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Abstract. The aim of this paper is to investigate the manner in which preda-

tion and single-nutrient competition affect the dynamics of a non-toxic and a
toxic phytoplankton species in a homogeneous environment (such as a chemo-

stat). We allow for the possibility that both species serve as prey for an her-

bivorous zooplankton species. We assume that the toxic phytoplankton species
produces toxins that affect only its own growth (autotoxicity). The autotoxi-

city assumption is ecologically explained by the fact that the toxin-producing

phytoplankton is not mature enough to produce toxins that will affect the
growth of its nontoxic competitor. We show that, in the absence of phytotoxic

interactions and nutrient recycling, our model exhibits uniform persistence.
The removal rates are distinct and we use general response functions. Finally,

numerical simulations are carried out to show consistency with theoretical anal-

ysis. Our model has similarities with other food-chain models. As such, our
results may be relevant to a wider spectrum of population models, not just

those focused on plankton. Some open problems are discussed at the end of

this paper.

1. Introduction. The term “plankton” is used to describe freely-floating and
weakly-swimming marine and freshwater organisms. Plankton are divided into
broad functional groups, among them phytoplankton that live near the surface of
the water where there is sufficient light to support photosynthesis just like plants on
the land, and zooplankton that feed on other plankton. The microscopic and uni-
cellular plants, phytoplankton, are consumed by zooplankton, the animals, which
in turn are eaten by larger organisms. The highly diverse nature of phytoplankton
communities seems to contradict the competitive exclusion principle, which states
that when two species compete for the same resource, only one will survive. This
is known as the paradox of plankton. Direct measurement of plankton biomass
is difficult and expensive, so the modeling of plankton populations is an essential
tool in improving our understanding of the physical and biological processes that
contribute to the complexity of these systems.

Mathematical modeling of plankton populations goes back to Hallam[18, 19, 20].
He studied stability and persistence properties of a family of non-spatial plankton
models. [16] investigated the bifurcational structure of a simple plankton model
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with zooplankton mortality modeled by −cZm, 1 ≤ m ≤ 2. They showed explicitly
how cycles can persist for 1 < m < 2. In addition, m = 2 does not preclude the exis-
tence of cycles or chaos. [14] examined the behavior of two nutrient-phytoplankton-
zooplankton-detritus models to help understand the factors that most influence
the dynamics of such models. He further showed that the addition of a detritus
compartment has little impact on the nature of the qualitative dynamics that were
found for the corresponding nutrient-phytoplankton-zooplankton model. [32] exam-
ined nutrient-phytoplankton-zooplankton models with spatial heterogeneity. They
proved that phytoplankton species with low diffusivity and zooplankton functional
response with half-saturation constant can control algal blooms. [36] studied plank-
ton nutrient models with both instantaneous and delayed nutrient recycling. He
successively chose the nutrient input concentration and the maximal zooplankton
ingestion rate as bifurcation parameters to show that the positive equilibrium loses
its stability via a Hopf bifurcation as these parameters are varied through respective
critical values. [25] explored nutrient-phytoplankton models with both instanta-
neous and delayed nutrient recycling and zooplankton mortality modeled by −cZ2.
Unlike other ecological models for which delays can destabilize the system (see for
examples, [13], [36], and [4]), their numerical simulations suggested that delayed
nutrient recycling can actually stabilize the nutrient-phytoplankton system. [10]
proposed and analyzed four models of nutrient-phytoplankton-zooplankton popu-
lations to observe the dynamics of such models in the presence of additional food.
Here the phytoplankton are toxic to the zooplankton species. [40] studied the
growth dynamics of phytoplankton as a function of both time and concentration
of nutrients. Their model helps understand the role of concentration of various ex-
planatory variables (such as nutrients, temperature, light intensity, or combinations
of such variables) in phytoplankton growth dynamics. [35] developed and analyzed
a mathematical model describing the competition for a single growth-limiting nutri-
ent between a non-toxic phytoplankton and a toxin-producing phytoplankton under
allelopathic interactions.

With the use of mathematical models, the author (see [27]) generalized the work
of [35] to demonstrate theoretically that the stable coexistence of two species com-
peting for a single nutrient in a homogeneous medium would be possible provided
(a) there is an allelopathic effect and (b) the input nutrient concentration is above
a critical value given in [27]. The model in [27] is not uniformly persistent because
of the simultaneous existence of one locally asymptotically stable interior equilib-
rium and one unstable interior equilibrium (saddle point), when the input nutrient
concentration exceeds the critical value specified in [27]. The author further showed
that predation in the presence of phytotoxic interactions and/or nutrient recycling
would not make the resulting model uniformly persistent. The contents of the paper
are largely devoted to extending the work in [27] to include predation. More specif-
ically, we extend the nutrient-nontoxic phytoplankton-toxic phytoplankton model
in [27], in the absence of phytotoxic interactions and nutrient recycling, to include
predation of phytoplankton species by zooplankton and obtain a uniformly persis-
tent model. Our findings are in favor that predation can be responsible for diversity
in ecosystems (see [11]). [11] asserts that predation may promote, hinder or have
no effect on interspecific competitive interactions. Our model represents a signifi-
cant generalization of those previously analyzed ( see [8], [22], [17], and [29] among
others).
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The organization of this paper is as follows: The next section gives the description
of the model. Section 3 contains preliminary results, existence and local stability
of steady states. Section 4 gives ecological interpretations of stability inequalities.
In Section 5, we study global stability results along with uniform persistence. In
Section 6, numerical simulation results are provided to substantiate the analytical
findings. The final section provides a brief summary and discussion.

2. The model. We analyze a model of two-species exploitative competition for
a single growth-limiting, nonreproducing resource under predation in the culture
vessel of a chemostat. The contents of the feed bottle are supplied to the growth
chamber at a constant rate D, while the medium in the culture vessel is removed to
the collection vessel at the same rate. Our model does not incorporate phytotoxic
interactions and can be written

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2,

dP1

dt
= f1(N)P1 −

1

η1
g1(P1)Z −m1P1,

dP2

dt
= f2(N)P2 −

1

η2
g2(P2)Z −m2P2,

dZ

dt
= (g1(P1) + g2(P2))Z − cZ,

N(0) > 0, P1(0) > 0, P2(0) > 0, Z(0) > 0.

(1)

Units of all variables and parameters in model (1) are given in Table 1. In these
equations Pi(t) is the biomass of the ith population of phytoplankton in the culture
vessel at time t, i = 1, 2. Population P1 is assumed to be nontoxic, while population
P2 is assumed to be toxic. But we neglect the impact of toxins produced by P2 on
the growth of P1. The concentration of the nonreproducing resource in the culture
vessel at time t is denoted by N(t), while N0 is the concentration of resource N in
the feed vessel. Z(t) is the biomass of zooplankton in the culture vessel at time t.
We also neglect the impact of toxins on the growth of Z. Since perfect mixing of the
culture vessel is assumed, nutrients, microorganisms and byproducts are removed in
proportion to their concentration. The removal rate m1 of nontoxic phytoplankton
P1 is the sum of washout rate D and the specific death rate ε1, so that m1 = D+ε1.
The removal rate m2 of toxic phytoplankton P2 is the sum of washout rate D, the
specific death rate ε2, and the autotoxic coefficient a2, so that m2 = D+ ε2 + a2 as
per [38]. Finally, the removal rate c of zooplankton Z is the sum of washout rate
D and the specific death rate ξ, so that c = D + ξ.

