in force production in vivo.
Furthermore, even if OHCs do change their length during stimulation, this length
difference is likely small and in-plane with the OHC. We are ultimately interested
in the angle φ which does not greatly fluctuate in the presence of modest in-plane
OHC lengthening/contraction. This being said, we proceed by assuming L1 is a
fixed quantity.

The relative position of three points determine the angular deflection of the
stereocilia. These points are the locations where

• the center of the DC base attaches to the BM (P1),
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Figure 3. This diagram of the cochlear cross section at rest (top)
and during stimulation (bottom) provides the basis for our model
of the deflection of the stereocilia.

• the bundle connects to the OHC (P2), and
• the bundle meets the TM (P3).

In this analysis we set the origin at P1 = (0, 0). For the stimulated organ of
Corti, the points of interest are denoted with apostrophes (P ′i for i = 1, 2, 3).
The point P ′1 = (0, η) is determined by the vertical deflection of the BM at the
point of attachment. We assume that the tectorial membrane is stationary. Also,
experimental evidence suggests that the OHC stereocilia bundles are wedged into
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the TM [9]; therefore, we assume that the point P3 is fixed (P3 = P ′3). Because the
RL is allowed to move, the BM – TM distance change produces a shift of position P2

and a decrease in the angle φ0. The stereocilia deflection, which determines the flux
of ions into the OHC, is characterized by the change in this angle (∆φ = φ0 − φ);
thus, we now use a geometric argument to determine ∆φ.

We first solve for φ. Consider the triangle formed by joining the vertices P ′1, P ′2,
and P ′3. By the Law of Cosines we find

cos(φ) =
||P ′1 − P ′2||2 + ||P ′2 − P ′3||2 − ||P ′1 − P ′3||2

2||P ′1 − P ′2|| ||P ′2 − P ′3||
.

We have fixed lengths for the OHC/DC complex and the stereocilia, so

φ = arccos

{
L2

1 + L2
2 −

[
y′23 + (η − d)2

]
2L1L2

}
, (13)

where y′3 is the y-coordinate of P ′3 and d is the height of the cross section at rest.
Now that we have a complete expression for φ, we make a further simplification.

The basilar membrane displacement η is much smaller than the other quantities in
(13), especially at low-intensity sounds where nonlinearities prove important. For
a comparison example consider the guinea pig: the average length of the OHC/DC
complex (L1) is approximately 100 µm; the average stereocilia length (L2) is 3 µm;
but the basilar membrane deflection is only about 1-20 nm for inputs which exhibit
significant nonlinearities (less than 60 dB) [19, 22, 24]. To take advantage of this
we use a Taylor series approximation for φ by expanding around η = 0. Note that
the first term of such an approximation should be φ0, the angle of the complex at
rest. It is found that

φ = φ0 − κη +O
(
η2
)
,

where

φ0 =
π

2
− arcsin

[
L2

1 + L2
2 − (y′3)2 − d2

2L1L2

]
, (14)

and

κ =
2d√

2(L2
1 + L2

2)(d2 + (y′3)2)− (L2
1 − L2

2)2 − (d2 + (y′3)2)2
. (15)

We are interested in the change in the angle, ∆φ ≡ φ0 − φ, and from above
we have that ∆φ ∼ κη. By recalling our assumptions that P ′3 = P3 and that the
stereocilia are perpendicular to the TM, we can simplify the formula for κ by noting

y′3 = y3 = −L1 cos(θ0), (16)

and

d = L2 + L1 sin(θ0). (17)

Inserting (16) and (17) into (15), we arrive at the approximation which will be used
in the rest of this paper:

∆φ ∼ κη, (18)

where

κ =
L2 + L1 sin θ0

L1L2 cos θ0
.
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3.2. Cell receptor potential. Deflection of the stereocilia bundle modifies the
potassium flux into the OHC, and this in turn affects the cell’s receptor potential
(RP). The nonlinear function relating RP with ∆φ has been measured in multiple
species, for both inner and outer hair cells [12, 21]. Based on these observations we
assume RP = RMR(∆φ), where RM is the maximum RP and R has the properties
of the function shown in Figure 4. This translates into the requirements that

lim
∆φ→π/2

R(∆φ) = 1,

lim
∆φ→−π/2

R(∆φ) = −1

r
,

where r > 1. We additionally require the value of our function to be zero in the
absence of stereocilia deflection, so R(0) = 0.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

6 q (degrees)

R
(6

 q
)

Figure 4. Our proposed normalized receptor potential function R(∆φ).

