
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2014.11.1295
AND ENGINEERING
Volume 11, Number 6, December 2014 pp. 1295–1317

EPIDEMIC MODELS FOR COMPLEX NETWORKS

WITH DEMOGRAPHICS

Zhen Jin and Guiquan Sun

Complex Systems Research Center, Shanxi University

Taiyuan, Shanxi 030051, China
and

Department of Mathematics, North University of China

Taiyuan, Shanxi 030051, China

Huaiping Zhu

LAMPS and CDM, Department of Mathematics and Statistics

York University, Toronto, ON, M3J1P3, Canada

(Communicated by Haiyan Wang)

Abstract. In this paper, we propose and study network epidemic models with

demographics for disease transmission. We obtain the formula of the basic re-
production number R0 of infection for an SIS model with births or recruitment

and death rate. We prove that if R0 ≤ 1, infection-free equilibrium of SIS
model is globally asymptotically stable; if R0 > 1, there exists a unique en-

demic equilibrium which is globally asymptotically stable. It is also found that

demographics has great effect on basic reproduction number R0. Furthermore,
the degree distribution of population varies with time before it reaches the

stationary state.

1. Introduction. Infectious diseases have serious impacts on human health and
society, the study of emerging and reemerging epidemics has a long history, and
many mathematical models, both deterministic and stochastic, have been employed
to study such impacts [14, 1] . The modeling study of infectious diseases can be
traced back to the work in 1925 by Kermack and McKendrick [19, 15]. Since then,
the deterministic models have been served as main and powerful tools to study the
dynamics of the emerging and reemerging infection diseases. These deterministic
models and their many descendants are known as “mean-field” or “compartmental”
models because homogeneous mixing were assumed. The overwhelming majority of
epidemic models are based on a compartmentalization of individuals or hosts ac-
cording to the evolution and courses of the diseases. The basic or essential variables
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describing the number of related individuals include susceptible, infected and re-
covered in terms of a particular disease. For those infectious diseases with a longer
course, the related models usually involve demographics, including natural death
and birth, as well as other dynamical factors, such as immigration or migration
[14, 1, 25, 9, 6].

In a typical compartmental model for disease transmission, the individuals of the
population considered are usually divided into a number of compartments, com-
monly denoted by S (susceptible) and I (infective). These type of SIS models
usually consist of a set of differential equations describing the change rate in the
number of individuals in the compartments over time. If the total host population
size is N , hence N = S + I, then the total population size can be increased by
new births or immigration, and reduced by natural deaths or due to infection of the
disease. The birth and/or death rate will depend on the host population size. If we
use B(N) to denote the recruitment rate including birth and immigration, and use
D(N) for the per capita natural death rate, respectively, and use α to denote the
mortality rate due to the infection, then the model for the total population N can
be written as

N ′(t) = B(N)−D(N)N − αI. (1)

In the absence of infectious disease(s), in general the population size tends over
time to a positive equilibrium of (1) which is usually decided by the carrying ca-
pacity of the environment or supporting resources, that is, the population size at
which birth and death rates are balanced.

In homogeneous mixing models, one usually assumes that the contact transmis-
sion between susceptible and infective individuals occur randomly, and that the
I, infective individuals, make τC(N)I random contacts with the susceptibles that
could result in disease transmission per unit of time, here C(N) is the average
number of contacts each individual makes per unit of time, τ is the transmission
probability per contact. Because the contacts are random, only a fraction S/N of
contacts are with a susceptible individual. Therefore the rate at which individuals
transfer from the susceptible to the infective compartment is τC(N)IS/N , (assum-
ing no vertical transmission), we then have the following mean field equations{

S′ = B(N)− τC(N) ISN −D(N)S + γI,

I ′ = τC(N) ISN − αI −D(N)I − γI.
(2)

For the well known SIS type of model (2), there have been large amount of work
contributing to study the dynamics with different demographic assumptions and
incidence functions, we refer to the books [14, 1, 19] for extensive references. For
a population with fixed demographics, the incidence function is the key factor to
determine the disease dynamics. The most commonly used incidence functions are
bilinear or standard.

The bilinear incidence βSI, also know as mass action, βSI = βN S
N I implies

that the contact rate is βN which is linearly proportional to the total population
size N . This would be a good approximation when the total population size N is
not too large because the number of contacts made by an individual per unit of
time should increase as the total population size N increases.

The standard incidence starts with the assumption that the contact rate C(N)
is a constant. Anderson and May [1] assume a classical mass action incidence
C(N) = βN , whereas Busenberg and van den Driessche [6] and Gao and Hethcote
[9] all assume the contact transmission rate C(N) is a constant. However, the spread
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of an infectious diseases in a population depends not only on the character of the
disease, but also on the structure and mix of the population. Deterministic models
of infectious disease transmission often assume homogeneous random mixing which
implies that all individuals are equally likely to contact each other and, therefore, if
infected, are equally likely to infect susceptible members of the population, which is
rarely observed in reality. In large populations, individuals typically contact only a
small, clustered, subpopulation. The local correlations that result from transmission
in such structured networks are not well captured by standard mean-field models.
There have been extensive studies to overcome this shortcoming, one important
effort along this direction is the use of complex network models, and since then
great progresses have been made in the last decade [23, 24, 20, 21, 22, 12, 10, 13,
16, 26, 17, 30, 5].