[39] show that a limiting cycle behavior exists when the zooplankton death rate
is linear. [15] demonstrate numerically that this limiting cycle behavior disappears
when a quadratic death rate for zooplankton is assumed to account for higher
predation. We do not model higher predation in our model. We follow [39] and
call the zooplankton loss term cZ the closure term because it closes the model at
the top trophic level. For mathematical tractability of the model, we use a linear
function to express the death of each organism.

It is interesting to note that the analysis of the model requires no assumptions
on the signs of the εi’s, ξ and a2, provided the mi’s and c all remain positive.
This leaves the εi’s, ξ and a2 open to other interpretations. For instance, when
εi is negative it means there is an additional food source for the ith population of
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phytoplankton. While a positive εi accounts for a further deleterious effect on the
ith population of phytoplankton. Finally, a zero εi means that there is no intrinsic
death of the ith population of phytoplankton. The interpretations of the sign of ξ
are similar to those of the εi’s. A negative, zero, and positive a2 indicate respectively
stimulatory effects, no effects, and inhibitory effects of toxins produced by P2 on its
own growth.

In system (1) the response functions fi(N) represent the per capita rate of con-
version of nutrient N to biomass of population Pi as a function of the concentration
of nutrient N . We assume that the rate of conversion of nutrient to Pi biomass
is proportional to the amount of nutrient consumed, so that the consumption rate
of resource N per unit of population Pi is of the form 1

γi
fi(N), where γi is the

growth yield constant (number of phytoplankton per unit of nutrient). We make
the following assumptions concerning the response functions fi:

fi : R+ −→ R+, fi is continuously differentiable, (2)

fi(0) = 0, f ′i(N) > 0 for all N ≥ 0. (3)

The break-even concentration for population Pi on nutrient N is obtained by
setting dPi

dt = 0 = fi(N)−mi and solving for N . By the monotonicity assumptions,
the solution λi is a uniquely defined positive extended real number provided we
assume λi =∞ if fi(N) < mi for all N ≥ 0.

Note that the autotoxicity assumption on phytoplankton population P2 has a
direct impact on the break-even concentration λ2. Recall m2 = D+ ε2 + a2 (where
a2 is the autotoxic coefficient) and λ2 is the unique positive sulution of f2(N) = m2.
This assumption is ecologically explained by the situation where toxic phytoplank-
ton P2 is not mature enough to produce allelochemicals that will potentially affect
the growth of its competitor P1 and the growth of its predator Z.

Let µi denote the maximal growth rate of population Pi on resource N , so that

lim
N→∞

fi(N) = µi.

Lotka-Volterra kinetics (or Holling type I), Michaelis-Menten kinetics (or Holling
type II), and sigmoidal kinetics (Holling type III or multiple saturation dynamics)
are prototypes of response functions fi found in the literature (see [2], [5], [14],
[26], [31], [37], [42], [43] among others). The half-saturation constant Ki of the
ith phytoplankton species for nutrient is given by fi(Ki) = µi

2 and represents the
resource concentration supporting growth at half the maximal growth rate. Half-
saturation constants and maximal growth rates can be measured experimentally
(see [21]).

On the other hand, the response function gi(Pi) represents the per capita rate
of conversion of phytoplankton Pi to biomass of population Z as a function of the
biomass of phytoplankton Pi. We assume that the rate of conversion of Pi biomass
to Z biomass is proportional to the amount of phytoplankton consumed, so that
the consumption rate of phytoplankton Pi per unit of population Z is of the form
1
ηi
gi(Pi), where ηi is a growth yield constant (number of zooplankton per unit of

phytoplankton). Since P1 and P2 are perfectly substitutable resources for Z ([9],
[28], [34], and [3]), the per-capita growth rate of zooplankton as a function of P1

and P2 takes the form G(P1, P2) = g1(P1) + g2(P2) for all P1 ≥ 0 and P2 ≥ 0.
Following [29], [37], [42] and others, we make the following assumptions concerning
the response functions gi:

gi : R+ −→ R+, gi is continuously differentiable, (4)



DYNAMICS OF TWO PHYTOPLANKTON POPULATIONS UNDER PREDATION 1323

gi(0) = 0, g′i(Pi) > 0, lim
Pi→∞

gi(Pi) = ωi, for all Pi ≥ 0, (5)

where ωi denotes the maximal growth rate of zooplankton Z on phytoplankton Pi.
It will also be convenient to express gi(Pi) as

gi(Pi) = Pihi(Pi), (6)

where hi(Pi) is some positive and differentiable function. Since gi is continuously
differentiable it follows that

lim
Pi→0

hi(Pi) = g′i(0), (7)

and so we define
hi(0) = g′i(0). (8)

The breakeven concentration for population Z on phytoplankton Pi is obtained

by setting
dZ

dt
= 0 = gi(Pi)−c and solving for Pi. By the monotonicity assumptions,

the solution Λi is a uniquely defined positive extended real number as long as we
assume Λi =∞ if gi(Pi) < c for all Pi ≥ 0.

Prototypes of response functions gi often found in the literature (see [1], [2], [5],
[14], [26], [31], [37], [42], [43]) include:

• Lotka-Volterra kinetics (or Holling type I): gi(Pi) = c
Λi
Pi when Λi is finite.

• Michaelis-Menten kinetics (or Holling type II): gi(Pi) = ωiPi

Λi(
ωi
c −1)+Pi

, where

Λi is finite.
• Sigmoidal kinetics (Holling type III or multiple saturation dynamics): gi(Pi) =

ωiP
2
i

(Λi(
ωi
c −1)+Pi)(Bi+Pi)

, where Bi = Λi(ωi − 1) when Λi is finite.

• Usually, Ivlev’s functional response formulation (see [24]), gi(Pi) = ωi[1 −
exp(−αiPi)], is appropriate to describe the zooplankton grazing, where αi is
the rate at which saturation is achieved with increasing ith phytoplankton
population levels.

The half-saturation constant Li of zooplankton for the ith phytoplankton popula-
tion is given by gi(Li) = ωi

2 and represents the phytoplankton biomass Pi supporting
growth at half the maximal growth rate.

System (1) was considered by [8] under the assumptions that specific death rates
are insignificant compared to the washout rate D (εi = 0, i = 1, 2, ξ = 0) and Z
feeds only on one phytoplankton population Pi. [22] studied system (1) under lin-
earity of the nutrient-dependent species growth function and the predator functional
response. They proposed simple rules (based on equilibrium nutrient concentration
and herbivore density) that govern competitive outcomes. Motivated by the rich
dynamics of nonlinear growth of species, [17] relaxed the linearity assumptions in
[22] and used the type I and II functional responses. Their local analytical results
and numerical results are in line with the results we provide in this paper. System
(1) was also considered by [29] under the assumption that one of the Pi’s is ab-
sent. As such, our model represents a significant generalization of those previously
analyzed.