Chadwick uses similar related normalized saturation limits in his model for OHC
force production [6], although he assumes r = 4. Also, he uses two contrasting
hyperbolic tangent functions to achieve these behaviors. We prefer to choose a
single continuous function to simplify the analysis. Keeping the requirements in
mind, we propose the following function to represent the (normalized) OHC receptor
potential:

R(∆φ) = R(κη) =
1− e−2qκη

1 + re−2qκη
, (19)

where q is a constant which controls the steepness of the transition between the
two saturations. In most of the calculations that will follow we will take r = 4.
However, it is of interest to know the relative contributions of the hyperpolarizing
and depolarizing phases of the receptor potential, and r will be used to make this
determination.

According to the OHC stereocilia bending study of Russell et al. [21], the receptor
potential function should saturate with about 25 nm of stereocilia deflection. Given
that the average stereocilia considered in that study was 3.5 µm, the change in the
angle φ which causes saturation (∆φsaturate) is characterized as

sin(∆φsaturate) =
25 nm

3500 nm

which implies that

∆φsaturate ≈ 0.409◦.
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By setting ∆φ ∼ κη = 0.409◦ and assuming saturation of the function (Rsaturate)
occurs at 90% receptor potential output, we solve the following equation for q:

Rsaturate =
1− exp{−2q(0.409◦)(π/180◦)}

1 + r exp{−2q(0.409◦)(π/180◦)}
= 0.9.

Taking r = 4, we find that q = 268 for R to saturate at 25 nm stereocilia flexion.

3.3. Outer hair cell force production. Next we turn our attention toward the
amount of force produced by the OHCs. Because of the cochlea’s complexity and
sensitivity to manipulation, OHC force production as a function of membrane po-
tential change has not been measured in vivo. We must, therefore, hypothesize
what this functional relationship may be.

Significant effort has been invested in studying the dynamics of OHC motility. In
his original OHC electromotility experiments, Ashmore concluded that OHC length
changes linearly in response to external command potential for modest inputs [3].
Though he performed his experiment in vitro and focused on length–not force–
production, Ashmore did report a linear relationship between external stimulus and
OHC response. Chadwick assumes a linear relationship between stereocilia bending
and OHC force generation in his model for electromotility [6]. In fact, he uses a
nonlinear curve similar to R(∆φ) (Figure 4) to form a direct connection between
OHC force production and stereocilia bending. More recently, Spector et al. also
use a linear relationship to describe the connection between OHC force generation
and receptor potential [13].

Here we follow suit by presuming a linear relationship between receptor potential
and OHC force production. Let FOHC be the force exerted by one outer hair
cell. We know that positive membrane potential contracts the OHC while negative
membrane potential causes the OHC to lengthen in vitro. In vivo this means that
the OHC produces force directionally away from the BM for R > 0 and toward
the BM for R < 0. Thus FOHC should have the opposite sign from the receptor
potential, and so

FOHC = −cR(∆φ), (20)

where c is a positive constant with the dimensions of force.

3.4. Tension on basilar membrane. Now that the force produced by a OHC has
been modeled, we determine how this influence interacts with the basilar membrane.
In the previous subsection, we accounted for the directionality of the force; thus,
we need only to project it onto the BM.