The early work in this direction focus more on different net structures (small-
world networks and scale-free networks) or the impact of different degree distribu-
tion on the threshold values [23, 24, 20, 21]. In 2001, Romualdo Pastor-Satorras
and Alessandro Vespignani [24] find the absence of an epidemic threshold and its
associated critical behavior, which implies that scale-free networks are prone to the
spreading and the persistence of infections at whatever spreading rate the epidemic
agents possess. The stability of such networks models was studied in some recent
publications [26, 5].

If the member of a population is considered to be the number of nodes in a
network with their own degree (i.e. the number of potential contacts with other
members in the population), an undirected network of size N with node degree
distribution p(k) (k = 1, 2, ..., n) is then well defined. The value 〈k〉 =

∑
k kp(k) is

the average number of contacts each node can make. In an SI or SIS model, each
node in the network at any time can be either susceptible (S) or infectious (I).
Let us assume that the whole population is divided into n distinct groups of sizes
Nk(k = 1, 2, ..., n) such that each individual in group k has exactly k contacts, here
n denotes the maximum degree value of all nodes. For simplicity , we call the group

of size Nk group k. If the population size is N(N =
n∑
k

Nk), then the probability

that a uniformly chosen individual has k contacts is p(k) = Nk/N . If Sk and Ik
represent the number of susceptible and infectious individuals within the group k,
respectively, then

Sk + Ik = Nk, S(t) =

n∑
k

Sk(t), I(t) =

n∑
k

Ik(t).

Let ρk = Ik/Nk be the relative density of infected nodes with given degree k,
then 1 − ρk is the relative density of susceptible nodes. The following dynamical
mean-field model was proposed and studied in [23, 24, 12, 3]:

ρ′k(t) = −ρk + τk(1− ρk)Θ(t), (3)

where Θ(t) stands for the probability that an edge emanating from a node of degree
k points to an infected node, Θ(t) =

∑
l p(l/k)ρl(t) , where p(l/k) is the probabil-

ity that a node with k degree connects to a node with degree l. For uncorrelated
networks [17, 5], p(l/k) = lp(l)/〈k〉, which means that the probability that a node
points to a node with degree l is proportional to its degree and the degree distri-
bution p(l). From the definition of Θ(t), it is independent of k for uncorrelated
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networks [5] :

Θ(t) =

∑
k kp(k)ρk
〈k〉

. (4)

In model (3), Nk = Np(k) is a constant for the given degree distribution p(k)
provided the total population size N remains a constant, hence (3) can be reduced
to

I ′k(t) = −Ik + τk(Nk − Ik)Θ(t), (5)

where

Θ(t) =

n∑
k

kp(k)ρk

〈k〉
=

n∑
k=1

kIk

n∑
k=1

k(Sk + Ik)
. (6)

Networks can be classified as homogeneous and heterogeneous based on the vari-
ation of the degree distribution [3] . Homogeneous networks usually assume that the
networks of contacts among individuals has very small degree fluctuations. In other
words, the degree k fluctuates very little and we can assume that k ' 〈k〉. Typically,
such distribution includes Delta and Poissonian degree distribution. For Delta de-
gree distribution, each individual shares the same degree k, then, Θ(t) = I/N , and
the rate at which individuals transfer from the susceptible to the infective of (3)
is reduced to a homogeneous mixing model like (2), and if k = N , the incidence is
bilinear, but if k 6= N , the incidence is similar to the standard incidence. The main
difference lies in the lack of demographics. For a Poissonian degree distribution,
the network is composed of a set of N different vertices, in which each one of the
N(N−1)/2 possible edges is present with probability p (the connection probability),
and is absent with probability 1 − p. This procedure results in a random network
with average degree 〈k〉 = pN , and for a Poisson degree distribution in the limit of
large N and constant 〈k〉, we have

p(k) = e−〈k〉
〈k〉k

k!
.

Heterogeneous networks assume that the degree of vertices is highly fluctuant
and the average degree is no longer a meaningful characterization of such networks,
for example, the power law distribution p(k) ∼ k−γ for large k is scale-free networks
[2].

Though model (3) or (5) describes the transmission dynamics of disease in terms
of incidence probability Θ(t), the variation of population size was ignored, it also
requires that the total number of population N and degree distribution p(k) to be
fixed. In other words, model (3) or (5) works only for a fixed network with constant
degree distribution. Yet, in real world applications, for the infection disease which
run over a longer course, the impact of the demographics including new born or
death as well as the migration will definitely change the degree distribution p(k),
hence the degree distribution becomes time dependent. As far as we know that the
network models for disease transmission with such important character of changing
degree distribution has not been well addressed or investigated in previous studies.

In this paper, we shall incorporate the demographics of a population into the
modeling for disease transmission in a complex network. By using the models
with demographics, we will study the impact of the demographics on the degree
distribution of the population and study the dynamical behave of some concrete
SIS models for infectious transmission on complex networks.
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2. Epidemic models in complex networks with demographics. Without loss
of generality, we start with an SIS model, by dividing the population into two classes,
susceptible S and infected I. Let N be the total population, then N = S + I. As
in the introduction, let B(N) be the recruitment rate and D(N) be the per capita
natural death rate of the population.