In the system (1), the toxic phytoplankton population P2 is either the green
alga, Enteromorphs linza, or the unicellular green alga, Chlorella vulgaris provided
the species has no phytotoxic interactions on the growth of its nontoxic competitor
P1. Enteromorphs linza releases allelochemicals which are auto-stimulatory to the
growth of Enteromorpha species. Chlorella vulgaris produces an autotoxin which
has the ability to regulate the growth of its own population and also inhibits the
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Table 1. Units of variables and parameters in the description
of model (1) (see [15] and references therein). Here 1 Cg = 20
mg, where C is carbon. A hyphen − means dimensionless while d
stands for day.

Variable or parameter Units
t time d

N(t) concentration of nutrient at time t gCm−3

P1(t) biomass of phytoplankton species 1 at time t gCm−3

P2(t) biomass of phytoplankton species 2 at time t gCm−3

Z(t) biomass of zooplankton species at time t gCm−3

N0 input nutrient concentration gCm−3

D washout rate d−1

mi removal rate of phytoplankton species i (i = 1, 2) d−1

c removal rate of zooplankton species d−1

γi growth yield constant of phytoplankton Pi on nutrient N −
ηi growth yield constant of zooplankton on phytoplankton Pi −
µi maximal growth rate of phytoplankton Pi on nutrient N d−1

ωi maximal growth rate of zooplankton on phytoplankton Pi d−1

Ki half saturation constant for phytoplankton Pi d−1

 Li half saturation constant of zooplankton for phytoplankton Pi d−1

λi and Λi breakeven concentration of species gCm−3

growth of Asterionella formosa and Nitzschia frustulum. Nontoxic phytoplankton
P1 can be either Enteromorpha, or Asterionella formosa or Nitzschia frustulum.
Table 1 in [17] summarizes more possible species pairs (P1, P2). The nutrient N can
be a source of vitamin B12, phosphorus (see for example, [17]), or nitrogen and the
zooplankton population Z is Daphnia species (see for example, [17]).

3. Some preliminary results. The Fundamental Existence-Uniqueness Theorem
(see, for example, [33]) ensures that solutions of (1) exist uniquely for all time. The
first lemma is a statement that solutions of (1) are positive and bounded. These
are minimal requirements for a reasonable population model.

Lemma 3.1. Solutions of model (1) are (a) positive and (b) bounded.

Proof. Proof of (a). Suppose that there exists a first time t̄0 > 0 such that N(t̄0) =

0, that is N(t) > 0 for all 0 ≤ t ≤ t̄0 and N(t̄0) = 0. Then
dN

dt
(t0) ≤ 0. However,

dN

dt
(t0) = N0D > 0 by the first equation of model (1), a contradiction.

Suppose now that Z(0) > 0, then
dZ

dt
= (g1(P1) + g2(P2))Z − cZ yields Z(t) =

Z(0) exp(
∫ t

0
h(s)ds) > 0, where h(s) = g1(P1(s)) + g2(P2(s))− c.

We now show that Pi(t) > 0 for all t, i ∈ {1, 2}. For a fixed i ∈ {1, 2}, let
t̄i = min {t > 0 : Pi(t) = 0} and define

Bi = min

{
fi(N(t))−mi −

1

ηi
hi(Pi(t))Z(t), 0 ≤ t ≤ t̄i

}
.
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Then for t ∈ [0, t̄i] we have
dPi(t)

dt
≥ BiPi(t), so that P1(t) ≥ Pi(0) exp(Bit) > 0.

In particular, P1(t̄i) ≥ Pi(0) exp(Bit̄i), a contradiction.

Proof of (b). Define T (t) = N(t) + 1
γ1
P1(t) + 1

γ2
P2(t) + Z(t). From (1) we have

dT

dt
≤ N0D −D0T , where D0 = min(D,m1,m2, c). By Gronwall’s lemma, T (t) ≤

N0D
D0

+ (T (0) − N0D
D0

) exp(−D0t). So N(t) + 1
γ1
P1(t) + 1

γ2
P2(t) + Z(t) ≤ N0D

D0
if

T (0) < N0D
D0

and N(t) + 1
γ1
P1(t) + 1

γ2
P2(t) + Z(t) ≤ T (0) otherwise. Thus, by (a)

all solutions of (1) are bounded.

Proposition 3.1. Given any δ > 0, for all solutions N(t) of (1), N(t) ≤ N0 + δ
for all sufficiently large t.

Proof. Let δ > 0 be given. From the first equation of (1) we have

dN

dt
= (N0 −N)D − 1

γ1
f1(N)P1 −

1

γ2
f2(N)P2 ≤ (N0 −N)D. (9)

Hence, N(t) ≤ N0 + [N(0) − N0] exp(−tD) for all t. Since [N(0) − N0] exp(−tD)
approaches 0 as t tends to infinity, N(t) ≤ N0 + δ for all sufficiently large t.

Proposition 3.2. If there exists a t0 ≥ 0 such that N(t0) ≤ N0, then N(t) < N0

for all t ≥ t0.

Proof. Suppose there exists a first time t̃ > t0 such that N(t̃) = N0 and N(t) < N0

for all t0 ≤ t < t̃. Then
dN

dt
(t̃) ≥ 0. However, from the first equation of (1),

dN

dt
(t̃) ≤ −

∑2
i=1

Pi(t̃)
γi

fi(N(t̃)) < 0, a contradiction.

The following Lemma 3.2 will be used to define some of the steady states in
the next section. The proof uses the assumptions on the fi’s and the Intermediate
Value Theorem.

Lemma 3.2. For i ∈ {1, 2} fixed, there exists a unique N̄i > 0 solution of γi(N0 −
N)D = Λifi(N) when Λi is finite.

Proof. Fix i ∈ {1, 2} and, assume Λi is finite. Define

ui : [0,+∞) −→ R+, ui(N) = Λifi(N)− γi(N0 −N)D

It is straightforward to check that ui is well-defined and continuous on [0,+∞)
with ui(0) = −γiN0D and limN→+∞ ui(N) = +∞. Moreover, ui is differentiable on

[0,+∞) with
dui(N)

dN
= Λif

′
i(N)+γiD > 0 if Λi is finite. Hence by the Intermediate

Value Theorem and the bijectivity of ui, there exists a unique Ni ∈ (0,+∞) such
that ui(Ni) = 0; that is, γi(N0 − Ni)D = Λifi(Ni) whenever Λi is finite. Take
N̄i = Ni to complete the proof.

4. Steady states: Existence and local stability. Equilibria of model (1) are
given by the solutions of:

dN

dt
=
dP1

dt
=
dP2

dt
=
dZ

dt
= 0.