As explained in Section 2, the tangential component of the OHC force is of
interest here. Therefore, let Fproj be the projection of the tangential component of
the OHC force onto the BM. We find

Fproj = FOHC cos θ, (21)

where

cos θ =
|y′2|
L1

.

and y′2 is the y-position of P ′2. Expanding the formula for y′2 for small η, it is found
that θ ≈ θ0 and this approximation will be used in what follows. Also, there are
generally three outer hair cells in each mammalian cross section. For simplicity, we
assume that the force produced by each OHC is roughly the same and that Fproj
can be multiplied by a factor of 3 to account for the collective force of the OHCs.
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Assuming this force is uniform over the end of the BM then the resulting stress on
the BM at y = G is

Ph =
3

4h2
FOHC cos θ0 .

3.5. Summary of nonlinear beam model. Based on the above modeling as-
sumptions, the resulting equation for the BM is

D∂4
yη +

[
P − 3hE(∂yη)2

]
∂2
yη + µ∂2

t η = −[[p]], (22)

where

P = −P0 cos θ0

[
1− e−2qκη0

1 + re−2qκη0

]
, (23)

κ =
L2 + L1 sin θ0

L1L2 cos θ0
,

η0 = η(x, 0, t), and P0 = 3c(1 + σ)/(2h) is a positive constant. Note that the
orientation and dimensions of the OHCs vary with longitudinal position in the
cochlea, and so κ and θ0 are functions of x. Also, the BM is located in the z = 0
plane, and occupies the region 0 < x < L, −G(x) < y < G(x). It is assumed simply
supported along its lateral edges, and so, the boundary conditions are η = ∂2

yη = 0
at y = ±G.

There are multiple constants in the function P , and this is significant because
it is responsible for the amplification in the model. Most are geometric, such as
those used to determine κ, or are known or easily estimated, such as σ. That leaves
the two associated with the receptor potential. The value of q was determined
using currently available measurements, and it was found that q = 268 (assuming
r = 4). This leaves c, which is associated with the force-receptor potential formula.
Although its value is unknown, as will explained below, it is possible to estimate
P0 in (23) using the response of the system to various forcing functions.

In this model for P , we assume a linear relationship between BM displacement
and angle deflection and between OHC force production and receptor potential.
The crucial nonlinear relationship is between the angular deflection and receptor
potential, which gives rise to the exponential functions in (23). Finally, note P > 0
results in a lateral compressive force on the BM while P < 0 produces a tension
force. The presented formulation suggests that the OHCs produce a tension on the
BM, and we refer to the OHCs’ tangential force as such for the remainder of this
work.

4. Affects of OHC loading. In the calculations to follow, the material values
for a guinea pig are used. Specifically, using the values in [10], E = 109 dyn/cm

2
,

σ = 1/2, G = B(0.186x + 0.35), h = 8 × 10−4 cm, B = 0.026 cm, and L = 1.88
cm. Also, L1 = 100µm, L2 = 3µm, q = 268, and θ0 = π/4. To explain how the
value for F0 is chosen, for the linear unamplified problem (so Q = 0), the centerline
displacement of the BM is 5F0G

4/(24D). As observed in [18], in the basal region
the displacement of the BM is about 1 nm at 20 dB SPL, about 10 nm at 40 dB
SPL, and about 100 nm at 100 dB SPL. To achieve a vertical displacement of 1
nm it is required that F0 = 0.7864 and for 100 nm it is required that F0 = 78.64.
The one remaining parameter is P0 = 3c(1 + σ)/(2h), which appears in (23). The
constant c comes from the constitutive law for the force produced by the OHCs,
and there are no direct experimental observations that can be used to determine c.
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However, it is possible to use an indirect approach by considering the strain induced
by the OHCs. This is given in (10), and from this it follows that

P0 =
4hEεh

9(1− σ) cos(θ0)
. (24)

For example, if εh = 0.01 then P0 = 104.

10−4 10−2 100 102 1040

0.5

1

1.5 x 10−7

F0−axis

d
(0

) /
 F

0

 

 

 ¡ = 0.001
 ¡ = 0.01
 ¡ = 0.1

Figure 5. Normalized displacement of midpoint of beam as a
function of the applied pressure F0 for different values of the OHC
strain εh.