We consider all the population and their contacts as a network. Each person in
a community can be regarded as a vertex in the network, and each contact between
two individuals is represented as an edge (line) connecting the two vertices. The
number of edges emanating from a vertex, that is, the number of contacts a person
has, is called the degree of the vertex. We classify the population into groups based
on the number of contacts the individual can make per unit of time. Let Nk be
the total number of individuals who has k contacts, per unit of time, k = 1, 2, · · ·n,
n is the maximum number of contact each individual can make per unit of time

(1 ≤ n ≤ N). Let
−→
N = (N1, N2, N3 · · · , Nn). If we let Sk and Ik be the susceptible

and infected individuals at time t, then

Nk = Sk + Ik, N =

n∑
k=1

Nk, S =

n∑
k=1

Sk, I =

n∑
k=1

Ik. (7)

Correspondingly, the degree distribution p(k, t) = Nk(t)/N(t) becomes time de-
pendent.

We make the following basic assumptions about the network upon which the
infectious diseases models will be established:

(A1) The recruitment rate B(N) is distributed into group k at the probability

rk(0 ≤ rk < 1), hence
n∑
k=1

rk = 1.

We assume that each new member entering the network is susceptible. The
natural death rate is denoted by D(N)N .

(A2) The recovery rate for each group are the same, which we denote by γ. For
a disease, we assume that the contact transmission rate between the infected
and susceptible node is the same across the whole network we denote this rate
by τ .

(A3) We must consider how a new member enters and chooses the k other vertices

to which it contacts. Let us define the attachment probability Πa(k,
−→
N ) that

a given edge of a newly added vertex attaches to a given preexisting vertex
of degree k, and we need also consider that edges removed of other vertex of

degree k due to the deaths of individuals. Let Πd(k,
−→
N ) be the respective link

removal probability for a node with degree k. Contributions from processes in
which a vertex gains or loses two or more edges in a single unit of time will be
neglected. Assume that each node has at least 1 and at most n links, n ≤ N .
This implies that when a link is attached to a node with degree n, since
any node cannot has a degree greater n, we suppose this link immediate are

rewired to a preexisting vertex of degree k with k < n, namely, Πa(n,
−→
N ) = 0.

Similarly, the link of a node with degree 1 is rewired when its edge is removed
because of the death of another individuals, and maintain degree 1, namely,

Πd(1,
−→
N ) = 0. In these two cases, we ignore other individual degrees changes.
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The sum of Πa(k,
−→
N ) across all nodes is 1 (see [18]), namely,

n∑
k=1

Πa(k,
−→
N )Nk = 1.

Similarly, the sum of Πd(k,
−→
N ) across all nodes is 1, i.e.,

n∑
k=1

Πd(k,
−→
N )Nk = 1.

(A4) Assume that the network does not have correlations, then the conditional
probability p(j|k) that a given vertex with degree k is linked to a vertex with
degree j by one edge is proportional to jp(j), which is independent of its own
vertex degree k (see [23, 24]), hence we have

p(j|k) =
jp(j)Ij/Nj
〈k〉

, (8)

where 〈k〉 =
n∑
k=1

kp(k). The probability that a link from a site points to

another site with at least one infected individual becomes

Θ(t) =

n∑
j=1

jp(j)Ij/Nj

〈k〉
=

n∑
j=1

jIj

n∑
k=1

kNk

., (9)

Based on the above assumptions and discussions, we can have the following SIS
model when n ≥ 2,
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S′1 =r1B(N)−D(N)S1 − τS1Θ + γI1 −B(N)

n∑
i=1

iriΠa(1,
−→
N )S1

+D(N)

n∑
i=1

iNiΠd(2,
−→
N )S2,

I ′1 =τS1Θ−D(N)I1 − γI1

−B(N)

n∑
i=1

iriΠa(1,
−→
N )I1 +D(N)

n∑
i=1

iNiΠd(2,
−→
N )I2,

S′k =rkB(N)−D(N)Sk − τkSkΘ + γIk

+B(N)

n∑
i=1

iri[Πa(k − 1,
−→
N )Sk−1 −Πa(k,

−→
N )Sk]

+D(N)

n∑
i=1

iNi[Πd(k + 1,
−→
N )Sk+1 −Πd(k,

−→
N )Sk],

I ′k =τkSkΘ−D(N)Ik − γIk

+B(N)

n∑
i=1

iri[Πa(k − 1,
−→
N )Ik−1 −Πa(k,

−→
N )Ik]

+D(N)

n∑
i=1

iNi[Πd(k + 1,
−→
N )Ik+1 −Πd(k,

−→
N )Ik],

S′n =rnB(N)−D(N)Sn − τnSnΘ + γIn

+B(N)

n∑
i=1

iriΠa(n− 1,
−→
N )Sn−1 −D(N)

n∑
i=1

iNiΠd(n,
−→
N )Sn,

I ′n =τnSnΘ−D(N)In − γIn +B(N)

n∑
i=1

iriΠa(n− 1,
−→
N )In−1

−D(N)

n∑
i=1

iNiΠd(n,
−→
N )In,

k =2, ..., n− 1.