Five of the equilibria are readily identified and are given by E0 = (N0, 0, 0, 0), Eλ1 =
(λ1, P̄1, 0, 0), Eλ2 = (λ2, 0, P̄2, 0), EΛ1 = (N̄1,Λ1, 0, Z̄1), and EΛ2 = (N̄2, 0,Λ2, Z̄2);
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where P̄i = γi(N0−λi)D
mi

, N̄i is defined in Lemma 3.2, and Z̄i = Λi(fi(N̄i)−mi)
hi(Λi)

, for

i = 1, 2.
We do not have any equilibrium point of the form (N, 0, 0, Z), with N and Z

positive. We prove later that there exists at least one interior equilibrium point.
We say that a steady state does not exist if any one of its components is negative.

E0 always exists, whereas a necessary and sufficient condition on the parameters
for feasibility of Eλi is N0 > λi for i = 1, 2. In other words, if the maximum
growth rate µi of the ith phytoplankton species is less than the loss rate or if
there is inadequate nutrient supply for the ith phytoplankton species, Eλi

is not
biologically relevant. Similarly N0 − Λimi

γiD
> N̄i > λi and fi(N̄i) > mi are the

necessary and sufficient conditions for feasibilities of EΛi
, i = 1, 2. That is, if the

growth of the ith phytoplankton species at the N̄i-level of nutrient is less than its
removal rate or if the growth of zooplankton Z at the Λi-level of phytoplankton is
less than its removal rate, then EΛ1

and EΛ2
are biologically irrelevant.

The local stability properties of (1) through an examination of the linearized
system about the equilibria E0, Eλ1

, and Eλ2
are omitted because they are straight-

foward and follow from the characteristic equation of the variational matrix of (1)
evaluated at each of these equilibria and the Routh-Hurwitz criterion (see for ex-
ample, [12]). We will just investigate the local stability properties of (1) through
an examination of the linearized system about the equilibria EΛ1

and EΛ2
.

We assume that N0− Λ2m2

γ2D
> N̄2 > λ2 and f2(N̄2) > m2, so that EΛ2

exists. We

examine the local stability properties of EΛ2 . The Jacobian matrix of (1) evaluated
at EΛ2

, is given by
−D − Λ2f

′
2(N̄2)
γ2

− f1(N̄2)
γ1

− f2(N̄2)
γ2

0

0 f1(N̄2)−m1 − Z̄2

η1
g′1(0) 0 0

Λ2f
′
2(N̄2) 0 f2(N̄2)−m2 − Z̄2

η2
g′2(Λ2) − c

η2

0 Z̄2g
′
1(0) Z̄2g

′
2(Λ2) 0

 .

The corresponding characteristic polynomial is given by

p(α) = (α− f1(N̄2) +m1 +
Z̄2

η1
g′1(0))(α3 +Aα2 +Bα+ C),

where

A = −f2(N̄2) +m2 +
Z̄2

η2
g′2(Λ2) +D +

Λ2f
′
2(N̄2)

γ2
, (10a)

B = (D +
Λ2f

′
2(N̄2)

γ2
)(−f2(N̄2) +m2 +

Z̄2

η2
g′2(Λ2)) + g′2(Λ2)Z̄2

c

η2

+ Λ2f
′
2(N̄2)

f2(N̄2)

η2
, (10b)

C = Z̄2g
′
2(Λ2)

c

η2
(D +

Λ2f
′
2(N̄2)

γ2
) > 0. (10c)

The monotonicity of f2(N) and g2(P2), the positivity of N̄2, Λ2, and Z̄2, together
with the Routh-Hurwitz criterion, ensure that the roots of the cubic factor have
negative real parts if and only if A > 0 and AB > C. Hence, EΛ2

is locally

asymptotically stable if and only if f1(N̄2) < Z̄2

η1
g′1(0) +m1, A > 0 and AB > C.

The local stability analysis of EΛ1 = (N̄1,Λ1, 0, Z̄1) is symmetrical to the analysis
for EΛ2 . It is straightforward to show that the coefficients of the cubic factor of the
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corresponding characteristic polynomial are given by

Â = −f1(N̄1) +m1 +
Z̄1

η1
g′1(Λ1) +D +

Λ1f
′
1(N̄1)

γ1
, (11a)

B̂ = (D +
Λ1f

′
1(N̄1)

γ1
)(−f1(N̄1) +m1 +

Z̄1

η1
g′1(Λ1)) + g′1(Λ1)Z̄1

c

η1

+ Λ1f
′
1(N̄1)

f1(N̄1)

η1
, (11b)

Ĉ = Z̄1g
′
1(Λ1)

c

η1
(D +

Λ1f
′
1(N̄1)

γ1
) > 0. (11c)

We summarize the results of this section in the following theorem.

Theorem 4.1. 1. E0 always exists. It is locally asymptotically stable for (1) if and
only if N0 < λi (so that fi(N0) < mi) for i = 1, 2.
2. Suppose λ1 < N0, so that Eλ1 exists. Eλ1 is locally asymptotically stable if and

only if λ1 < λ2 (so that f2(λ1) < m2) and g1(γ1(N0−λ1)D
m1

) < c.
3. Suppose λ2 < N0, so that Eλ2

exists. Eλ2
is locally asymptotically stable if and

only if λ2 < λ1 (so that f1(λ2) < m1) and g2(γ2(N0−λ2)D
m2

) < c.

4. Suppose N0− Λ2m2

γ2D
> N̄2 > λ2 and f2(N̄2) > m2, so that EΛ2 exists. It is locally

asymptotically stable for (1) if and only if f1(N̄2) < m1 + η2Λ2(f2(N̄2)−m2)
cη1

g′2(0),

A > 0, and AB > C; where A, B and C are defined in 10a—10c.
5. Similarly, suppose N0 − Λ1m1

γ1D
> N̄1 > λ1 and f1(N̄1) > m1, so that EΛ1

exists. It is locally asymptotically stable for (1) if and only if f2(N̄1) < m2 +
η1Λ1(f1(N̄1)−m1)

cη2
g′2(0), Â > 0, and ÂB̂ > Ĉ; where Â, B̂ and Ĉ are defined in

11a—11c.

5. Ecological interpretations of inequalities. This section gives ecological in-
terpretations of inequalities resulting from the local stability results for model (1).

By statement 1 of Theorem 4.1, the species-free steady state E0 is locally asymp-
totically stable if and only if fi(N0) < mi, for i = 1, 2. That is, the growth of
phytoplankton Pi at the N0-level of nutrient is strictly less than its removal rate
mi. Thus neither P1 nor P2 can survive at this level of nutrient. Since P1 and P2

are the only resources for zooplankton Z, it readily follows that Z also goes extinct.
Statement 2 biologically means that Eλ1

is locally asymptotically stable provided
(a) there is adequate nutrient supply for phytoplankton P1, (b) the growth of phy-
toplankton P2 at the λ1 -level of nutrient is strictly less than its removal (washout,
intrinsic death, and autotoxicity) rate and (c) the growth of animal plankton Z

at the γ1(N0−λ1)D
m1

-level of phytoplankton P1 is strictly less than its removal rate.
These three conditions explain why only phytoplankton P1 avoids extinction.

A biological interpretation of statement 3 parallels that of statement 2, and
therefore is omitted.