4.1. Uniform pressure. To examine the consequences of the nonlinear OHC load-
ing we begin with the steady-state response to a uniform pressure. The equation in
this case is

D∂4
yη +Q(P, ∂yη)∂2

yη = F0, (25)

where
Q(P, ∂yη) = P − 3hE(∂yη)2, (26)

P is given in (23), and F0 is the given constant pressure. The boundary conditions
are η = ∂2

yη = 0 at y = ±G.
The resulting normalized displacement of the midpoint (y = 0) of the beam is

shown in Figure 5 as a function of the applied pressure F0. What is also shown
are the curves obtained for different values of the induced OHC strain εh. What is
seen is that the OHC tension acts as a switch. For lower pressures the displacement
increases linearly with F0, and it switches to another linear function at higher
pressures. What is also evident is that the tension lowers the displacement. This is
expected based on the mechanics but it would seem to be the opposite of what an
amplification mechanism should do. What needs to be considered is the dynamic
response of the system.

The nonlinearity limits what can be done analytically to examine the dynamic
response. To get at an approximate answer, note that because of the small am-
plitude of the BM that the principal contribution to Q comes from the OHCs. In
particular, because of (24), the contributions of the terms in (26) come down to
comparing εh to (∂yη)2. Given the small amplitude displacements of the BM it is
not unreasonable to assume that (∂yη)2 << εh, in which case Q ≈ P . The problem
is still nonlinear but it is possible to bound the response by considering the case of
when the OHCs are fully engaged, in which case P = −P0 cos θ0, and when they are
off, which corresponds to P = 0. In terms of the wave on the BM, for the passive
problem (so P = 0) and a pure-tone forcing, the wave grows in amplitude as it moves
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down the BM. In reference to Figure 1, the wave moves in the positive x direction.
It grows until it almost reaches the location x = xr where the transverse beam
has its fundamental mode equal to the given driving frequency. In fact, without
damping in the system, the wave’s amplitude becomes unbounded as it approaches
xr. The fluid viscosity prevents this from happening and it dissipates the wave in
a small region near xr. The result is an amplitude that shows a pronounced peak
just to the left of xr. So, one question is, how do the OHCs affect the location of
xr. In the case of constant P , the fundamental mode for the reduced problem has
the form η = eiωt cos(λy), where λ = π/(2G) and the associated dispersion relation

is µω2 = Dλ4 − Pλ2. This can be written as ω = M∞ω0, where ω0 = λ2
√
D/µ is

the resonant frequency when P = 0, and

M∞ =
√

1 + ε , (27)

where ε = P0 cos θ0/(Dλ
2). Consequently, the tension causes an apical shift in

the resonant frequency and the multiplicative factor M decreases as the resonant
frequency increases. Also, the value of M∞ depends on the induced strain εh. For
example, at x = L/4 = 0.47 cm, if εh = 0.01 then M∞ = 1.7, while if εh = 0.001
then M∞ = 1.1. What this means is that because of the induced tension the wave
is able to propagate a bit farther down the BM, and in the process the amplitude
is able to grow beyond what it is capable of when P = 0. It is also seen that
the OHCs do not have to induce much tension in the BM to produce this affect.
The verification that this mechanism is capable producing an amplification with the
properties observed in the cochlea requires solving the full nonlinear hydroelastic
problem, and this will be demonstrated in an upcoming publication.

4.2. Periodic forcing. To get a better handle on how the amplifier nonlinearity
affects the pure tone response, consider the equation

D∂4
yη + P∂2

yη + µ∂2
t η = F0 cos(λy) cos(ωt), (28)

where λ = 2π/G, P is given in (23), and the boundary conditions are η = ∂2
yη = 0

at y = ±G. The solution can be written as η = cos(λy)u(t), where

µu′′ + λ2(Dλ2 − P )u = F0 cos(ωt) , (29)

and

P = −P0 cos θ0
1− exp[−2qκu(t)]

1 + r exp[−2qκu(t)]
.