(10)

and if n = 1, one can establish the model (2). It follows from (10) immediately that
we have the total number of individuals in group k satisfies the following equations

dN1

dt
=B(N)r1 −D(N)N1 −B(N)

n∑
i=1

iriΠa(1,
−→
N )N1

+D(N)
n∑
i=1

iNiΠd(2,
−→
N )N2,

dNk
dt

=B(N)rk −D(N)Nk +B(N)

n∑
i=1

iri[Πa(k − 1,
−→
N )Nk−1 −Πa(k,

−→
N )Nk]

+D(N)

n∑
i=1

iNi[Πd(k + 1,
−→
N )Nk+1 −Πd(k,

−→
N )Nk],

dNn
dt

=B(N)rn −D(N)Nn +B(N)

n∑
i=1

iriΠa(n− 1,
−→
N )Nn−1

−D(N)

n∑
i=1

iNiΠd(n,
−→
N )Nn,

k =2, ..., n− 1.

(11)
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where the term B(N)rk in (11) represents the addition of a individual of degree k to

the network. The terms B(N)
n∑
i=1

iriΠa(k− 1,
−→
N )Nk−1 and −B(N)

n∑
i=1

iriΠa(k,
−→
N )

Nk describe the flow of vertices from degree k−1 to k and from k to k+1 as they gain

extra edges when newly added vertices are attached. The terms D(N)
n∑
i=1

iNiΠd(k+

1,
−→
N )Nk+1 and −D(N)

n∑
i=1

iNiΠd(k,
−→
N )Nk describe the flow from degree k+ 1 to k

and from k to k − 1 as vertices lose edges when one of their neighbors is removed

from the network due to deaths,
n∑
i=1

iD(N)Ni represents lost the total number of

sides in the network by deaths.
From (11), we know that the total number of individuals N(t) satisfies

N ′(t) = B(N)−D(N)N(t). (12)

We are interested to explore the impact of demographics on the transmission of
a disease over a complex network, the new recruitment and death will change the
connection transmission probability when a new member is introduced or removed
from the network. There have been different ways of modeling the recruitment rate
in dynamical modeling for a single population. In the book [19], the following two
types of recruitment functions B(N) and death functions D(N) are commonly used:

(B1) B(N) = A, D(N) = µ, A > 0, µ > 0;

(B2) B(N) = N(b+ µN
K ) and D(N) = µ+ bN

K , b > 0, µ > 0,K > 0.

With the above combinations of B(N) and D(N), respectively, the total number
of individuals of the network N(t) will satisfy respectively one of the following two
equations

N ′(t) = A− µN(t), (13)

N ′(t) = (b− µ)N(1− N

K
). (14)

Each of the above equation has a positive equilibrium which is globally asymp-
totically stable. Therefore we only focus and consider the case that the equation
(12) has a unique globally asymptotically stable equilibrium N∗. In this case, the
total population approaches asymptotically to a constant.
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Since we are only interested in the asymptotic dynamics of the transmission of
the diseases on the network, we can then rewrite (11) as the following



dN1

dt
=B(N∗)r1 −D(N∗)N1

−B(N∗)

n∑
i=1

iriΠa(1,
−→
N )N1 +D(N∗)

n∑
i=1

iNiΠd(2,
−→
N )N2,

dNk
dt

=B(N∗)rk −D(N∗)Nk

+B(N∗)

n∑
i=1

iri[Πa(k − 1,
−→
N )Nk−1 −Πa(k,

−→
N )Nk]

+D(N∗)

n∑
i=1

iNi[Πd(k + 1,
−→
N )Nk+1 −Πd(k,

−→
N )Nk],

dNn
dt

=B(N∗)rn −D(N∗)Nn +B(N∗)

n∑
i=1

iriΠa(n− 1,
−→
N )Nn−1

−D(N∗)

n∑
i=1

iNiΠd(n,
−→
N )Nn,

k =2, ..., n− 1.

(15)

3. Dynamics of network models with demographics. The two different types
of recruitment function would lead to different dynamics over the networks, due to
the complexity of the systems. We consider the simplest SIS model and its dynamics
under the assumption (B1), i.e. the recruitment and per capita natural death rats
are constants A and µ respectively. We assume a new node is recruited and it
links to a randomly selected node, i.e., the probability that a node is selected for
attachment is uniformly distributed (see [18, 4]). Hence

Πa(k,
−→
N ) ≈ 1

n∑
i=1

Ni

=
1

N
, k = 1, 2, · · · , n− 1.

In this internal network, we assume that (A4) holds. In this case, the probability
that each edge of a individual is pointing to other vertex of degree k is proportional
to the fraction of edges emanated from these vertices. Thus, we can take

Πd(k,
−→
N ) ≈ k

n∑
k=1

kNk

, k = 2, · · · , n.
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Then model (10) becomes,

S′1 =r1A− µS1 − τS1Θ + γI1 −
A

n∑
k=1

krk

N
S1 + 2µS2,

I ′1 =τS1Θ− µI1 − γI1 −
A

n∑
k=1

krk

N
I1 + 2µI2,

S′k =rkA− µSk − τkSkΘ + γIk

+

A
n∑
k=1

krk

N
[Sk−1 − Sk] + µ[(k + 1)Sk+1 − kSk],

I ′k =τkSkΘ− µIk − γIk +

A
n∑
k=1

krk

N
[Ik−1 − Ik] + µ[(k + 1)Ik+1 − kIk],

S′n =rnA− µSn − τnSnΘ + γIn +

A
n∑
k=1

krk

N
Sn−1 − nµSn,

I ′n =τnSnΘ− µIn − γIn +

A
n∑
k=1

krk

N
In−1 − nµIn.