The first conditions on statements 4 and 5 are ecologically more complex. Let
us rewrite the first condition of statement 4,

f1(N̄2) <
η2Λ2(f2(N̄2)−m2)

cη1
g′1(0) +m1. (12)

Recall that when P1 = 0, the only removal incurred by phytoplankton P1 comes
from washout and intrinsic death at rate m1 because g1(0) = 0. Since the system
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(1) is being considered near the EΛ2
steady state, the quantity η2Λ2(f2(N̄2)−m2)

cη1
g′1(0)

is very small. This gives us an idea of how phytoplankton P1 is slightly being sup-
pressed from the system (1) due to (a) competition pressure by phytoplankton P2,
and (b) predation by zooplankton Z in a small neighborhood of EΛ2 . Therefore
inequality (12) means that the growth of phytoplankton P1 at the N̄2-level of nutri-
ent is strictly less than the rate at which P1 is being removed from the system (1)
in a small neighborhood of EΛ2

. Phytoplankton population P2 depresses nutrient
availability to the lowest level N̄2 and sustains the higher predator density. This is
referred to as the R? and P ? rules (see for example, [22]).

An ecological interpretation of inequality

f2(N̄1) < m2 +
η1Λ1(f1(N̄1)−m1)

cη2
g′2(0)

in statement 5 parallels that of the first condition of statement 4, and is therefore
omitted.

6. Transfer of Local stability and bifurcation. This section deals with the
hierarchy of steady states. It is shown that under certain conditions local stability
transfers from one steady state to another as the input nutrient concentration N0 is
increased. It is straightforward to prove that whenever a new steady state coalesces
with an existing one, a transcritical bifurcation occurs. For the sake of exposition,
we assume that λ1 < λ2 (so that species P1 is the stronger competitor).

When N0 < λ1, only the washout equilibrium E0 exists and is stable. For
N0 = λ1, Eλ1 becomes feasible through a transcritical bifurcation at E0. Then Eλ1

is a saddle. When λ1 < N0 < λ2, Eλ1
is stable and at some point (that is, when

N0 − Λ1m1

γ1D
> N̄1 > λ1) EΛ1

becomes feasible via a transcritical bifurcation at Eλ1
.

The washout equilibrium E0 loses another degree of stability at N0 = λ2 where Eλ2

becomes feasible through E0. Henceforth, E0, Eλ1
and Eλ2

are unstable while EΛ1

is already in the nonnegative cone of R4
+. Finally, for λ2 < N0, EΛ2 undergoes a

transcritical bifurcation at Eλ2 and becomes feasible.
At some point (that is, when N0 − Λ2m2

γ2D
> N̄2 > λ2) all the boundary equilibria

E0, Eλ1
, Eλ2

, EΛ1
and EΛ2

exist in the nonnegative cone of R4
+. The stabilities of

EΛ1 and EΛ2 follow from the facts that the N̄i’s depend continuously on the input
concentration N0, and their stability criteria are continuous functions of the N̄i.
Given that EΛ1

and EΛ2
are born from Eλ1

and Eλ2
, respectively, increasing the

N̄i’s slightly will not change the directions of the inequalities in statements 4 and 5
of Theorem 4.1.

7. Global results. In this section we investigate global properties of system (1).
We first establish the competition-independent extinction of Pi (due to inadequate
nutrient supply). The proof uses the following result due to [30]

Lemma 7.1. (Miller’s Lemma) Let ω(t) ∈ C2(t0,∞), ω(t) ≥ 0 and K > 0.
(a) If ω′(t) ≥ 0, ω(t) is bounded and ω′′(t) ≤ K for all t ≥ t0 then ω′(t) → 0 as
t→∞.
(b) If ω′(t) ≤ 0, ω′′(t) ≤ −K for all t ≥ t0 then ω′(t)→ 0 as t→∞.

Lemma 7.2. If λi > N0, then Pi(t)→ 0 as t→∞ in (1).
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Proof of Lemma 7.2. Choose δ > 0 so that N0 + δ < λi. By Proposition 3.1,
N(t) < N0 + δ for all sufficiently large t. From the second and third equations of
system (1), and by monotonicity properties of uptake functions fi and gi, we have

dPi(t)

dt
≤ Pi(t)[fi(N(t))−mi] ≤ Pi(t)[fi(N0 + δ)−mi] (13)

for all sufficiently large t. Hence by the definition of λi (that is, fi(λi) = mi),
dPi(t)

dt
< 0 for all sufficiently large t. Also, P ′′i (t) is bounded below. It follows from

Lemma 7.1 that P ′i (t)→ 0 as t→ 0. However, lim supt→∞ fi(N(t)) < fi(N0 + δ) <
mi so that the only possibility is that Pi(t)→ 0 as t→∞.

The next result states that E0 is a global attractor if it is the only steady state
(i.e. when there is inadequate nutrient supply for both phytoplankton populations).
Under the conditions of this theorem, the food chain under investigation crashes.

Theorem 7.1. If N0 < λi for i = 1, 2, then the species-free steady state E0 is
globally asymptotically stable for (1).

Proof. Since N0 < λi for i = 1, 2 , by Lemma 7.2 we obtain Pi(t)→ 0 as t→∞ in
(1). Take

Q ∈
{

(N,P1, P2, Z) ∈ R4
+ : N > 0, P1 > 0, P2 > 0, Z > 0

}
.

Let Ω(Q) denote the omega limit set of the orbit through Q. Then it follows that
any P = (N,P1, P2, Z) ∈ Ω(Q) satisfies P1 = 0, P2 = 0. On

{
(N, 0, 0, Z) ∈ R4

+

}
the system reduces to

N ′(t) = (N0 −N(t))D,

Z ′(t) = −cZ
(14)

and hence N(t)→ N0 and Z(t)→ 0 as t→∞. Therefore, {E0} ∈ Ω(Q). Since all
solutions are positive and bounded (see Lemma 3.1), Ω(Q) is a nonempty compact
subset of R4

+. If P ∈ Ω(Q) then the entire trajectory through P is in Ω(Q). Hence,
E0 is the only candidate. Thus, E0 is globally asymptotically stable for (1).

We now provide conditions under which Eλi
is globally asymptotically stable.

Theorem 7.2. (a) Suppose λ1 < N0 < λ2 and ω1 < c. Then Eλ1
is globally

asymptotically stable for (1).
(b) Suppose λ2 < N0 < λ1 and ω2 < c . Then Eλ2 is globally asymptotically stable
for (1).

Proof. We prove only (a) as the proof of (b) is symmetrical. Take

Q ∈
{

(N,P1, P2, Z) ∈ R4
+ : N > 0, P1 > 0, P2 > 0, Z > 0

}
.

Let Ω(Q) denote the omega limit set of the orbit through Q. Then it follows
from Lemma 7.2 that any P = (N,P1, P2, Z) ∈ Ω(Q) satisfies P2 = 0. On{

(N,P1, 0, Z) ∈ R4
+

}
the system reduces to

N ′(t) = (N0 −N(t))D − P1(t)

γ1
f1(N(t)),

P ′1(t) = P1(t)(f1(N(t))−m1)− g1(P1)Z

η1
,

Z ′(t) = (g1(P1(t))− c)Z(t).