The fundamental frequency for the unamplified problem is ω0 = λ2
√
D/µ. Nondi-

mensionalizing the equation by taking τ = ω0t, and u = ucw where uc = F0/(Dλ
4),

then the above problem can be rewritten as

w′′ + (1 + εR)w = cos[(1 + βε)τ ] , (30)

where ε = P0 cos θ0/(Dλ
2),

R =
1− exp(−χw)

1 + r exp(−χw)
,

and χ = 2qκF0/(Dλ
4). Note that β is a detuning parameter and will be used to

determine the resonant frequency for the nonlinear problem.
Multiple-scales can be used to derive an approximate solution of (30), and this is

done by introducing the time scales τ1 = τ and τ2 = ετ , along with the expansion
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w ∼ ε−1w0(τ1, τ2) + w1(τ1, τ2) + · · · . The O(ε−1) equation coming from (30) is
∂2

1w
′′
0 + w0 = 0, where ∂1 = ∂τ1 . Solving this we have that

w0 = A(τ2) cos[τ1 + φ(τ2)] . (31)

The O(1) equation coming from (30) is

∂2
1w1 + w1 + 2∂1∂2w0 +R∞w0 = cos(τ1 + βτ2) , (32)

where ∂2 = ∂τ2 . Also, R∞ = 1 if w0 > 0, R∞ = −r if w0 < 0 and R∞ = 0
if w0 = 0. In preparation for removing the secular producing terms, note that
R∞w0 is a 2π-periodic function of τ1. Expanding it in a Fourier series in the form
R∞w0 =

∑
[an sin(nτ1) + bn cos(nτ1)], then

a1 =
1

π

∫ 2π

0

R∞w0 sin τ1dτ1

= − 1

πr
A

∫ −φ+3π/2

−φ+π/2

cos(τ1 + φ) sin τ1dτ1 +
1

π
A

∫ −φ+5π/2

−φ+3π/2

cos(τ1 + φ) sin τ1dτ1

= −1

2
(1− r−1)A sinφ,

and

b1 =
1

π

∫ 2π

0

R∞w0 cos τ1dτ1

=
1

2
(1− r−1)A cosφ.

Consequently,

2∂1∂2w0 +R∞w0 = −2A′ sin(τ1 + φ)− 2Aφ′ cos(τ1 + φ)

− 1

2
(1− r−1)A sinφ sin τ1 +

1

2
(1− r−1)A cosφ cos τ1

= 2

[
−A′ cosφ+Aφ′ sinφ− 1

4
(1− r−1)A sinφ

]
sin τ1

+ 2

[
−A′ sinφ−Aφ′ cosφ+

1

4
(1− r−1)A cosφ

]
cos τ1.

Removing the secular producing terms yields

−A′ cosφ+Aφ′ sinφ− 1

4
(1− r−1)A sinφ = −1

2
sin(βτ2),

and

−A′ sinφ−Aφ′ cosφ+
1

4
(1− r−1)A cosφ =

1

2
cos(βτ2).

These can be rewritten as

A′ = −1

2
sin(φ− βτ2), (33)

and

Aφ′ − 1

4
(1− r−1)A = −1

2
cos(φ− βτ2). (34)
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Assuming the motion begins from rest, then the associated initial conditions are
A(0) = 0 and φ(0) = −π/2. The solution of this nonlinear system is

A =
1

k
sin

(
1

2
kτ2

)
, (35)

φ =
1

2

[
1

4

(
1− 1

r

)
+ β

]
τ2 −

π

2
, (36)

where k = 1
4

(
1− r−1

)
− β. To establish the accuracy of this approximation, in

Figure 6 the amplitude determined using (35) is compared to the numerical solution
of (30). In this case, ε = 10−2, λ = 1, β = 0, r = 4, and the numerical solution is
obtained using the ode45 command in MATLAB.