(16)

The flow diagram of the transmission of system (16) is depicted in Figure 1.

Figure 1. Flow diagram of the transmission dynamics in system

(16), where q = A
N

n∑
k=1

krk.

Correspondingly, model (11) for population in each group becomes,

dN1

dt = Ar1 − A
N

n∑
i=1

iriN1 − µN1 + 2µN2,

dNk
dt = Ark + A

N

n∑
i=1

iri[Nk−1 −Nk]− µNk + µ[(k + 1)Nk+1 − kNk],

dNn
dt = Arn + A

N

n∑
i=1

iriNn−1 − µNn − nµNn,

k = 2, · · · , n− 1.

(17)
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Note that the total number of individuals N(t) satisfies (13), which has a unique
globally asymptotically stable equilibrium N∗ = A/µ. Since we are only interested
in the asymptotic behavior of system (17), we can reduce (17) to following the
equations:

dN1

dt = Ar1 − µcN1 − µN1 + 2µN2,
dNk
dt = Ark + µc[Nk−1 −Nk]− µNk + µ[(k + 1)Nk+1 − kNk],
dNn
dt = Arn + µcNn−1 − µNn − nµNn,
k = 2, · · · , n− 1.

(18)

where c =
n∑
i=1

iri.

In order to study the transmission dynamics of system (16), we start with system
(18).

Let

J = −



−(c+ 1)µ 2µ
cµ −(c+ 3)µ 3µ

cµ −(c+ 4)µ 4µ
. . .

. . .
. . .

cµ −(c+ n)µ nµ
cµ −(1 + n)µ


.

Let T = diag(δ1, δ2, · · · , δn), δ1 = 1, δi =
√

ci−1

i! , 2 ≤ i ≤ n, and di = µ
√
c(1 + i),

then one can verify that

T−1JT = J∗ = −



−(c+ 1)µ d1
d1 −(c+ 3)µ d2

d2 −(c+ 4)µ d3
. . .

. . .
. . .

dn−2 −(c+ n)µ dn−1
dn−1 −(1 + n)µ


.

Obviously, J and J∗ have same eigenvalue, and J∗ is real symmetry matrix. Since,
a real symmetric matrix has real eigenvalues, we use Gerschgorin circles theorem
for J to estimate its eigenvalues. Every eigenvalue of J lies within at least one of
the Gershgorin discs:

D1 = {λ : −(2c+ 1)µ ≤ λ ≤ −µ},

D2 = {λ : −µ(2c+ 2k − 1) ≤ λ ≤ −µ, k = 2, 3, · · · , n− 1},
D3 = {λ : −(2n+ 1)µ ≤ λ ≤ −µ}.

By Theorem 1.2 in [27], we know that the system (18) has a unique endemic

equilibrium P0 = ( N∗1 , N∗2 , · · · , N∗n) and
n∑
i=1

N∗i = A/µ. If we denote
−→
N ∗ =

(N∗1 , N
∗
2 , · · · , N∗n)T ,

−→
R = (Ar1, Ar2, · · · , Arn)T , then

−→
N ∗ = J−1

−→
R.

Thus, we have the following theorem.

Theorem 3.1. System (18) has a unique equilibriumP0 = (N∗1 , N
∗
2 , · · · , N∗n), and

it is globally asymptotically stable, i.e., lim
t→∞

Nk(t) = N∗k .
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By Theorem 3.1, we will study the limiting system of (16):

S′1 = r1A− β1S1

n∑
i=1

iIi + µ(1 + c)S1 + γI1 + 2µS2,

I ′1 = β1S1

n∑
i=1

iIi − (µ+ µc+ γ)I1 + 2µI2,

S′k = rkA− βkSk
n∑
i=1

iIi − µ(1 + k + c)Sk + γIk + µcSk−1 + µ(k + 1)Sk+1,

I ′k = βkSk
n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1,

S′n = rnA− βnSn
n∑
i=1

iIi − µ(1 + n)Sn + γIn + µcSn−1,

I ′n = βnSn
n∑
i=1

iIi − [µ(1 + n) + γ]In + µcIn−1 − µIn,

k = 2, · · · , n− 1.

(19)
where βk = τk

n∑
k=1

kN∗
k

.

It follows from Theorem 3.1 that system (19) has a unique disease-free equilibrium
E0 = (N∗1 , N

∗
2 , · · · , N∗n, 0, 0, · · · , 0).

Note that only the compartments Ik(k = 1, 2, . . . , n) are involved in the calcu-
lation of the basic reproduction number R0. We define µ + µc + γ = θ and let

M =



σ1 − θ 2σ1 + 2µ 3σ1 · · · kσ1 · · · nσ1
σ2 + µc 2σ2 − θ − 2µ 3σ2 + 3µ · · · kσ2 · · · nσ2

...
...