(15)
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The third equation of (15) gives us

Z ′(t) = (g1(P1(t))− c)Z(t) < (ω1 − c)Z(t) (16)

for all sufficiently large t. Hence, Z(t) ≤ Z(0) exp((ω1−c)t)→ 0 as t→∞ (because
ω1 < c). By Lemma 3.1 Z(t) > 0 and so Z(t)→ 0 in (1). On

{
(N,P1, 0, 0) ∈ R4

+

}
system (15) reduces to

N ′(t) = (N0 −N(t))D − P1(t)

γ1
f1(N(t)),

P ′1(t) = P1(t)(f1(N(t))−m1).

(17)

By an argument comparable to that given in [23], N(t) → λ1 and P1(t) → P̄1 =
γ1(N0−λ1)D

m1
. Therefore, {Eλ1} ∈ Ω(Q). Since (17) has no periodic orbits and the

boundary is acyclic, it follows from Lemma 4.3 in [41] that Eλ1 is globally asymp-
totically stable for (1).

The limitations of asymptotic stability are local behavior of the system in a
neighborhood of the equilibrium under investigation, eventual coexistence of species
on cyclical or chaotic orbits when there is an unstable equilibrium, and possibility
of most orbits (trajectories) to tend to extinction states (see for example, [1]).

Persistence applies to those cases where none of the components of the ecosystem
goes extinct. Most importantly, to end this section we state a uniform persistence
result to derive the existence of at least one interior equilibrium. The proof uses
Theorem 3.1 in [7] (see Appendix), which is a slightly modified version of the main
result of [6] on uniformly persistent systems.

Theorem 7.3. Suppose the following conditions hold:

1. Eλi exists and is globally asymptotically stable for (1) with initial conditions
in {(N,P1, P2, 0) : N ≥ 0, Pi > 0, Pj = 0, i 6= j} ,

2. fi(λj) > mi and gj(P̄j) > c for i 6= j,
3. EΛi exists and is globally asymptotically stable for (1) with initial

conditions in {(N,P1, 0, Z) : N ≥ 0, Pi > 0, Pj = 0, Z > 0} ,
4. fi(N̄j) >

Z̄j

ηj
g′i(0) +mi, i 6= j.

Then system (1) is uniformly persistent.

Proof. See Appendix

It follows from Theorem 7.3 that model (1) has at least one interior equilibrium.
Extensive simulations (given in the next section) indicate that this interior equi-
librium point may be unique and attracts all solutions of (1) regardless of initial
conditions in the positive cone Int(R4

+). The analytical part of this result is left for
future investigation.

8. Example. In the figures of this section, each of the outcomes previously de-
scribed analytically is illustrated. We ran simulations using Matlab. The timeframe
for our simulations was 0 to 25000 days. Only the first 60 days are shown in the
figures below. A very large grid of initial conditions (N(0), P1(0), P2(0), Z(0)) in
the positive cone Int(R4

+) was considered to ensure convergence of all solutions of
system (1) to the indicated equilibrium. For illustration, in all figures, we choose
(N(0), P1(0), P2(0), Z(0)) = (0.1, 0.7, 0.7, 0.8).

We consider the system (1) with D = mi = γi = ηi = 1, i = 1, 2, c = 1.1,
µ1 = 8.5, µ2 = 6, K1 = 0.6, K2 = 0.7, ω1 = 8.4, ω2 = 5.9, L1 = 0.9, and
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Figure 1. Plots of N(t), P1(t), P2(t), and Z(t) when the input
nutrient concentration N0 = 0.06 satisfies N0 < λ1 < λ2 and
(N(0), P1(0), P2(0), Z(0)) = (0.1, 0.7, 0.7, 0.8). By Theorem 7.1,
the species-free equilibrium E0 is globally asymptotically stable
for model (1).

L2 = 1.8. The consumption functions fi and gi follow Michaelis-Menten kinetics,
so that f1(N) = 8.5N

0.6+N , f2(N) = 6N
0.7+N , g1(P1) = 8.4P1

0.9+P1
, and g2(N) = 5.9P2

1.8+P2
. It is

straightforward to check that λ1 = 0.07 and λ2 = 0.14. Some of these parameters
values are borrowed from [29] and references therein.

We first take N0 = 0.06, so that N0 < λ1 < λ2. By Theorem 7.1, the species-free
steady state E0 is globally asymptotically stable: all solutions of (1) tend to E0

regardless of initial condition. One such solution is depicted in Figure 1.
We then increase N0 to 0.12, so that λ1 < N0 < λ2. In addition, c = 1.1 < ω1.

By Theorem 7.2, Eλ1
is globally asymptotically stable for (1): all solutions of system

(1) tend Eλ1
regardless of initial condition. One such solution is depicted in Figure

2.
We further increase N0 to 0.7, so that λ1 < λ2 < N0. It can be shown that

all of the hypotheses of Theorem 7.3 are satisfied so that system (1) is uniformly
persistent. Thus, all components of solutions of model (1) are bounded away from
zero (independent of initial data) after a sufficiently long time. One such solution
is depicted in Figure 3. Note that uniform persistence implies immediately that
there is at least one interior equilibrium. Extensive numerics indicate that this
equilibrium might be unique.
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Figure 2. Plots of N(t), P1(t), P2(t), and Z(t) when the input
nutrient concentration N0 = 0.12 satisfies λ1 < N0 < λ2, c = 1.1 <
ω1 and (N(0), P1(0), P2(0), Z(0)) = (0.1, 0.7, 0.7, 0.8). By Theorem
7.2, the boundary equilibrium Eλ1 is globally asymptotically stable
for model (1).
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Figure 3. Plots of N(t), P1(t), P2(t), and Z(t) when the input
nutrient concentration N0 = 0.7 satisfies λ1 < λ2 < N0 and
(N(0), P1(0), P2(0), Z(0)) = (0.1, 0.7, 0.7, 0.8). By Theorem 7.3 the
system (1) is uniformly persistent: all components of solutions of
(1) are bounded away from zero (independent of initial data) after
a sufficiently long time.
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9. Concluding remarks. In this paper, we extended the main model in [27] to
include the effects of predation on the ecosystem structure in the absence of phy-
totoxic effects. The resulting model is a significant generalization of the works of
[8], [22], [17] and [29] among others. Using the input nutrient concentration as the
bifurcation parameter, we described the evolution of equilibria into the nonnegative
cone of R4

+, provided conditions for the existence and stability of equilibria, and
conditions under which all species persist. Ecological interpretations of the stability
conditions are given. Numerical simulations support our analytical findings. The
model in [27] lacks uniform persistence features because of the simultaneous exis-
tence of two interior equilibrium points of opposite stabilities. Model (1) extends
the main model in [27] and exhibits uniform persistence. Our findings are in line
with the statement that predation can be responsible for diversity in ecosystems
(see for example, [11]).