6500 7000 7500 8000 8500 9000 9500 10000 10500
−500

0

500

o − axis

w
−a

xi
s

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

o − axis

w
−a

xi
s

Figure 6. Comparison between the numerical solution of (30),
solid curve, and the asymptotic approximation for the amplitude
given in (35), dashed curve. Two time intervals are shown, the
lower graph being the response for smaller values of τ , and the
upper graph is for a later time interval.

Returning to dimensional coordinates, the first term approximation of the solu-
tion of (29) is

u(t) ∼ a sin(bω0t) sin[(1 + c)ω0t] , (37)

where

a =
F0

kλ2P0 cos θ0
(38)

b =
kP0 cos θ0

2Dλ2
(39)

c =

[
1

4

(
1− 1

r

)
+ β

]
P0 cos θ0

2Dλ2
(40)

and k = 1
4 (1− r−1)− β. From this it is evident that resonance occurs when k = 0,

which means that β = 1
4 (1−r−1). Consequently, the resonant frequency is ω = Mω0
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where

M = 1 +
1

4

(
1− 1

r

)
ε. (41)

Taking r = 4, then in comparison to the bound given in (27), this shows that
at x = L/4 = 0.47 cm, if εh = 0.01 then M∞ = 1.2, while if εh = 0.001 then
M∞ = 1.02. The affect of this magnification factor is shown in Figure 7, which
gives the position of the resonant beam as a function of the driving frequency for
both an unamplified system as well as two different amplified problems.

103 104 1050

0.2

0.4

0.6

0.8

1

Frequency (Hz)

x r / 
L

 

 

 P = 0
 ¡h = 0.001
 ¡h = 0.01

Figure 7. Location xr of resonant beam as a function of the driv-
ing frequency, for the unamplified system (P = 0) and for the
amplified problem for two different OHC strains εh.

It is informative to consider how the shift depends on the material parameters.
For example, the magnification factor in (41) increases with the imposed OHC
strain εh. It also depends on the asymmetry of the receptor potential’s dependence
on the the stereocilia deflection (see Figure 4). Namely, the magnitude of the
hyperpolarizing phase is determined by r, which is a measure of the asymmetry in
the receptor potential. If the receptor potential is symmetric, so r = 1, then from
(41) there is no shift in the resonant frequency. Correspondingly, the shift increases
as the asymmetry increases. It is also evident that the shift has little dependence on
the parameters q and κ, which come from the angular deflection of the stereocilia
(23). The reason is that because the system is going into resonance, the amplitude
grows to the point that the receptor potential function takes on the characteristics
of a switch. Whether this happens when the fluid is included is unclear because the
growth in the amplitude is tempered by the dissipation, and so it will depend on
the balance between the dissipation and resonant effect.

5. Discussion. A model for the amplification mechanism has been proposed. The
underlying assumption is that the OHCs are responsible for producing a force on
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the BM and we decomposed this into normal and tangential components. The
nonlinearity in the force comes from the dependence of the receptor potential on
the angular deflection of the OHCs stereocilia. In particular, because of the small
amplitudes involved, it is assumed that the force produced by the OHCs depends
linearly on the receptor potential, and the angular deflection depends linearly on the
displacement of the BM. The result is a nonlinear beam equation for the deflection
of the BM.

It was found that the tension induced by the OHCs has the ability to reduce
the displacement of the BM. For example, this is evident in (38), which shows
that the amplitude decreases with P0. However, the amplitude becomes unbounded
as the resonant frequency is approached. The induced tension in this case shifts
the resonant frequency, the shift depending on the tension. It is this shift that is
proposed to produce the increase gain due to the amplifier. The reason is that the
wave’s amplitude grows as it propagates down the BM, and this is due to the increase
in the width of the BM. By enabling the wave to go a bit further, the wave continues
to grow before being rapidly dissipated by the fluid viscosity. Consequently, the
proposed mechanism has the capability to reduce the BM displacement in one region
yet increase it in another. In other words, it has the ability to modify both the
gain and contrast of the response. Whether this is consistent with experimental
observation requires solving the problem with the fluid included, and this will appear
in a future study.
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