...
...

...
...

σk 2σk 3σk · · · kσk − θ − kµ · · · nσk
...

...
...

...
...

...
σn 2σn 3σn · · · kσn · · · nσn − γ − (n+ 1)µ


,

where, σi = βiS
∗
i . Obviously, M is irreducible and has non-negative off-diagonal

elements. Let

M1 =



β1 2β1 · · · kβ1 · · · nβ1
β2 2β2 · · · kβ2 · · · nβ2
...

...
...

...
...

βk 2βk · · · kβk · · · nβk
...

...
...

...
...

βn 2βn · · · kβn · · · nβn


, F =



σ1 2σ1 · · · kσ1 · · · nσ1
σ2 2σ2 · · · kσ2 · · · nσ2
...

...
...

...
...

σk 2σk · · · kσk · · · nσk
...

...
...

...
...

σn 2σn · · · kσn · · · nσn


,

V = −



−θ 2µ 0 0 0 0 0
µc −θ − 2µ 3µ 0 0 0 0
0 µc −θ − 3µ 4µ 0 0 0
...

...
...

...
...

...
...

0 0 · · · µc −θ − kµ (k + 1)µ 0
...

...
...

...
...

...
...

0 0 · · · 0 0 µc −γ − (n+ 1)µ


.

Following the notations in van den Driessche and Watmough [29] and the concepts
of next generation matrix, one can compute to get the basic reproduction number
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R0 = ρ(FV −1), where ρ represents the spectral radius of the a matrix, and R0 <
1⇔ s(M) < 0, R0 > 1⇔ s(M) > 0, where

s(M) := max{Reλ : λ is an eigenvalue of M}.

To calculate the expression for R0, first, we will transforms the tridiagonal matrix
V = (vij)n×n to a symmetric tridiagonal matrix.

Let

T = diag(δ1, δ2, · · · , δn), δ1 = 1, δi =
√

ci−1

i! , 2 ≤ i ≤ n, and di = µ
√
c(1 + i),

then if we denote V ∗ = T−1V T = (hij)n×n, one can verify to yield that

V ∗ = −



−θ d1
d1 −θ − 2µ d2

d2 −θ − 3µ d3
. . .

. . .
. . .

dn−2 −θ − (n− 1)µ dn−1
dn−1 −γ − (n+ 1)µ


,

where vij = δi
δj
hij . Note that the sums of each column of matrix are the same µ+γ,

so V is an irreducible nonsingular M-matrix. Thus V −1 is a positive matrix. Using
the methods in [8], for V ∗ = (hij)n×n, one can obtain

hij =


|V ∗
i−1|
|V ∗
i |

+ |V ∗i−1|2
n∑

k=i+1

(

k−1∏
l=i

d2l

|V ∗
k−1||V

∗
k |

), i = j,

(−1)i+j
|V ∗
j−1|
|V ∗
i−1|

i−1∏
l=j

dlhii, i 6= j,

where |V ∗0 | = 1 and |V ∗i |(1 ≤ i ≤ n) is the ith order principal minor determinant of
V ∗.

Now we can give the expression of R0. Note F is a matrix of rank 1, so R0 =
ρ(FV −1) is just the trace of FV −1, i.e.,

R0 = ρ(FV −1) =
n∑
j=1

σj(
n∑
i=1

ivji) =
n∑
j=1

σjδj(
n∑
i=1

ihji
δi

).

In general, it is difficult to give the implicit form of R0 due to the fact of implicit
form for the equilibrium. For the particular case of n = 2, one can calculate to get

S∗1 = A(r1+2)
µ(3+c) , S

∗
2 = A(1+2r2)

µ(3+c) , and σ1 = τ(r1+2)
r1+4(1+r2)

, σ2 = 2τ(1+2r2)
r1+4(1+r2)

, therefore to

obtain the basic reproduction number

R0 =
τ [(r1 + 2)(γ + 3µ+ 2µc) + 4(1 + 2r2)(γ + 2µ+ µc)]

[r1 + 4(1 + r2)][γ(γ + 4µ+ µc) + µ2(3 + c)]
,

where c = r1 + 2r2.

Remark 1. When A→ 0, µ→ 0, it corresponds to the case with no demographics
for the network models and the system (16) becomes the system (3), i.e., the network
will be reduced from dynamic into static. By the references [23, 24], we know the
basic reproduction number for the static network has the form of

R∗0 =
τ

γ

〈k2〉
〈k〉

,
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which depends only on the degree distribution. The degree distribution needs to
be given in advance, and for different degree distribution, R∗0 has different values.
However, for the network model with recruitment and deaths, the basic reproduction
number R0 depends on rk, µ, γ and τ (see the case n = 2 for example) but does not
degree distribution. In fact, the degree distribution function p(k, t) varies as time
increases. When t → ∞, lim

t→∞
p(k, t) = lim

t→∞
Nk/N = µN∗k/A. That is, our results

are different from those in static network [23, 24, 20, 21, 22, 12, 13, 26, 5, 2, 4],
therefore, demographics (including recruitment and death) contributes to the basic
reproduction number, which is important to decide the endemics of the disease over
the network.