In the case of uniform persistence, extensive simulations indicate that all solutions
of model (1) converge to a unique interior steady state regardless of initial conditions
in the the positive cone Int(R4

+). The analytical part of this global result will
complete the global results of this paper and is left for future investigation. Model
(1) in the presence of phytotoxic interactions is not uniformly persistent. Since the
model in [27] is not uniformly persistent, we will show in future work that adding
predation by zooplankton Z increases the number of boundary equilibria without
making the resulting model uniformly persistent. Finally, while we have assumed
a spatially homogeneous environment on the system (1), we could further consider
the possibility of studying the impact of diffusion on model (1).

The model (1) has similarities with other food-chain models. As such, the results
of this paper may be relevant to a wider spectrum of population models, not just
those focused on plankton.

Acknowledgments. The author would like to thank the editor and both referees
for their helpful suggestions on improving the manuscript. Also, the author would
like to thank Mrs. P. Wyatt for proofreading the manuscript and Dr. E. Ncheuguim
for helping with the resolution of figures.

Appendix. We paraphrase a Lemma and a Theorem that underlie the proof of
Theorem 7.3.

Lemma 9.1. Consider the system of differential equations

ẋ = f(x), (18)

where the vector-valued function f is continuous on an open set G ⊆ Rn −→ Rn.
If the solution φ(t, x0) of (18) remains in a compact set K for all 0 ≤ t < ∞,

then its positive limit set Ω(C+) is a nonempty, compact, and invariant set with
respect to (18). Moreover, φ(t, x0) approaches the set Ω(C+) as t → ∞ (i.e., for
every ε > 0 there exists a T > 0 such that for every t > T there exists a point
a ∈ Rn (possibly depending on t) such that |φ(t, x0)− a| < ε ).

Theorem 9.1. (Theorem 3.1, [7]) Let Φt be a continuous flow on a locally compact
metric space E with invariant boundary. Assume that the flow Φt is dissipative and
the boundary flow is isolated and is acyclic with acyclic covering M. Then Φt is
uniformly persistent if and only if

Ω(M+
j ) ∩ Int(E) = ∅,

for each Mj ∈M.
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Proof of Theorem 7.3. We prove Theorem 7.3 in five steps. Let C+ denote the
positive cone in (R4, ρ) where for X = (N̄ , P̄1, P̄2, Z̄)T and Y = (N,P1, P2, Z)T ,

ρ(X,Y ) =
∑4
k=1 |Yk −Xk|. (C+, ρ) is a locally compact metric space. Denote by

F = (C+,R, π) the continuous flow of model (1), γ+(X) the positive semiorbit of F
through X, Λ+(X) the omega limit set of γ+(X), and W+(M) the stable manifold
of an isolated invariant set M for the flow F .

Step 1. The flow F is dissipative, that is for each X ∈ C+, Λ+(X) is nonempty
and the invariant set Ω(F) =

⋃
X∈C+ Λ+(X) has compact closure.

In fact, if there is an X̄ ∈ C+ such that Λ+(X̄) = ∅, then no positive semiorbit
of F passes through X̄. This contradicts the statement that for any set of initial
conditions in C+, there is a unique trajectory solution to model (1). It readily
follows that Λ+(X) 6= ∅ for each X ∈ C+. To complete the proof of step 1, let

us observe that Ω(F) =
⋂
X∈C+ Λ+(X). Let X0 be an initial condition in C+ and

π(t,X0) be a solution of model (1). By Lemma 3.1, π(t,X0) remains positive and
bounded for all 0 ≤ t <∞. That is, for any 0 ≤ t <∞, π(t,X0) remains in a closed

and bounded (compact) subset K of R4. Therefore, Ω(F) is not empty, compact
and invariant with respect to (1) by Lemma 9.1. Thus F is dissipative.

Step 2. ∂F is acyclic. The stable manifold structures of E0, Eλ1
, Eλ2

, EΛ1
, and

EΛ2
imply that they are not cyclically chained to each other on the boundary ∂F .

In addition the steady states form a covering of invariant subsets of ∂F with respect
to (1). Thus, ∂F is acyclic.

Step 3. ∂F is isolated. E0, Eλ1
, Eλ2

, EΛ1
, and EΛ2

are the invariant sets on ∂F .
These five equilibrium points constitute a finite covering M of Ω(∂F). They are
pairwise-disjoint, compact and isolated for both ∂F and F . Hence, ∂F is isolated
by definition.

Step 4. The covering M built in step 3 is acyclic and satisfies:

∀Mi ∈M,W+(Mi) ∩ Int(C+) = ∅. (19)

The acyclicity of M follows from step 2. The Mi’s are boundary steady states
of model (1) and the hypotheses of Theorem 7.3 guarantee that each of them
is a saddle in R4. The stable manifold of Mi ∈ M is given by W+(Mi) =
{X ∈ C+ : Λ+(X) 6= ∅,Λ+(X) ⊂Mi} and has an empty intersection with the in-
terior of the positive cone C+.

Step 5. Conclusion. By Theorem 3.1 of [7], we conclude that F is uniformly
persistent. This completes the proof of Theorem 7.3.

REFERENCES

[1] H. M. Anderson, V. Hutson and R. Law, On the conditions for persistence of species in
ecological communities, Amer. Natur., 139 (1992), 663–668.

[2] R. Aris and A. E. Humphrey, Dynamics of a chemostat in which two organisms compete for

a common substrate, Biotechnol. Bioeng., 19 (1977), 1375–1386.
[3] M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two

perfectly substitutable resources, Math. Biosci., 118 (1993), 127–180.

[4] E. Beretta, G. Bischi and F. Solimano, Stability in chemostat equations with delayed nutrient
recycling, J. Math. Biol., 28 (1990), 99–111.

[5] B. Boon and H. Laudelout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi,
Biochem. J., 85 (1962), 440–447.

[6] G. Butler, H. I. Freedman and P. Waltman, Uniform persistent systems, Proc. Amer. Math.

Soc., 96 (1986), 425–430.

http://dx.doi.org/10.1002/bit.260190910
http://dx.doi.org/10.1002/bit.260190910
http://www.ams.org/mathscinet-getitem?mr=MR1247391&return=pdf
http://dx.doi.org/10.1016/0025-5564(93)90050-K
http://dx.doi.org/10.1016/0025-5564(93)90050-K
http://www.ams.org/mathscinet-getitem?mr=MR1036414&return=pdf
http://dx.doi.org/10.1007/BF00171521
http://dx.doi.org/10.1007/BF00171521
http://www.ams.org/mathscinet-getitem?mr=MR822433&return=pdf
http://dx.doi.org/10.1090/S0002-9939-1986-0822433-4


DYNAMICS OF TWO PHYTOPLANKTON POPULATIONS UNDER PREDATION 1335

[7] G. Butler and P. Waltman, Persistence in dynamical systems, J. Diff. Equ., 63 (1986), 255–
263.

[8] G. J. Butler and G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J.

Math. Biol., 24 (1986), 167–191.
[9] G. J. Butler and G. S. K. Wolkowicz, Exploitative competition in a chemostat for two com-

plementary, and possibly inhibitory, resources, Math. Biosci., 83 (1987), 1–48.
[10] S. Chakraborty and J. Chattopadhyay, Nutrient-phytoplankton-zooplankton dynamics in the

presence of additional food source—A mathematical study, J. Biol. Syst., 16 (2008), 547–564.