Theorem 3.2. For system (19), if R0 ≤ 1, then the disease-free equilibrium E0 =
(S∗1 , · · ·S∗n, 0, · · · 0) is globally attractive, where S∗k = N∗k (k=1, 2, . . . , n).

Proof. We only need to prove that lim
t→∞

Ik(t) = 0.

By Theorem 3.1, we have that for any ε > 0, if t is sufficiently large,

Nk(t) = Sk(t) + Ik(t) < N∗k + ε, k = 1, 2, · · · , n

holds. Thus, from (19), we have



I ′1 ≤ β1(S∗1 + ε)
n∑
i=1

iIi − (µ+ µc+ γ)I1 + 2µI2,

I ′k ≤ βk(S∗k + ε)
n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1,

I ′n ≤ βn(S∗n + ε)
n∑
i=1

iIi − [µ(1 + n) + γ]In + µcIn−1 − µIn,

k = 2, · · · , n− 1.

It then suffices to show that for the following system



I ′1 = β1(S∗1 + ε)
n∑
i=1

iIi − (µ+ µc+ γ)I1 + 2µI2,

I ′k = βk(S∗k + ε)
n∑
i=1

iIi − [µ(1 + k + c+ γ)Ik + µcIk−1 + µ(k + 1)Ik+1,

I ′n = βn(S∗n + ε)
n∑
i=1

iIi − [µ(1 + n) + γ]In + µcIn−1 − µIn,

k = 2, · · · , n− 1.

(20)

all the solutions tend to zero.
Since s(M) < 0 and s(M + εM1) is continuous for small ε, we can fix an ε > 0

small enough such that s(M + εM1) < 0. As a consequence, solutions of equation
(20) tend to zero as t goes to infinity. Then by the comparison theorem, lim

t→∞
Ii(t) =

0.
Next, we will show that when R0 > 1, system (19) admits a unique endemic

equilibrium which is globally attractive.



EPIDEMIC MODELS FOR COMPLEX NETWORKS 1309

It follows from (16) that we can rewrite system (19) in an equivalent form:

dN1

dt = Ar1 − µcN1 − µN1 + 2µN2,
dNk
dt = Ark + µc[Nk−1 −Nk]− µNk + µ[(k + 1)Nk+1 − kNk],
dNn
dt = Arn + µcNn−1 − µNn − nµNn,

I ′1 = β1(N1 − I1)
n∑
i=1

iIi − (µ+ µc+ γ)I1 + 2µI2,

I ′k = βk(Nk − Ik)
n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1,

I ′n = βn(Nn − In)
n∑
i=1

iIi − [µ(1 + n) + γ]In + µcIn−1 − µIn.

k = 2, · · · , n− 1.

(21)
To investigate the global dynamics of (21), we first show that (21) admits a compact
and positively invariant set.

Lemma 3.3. For system (21), every forward orbit in R2n
+ eventually enters into

G := {(
−→
N,
−→
I ) ∈ R2n :

n∑
k=1

Nk ≤
A

µ
, 0 ≤ Ik ≤ Nk},

where
−→
N = (N1, N2, · · · , Nn),

−→
I = (I1, I2, · · · , In) and G is positively invariant for

(21).

Note N(t) =
n∑
k=1

Nk satisfies (13), then Lemma 3.3 follows from straightforward

calculations.
For (21), clearly, the first n equations are independent of the last n equations.

By Theorem 3.1, we have lim
t→∞

Nk(t) = N∗k . Then (21) has the following limiting

system:

I ′1 = β1(N∗1 − I1)
n∑
i=1

iIi − (µ+ µc+ γ)I1 + 2µI2,

I ′k = βk(N∗k − Ik)
n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1,

I ′n = βn(N∗n − In)
n∑
i=1

iIi − [µ(1 + n) + γ]In + µcIn−1 − µIn,

k = 2, · · · , n− 1.

(22)

Lemma 3.4. For system (22), the set

G1 := {(I1, I2, · · · , In) =
−→
I ∈ Rn+ : 0 ≤ Ik ≤ N∗k , k = 1, 2, · · · , n}

is positively invariant.

Proof. First we will show that Ik(t) > 0 for any t > 0 and k = 1, 2, · · · , n, and initial

value
−−→
I(0) ∈ G1. Otherwise assume that exist a k0 ∈ {1, 2, · · · , n} and t0 > 0, such

that Ik0(t0) = 0. Let t∗ = inf{t > 0, Ik0(t) = 0}, it follow that

I ′k0(t∗) = βk0N
∗
k0

n∑
i=1

iIi(t
∗) + µcIk0−1(t∗) + µ(k0 + 1)Ik0+1(t∗),

then I ′k0(t∗) > 0, but the definition of t∗ implies I ′k0(t∗) ≤ 0, this is a contradiction.
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Second, we show that for any t ≥ 0, Ik(t) ≤ N∗k and k = 1, 2, · · · , n.

For any initial value
−−→
I(0) ∈ G1, let xk(t) = N∗k − Ik(t). It follows from (22) that

we have the following system:

x′1 =− β1x1
n∑
i=1

i(N∗i − xi) + (µ+ µc+ γ)(N∗1 − x1)− 2µ(N∗2 − x2),

x′k =− βkxk
n∑
i=1

i(N∗i − xi) + [µ(1 + k + c) + γ](N∗k − xk)

− µc(N∗k−1 − xk−1)− µ(k + 1)(N∗k+1 − xk+1),

x′n =− βnxn
n∑
i=1

i(N∗i − xi) + [µ(1 + n) + γ](N∗n − xn)− µc(N∗n−1 − xn−1),

k =2, · · · , n− 1.