[11] P. Chesson, J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl, R. D. Holt, S. A. Richards,
R. M. Nisbet and T. J. Case, The interaction between predation and competition: A review

and synthesis, Eco. Let., 5 (2002), 302–315.

[12] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston,
1965.

[13] J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics,

Heidelberg, Springr-Verlag, 1977.
[14] A. M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: A

dynamical-systems approach, J. Plankton Res., 23 (2001), 389–413.

[15] A. M. Edwards and J. Brindley, Oscillatory behaviour in a three-component plankton popu-
lation model, Dyna. Stabi. Syst., 11 (1996), 347–370.

[16] A. M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behaviour of
plankton population models, Bull. Math. Biol., 61 (1999), 303–339.

[17] J. P. Grover and R. D. Holt, Disentangling resource and apparent competition: Realistic

models for plant-herbivore communities, J. Theor. Biol., 191 (1998), 353–376.
[18] T. G. Hallam, On persistence of aquatic ecosystems. in Ocean. Sound Scat. Predic. (eds. N.

R. Anderson and B. G. Zahurance), Plenum, New York, 1977, 749–765.

[19] T. G. Hallam, Controlled persistence in rudimentary plankton models, in Proceedings of
the First International Conference on Mathematical Modeling (eds. J. R. Avula), Vol. IV,

University of Missouri Press, Rolla, 1977, 2081–2088.

[20] T. G. Hallam, Structural Sensitivity of grazing formulation in nutrient controlled plankton
models, J. Math. Biol., 5 (1978), 261–280.

[21] S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement

between experimental and theoretical forecast outcomes, Sci., 207 (1980), 1491–1493.
[22] R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with

exploitative and apparent competition, Amer. Natur., 144 (1994), 741–771.
[23] S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760–763.

[24] J. P. Ivlev, Experimental Ecology of the Feeding of Fishes, Yale University Press, New Haven,

1961.
[25] S. R. J. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Comput.

Math. Appl., 49 (2005), 375–378.
[26] J. L. Jost, S. F. Drake, A. G. Fredrickson and M. Tsuchiya, Interaction of tetrahymena

pyriformis, escherichia, coli, azotobacter vinelandii and glucose in a minimal medium, J.

Bacteriol., 113 (1976), 834–840.

[27] J.-J. Kengwoung-Keumo, Competition Between Two Phytoplankton Species Under Predation
and Allelopathic Effects, Ph.D. dissertation, New Mexico State University, Las Cruces, New

Mexico, U.S.A., 2012.
[28] J. A. León and D. B. Tumpson, Competition between two species for two complementary or

substitutable resources, J. Theor. Biol., 50 (1975), 185–201.

[29] B. Li and Y. Kuang, Simple Food Chain in a Chemostat with Distinct Removal Rates, J.

Math. Anal. and Appl., 242 (2000), 75–92.
[30] R. K. Miller, Nonlinear Volterra Equation, W. A. Benjamin, N.Y., 1971.

[31] J. Monod, Recherche sur la Croissance des Cultures Bacteriennes, Hermann et Cie, Paris,
1942.

[32] B. Mukhopadhyay and R. Bhattacharryya, Modelling phytoplankton allelopathy in a nutrient-

plankton model with spatial heterogeneity, Ecol. Model., 198 (2006), 163–173.
[33] L. Perko, Differential Equations and Dynamical Systems, Third edition, Springer, 2001.

[34] D. Rapport, An optimization model of food selection, Amer. Natur., 105 (1971), 575–587.

[35] S. Roy, The coevolution of two phytoplankton species on a single resource: Allelopathy as a
pseudo-mixotrophy, Theor. Popul. Biol., 75 (2009), 68–75.

[36] S. Ruan, Oscillations in plankton models with recycling, J. Theor. Biol., 208 (2001), 15–26.

http://www.ams.org/mathscinet-getitem?mr=MR848269&return=pdf
http://dx.doi.org/10.1016/0022-0396(86)90049-5
http://www.ams.org/mathscinet-getitem?mr=MR853832&return=pdf
http://dx.doi.org/10.1007/BF00275997
http://www.ams.org/mathscinet-getitem?mr=MR875767&return=pdf
http://dx.doi.org/10.1016/0025-5564(87)90002-2
http://dx.doi.org/10.1016/0025-5564(87)90002-2
http://dx.doi.org/10.1142/S0218339008002654
http://dx.doi.org/10.1142/S0218339008002654
http://www.ams.org/mathscinet-getitem?mr=MR0190463&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0496838&return=pdf
http://dx.doi.org/10.1093/plankt/23.4.389
http://dx.doi.org/10.1093/plankt/23.4.389
http://dx.doi.org/10.1080/02681119608806231
http://dx.doi.org/10.1080/02681119608806231
http://dx.doi.org/10.1006/bulm.1998.0082
http://dx.doi.org/10.1006/bulm.1998.0082
http://dx.doi.org/10.1006/jtbi.1997.0562
http://dx.doi.org/10.1006/jtbi.1997.0562
http://www.ams.org/mathscinet-getitem?mr=MR588391&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR645277&return=pdf
http://dx.doi.org/10.1007/BF00276122
http://dx.doi.org/10.1007/BF00276122
http://dx.doi.org/10.1126/science.6767274
http://dx.doi.org/10.1126/science.6767274
http://dx.doi.org/10.1086/285705
http://dx.doi.org/10.1086/285705
http://www.ams.org/mathscinet-getitem?mr=MR0484548&return=pdf
http://dx.doi.org/10.1137/0134064
http://www.ams.org/mathscinet-getitem?mr=MR2123414&return=pdf
http://dx.doi.org/10.1016/j.camwa.2004.03.013
http://www.ams.org/mathscinet-getitem?mr=MR1738490&return=pdf
http://dx.doi.org/10.1006/jmaa.1999.6655
http://www.ams.org/mathscinet-getitem?mr=MR0511193&return=pdf
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.005
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.005
http://www.ams.org/mathscinet-getitem?mr=MR1801796&return=pdf
http://dx.doi.org/10.1007/978-1-4613-0003-8
http://dx.doi.org/10.1086/282746
http://dx.doi.org/10.1016/j.tpb.2008.11.003
http://dx.doi.org/10.1016/j.tpb.2008.11.003


1336 JEAN-JACQUES KENGWOUNG-KEUMO

[37] S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with
instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633–654.

[38] A. Sinkkonen, Modelling the effect of autotoxicity on density-dependent phytotoxicity, J.

Theor. Biol., 244 (2007), 218–227.
[39] J. H. Steele and E. W. Henderson, The role of predation in plankton models, J. Plankton

Res., 14 (1992), 157–172.
[40] M. A. Tabatabai, W. M. Eby, S. Bae and K. P. Singh, A flexible multivariable model for

phytoplankton growth, Math. Biosci. Eng., 10 (2013), 913–923.

[41] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically
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