(23)
We will show that for any t > 0, xk(t) > 0 and k = 1, 2, · · · , n. If this were not
true, there would exist a k0(1 ≤ k0 ≤ n) and t0 > 0 such that xk0(t0) = 0. Let
t∗∗ = inf{t > 0, xk0(t) = 0}, it follows that

x′k0(t∗∗) = [µ(1+k0+c)+γ]N∗k0−µcN
∗
k0−1−µ(k0+1)N∗k0+1+µcxk0−1(t∗∗)+µc(k0+1)xk0+1(t∗∗).

Since

[µ(1 + k0 + c) + γ]N∗k0 − µcN
∗
k0−1 − µ(k0 + 1)N∗k0+1 = Ark0 > 0,

thus x′k0(t∗∗) > 0, but the definition of t∗∗ implies x′k0(t∗∗) ≤ 0, this is also a
contradiction. Thus, it follows that Ik0(t) ≤ N∗k0 .

Theorem 3.5. For the case when R0 > 1, system (22) admits a unique endemic
equilibrium E∗I = (I∗1 , · · · , I∗n) which is globally asymptotically stable with respect to
−→
I (0) ∈ G1.

Proof. We will use the theory of cooperate system to prove the global stability,
therefore we only need verify the assumption in Corollary 3.2 [33] for system (22).

In fact, let
−→
f : G1 → G1 be defined by the right-hand side of (22),

−→
f =

(f1, · · · , fn). Clearly
−→
f is continuously differentiable,

−→
f (0) = 0, fi(

−→
I ) ≥ 0, for all

−→
I ∈ G1 with Ii = 0, and ∂fi/∂Ij ≥ 0, i 6= j for

−→
I ∈ G1, so

−→
f is cooperative.

Clearly D
−→
f = (∂fi/∂xj)1≤i,j≤n is irreducible for every

−→
I ∈ G1. For every α ∈

(0, 1) and Ik > 0.
Note that for ∀α ∈ (0, 1) and Ik > 0,

fk(α~I) =α[(βkN
∗
k − αIk)

n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1]

≥α[(βkN
∗
k − Ik)

n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1]

=αfk(
−→
I ),

thus
−→
f is strongly sublinear on G1. By Lemma 2 and Corollary 3.2 [33] , one can

conclude that (22) admits a unique endemic equilibrium E∗I = (I∗1 , · · · , I∗n) which

is globally asymptotically stable with respect to
−→
I (0) ∈ G1.
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Next, by a similar proof as in Theorem 3.1 [11], we will prove the following
theorem.

Theorem 3.6. If R0 > 1, then system (21) has a unique endemic equilibrium

E∗ = (N∗1 , · · · , N∗n, I∗1 , · · · , I∗n)

which is globally asymptotically stable with respect to (
−→
N (0),

−→
I (0)) ∈ G.

Proof. Let Φ(t) : R2n
+ → R2n

+ be the solution semiflow of system (21), ω be omega

limit set of Φ(
−→
N (0),

−→
I (0)), (

−→
N (0),

−→
I (0)) ∈ G. By Lemma 1 and Lemma 1.2.1

in [32], ω is an internal chain transitive set for Φ(t). Obviously, for system (21)
there are only two equilibria E0 and E∗ when R0 > 1. By Theorem 3.1 and
Theorem 3.5, it is not difficult to verify that Φ(t) satisfies the condition of Theorem
1.2.2 in [32] , thus, ω should be either E0 or E∗.

Next, we prove that ω = {E∗}. If this were not true, then ω = {E0}, then we
should have lim

t→+∞
Ni = N∗i , lim

t→+∞
Ii = 0(i = 1, 2, · · · , n). Since s(M) > 0, we can

choose a small ε > 0 such that s(M − εM2) > 0, where

M2 =



1 2× 1 · · · k × 1 · · · n× 1
2 2× 2 · · · k × 2 · · · n× 2
...

...
...

...
...

k 2× k · · · k × k · · · n× k
...

...
...

...
...

n 2× n · · · k × n · · · n× n


.

It follows that there exists a t such that βi(Ni(t)− Ii(t)) > βiN
∗
i − ε, for t > t, i =

1, 2, · · · , n. Thus, we have

I ′1 > (β1S
∗
k − ε)

n∑
i=1

iIi − (µ+ µc+ γ)I1 + 2µI2,

I ′k > (βkS
∗
k − ε)

n∑
i=1

iIi − [µ(1 + k + c) + γ]Ik + µcIk−1 + µ(k + 1)Ik+1,

I ′n > (βnS
∗
n − ε)

n∑
i=1

iIi − [µ(1 + n) + γ]In + µcIn−1 − µIn,

k = 2, · · · , n− 1.

Let −→v = (v1, · · · , vn) be a positive eigenvector of M − εM2 associated with s(M −
εM2). Choose an small number α such that

−→
I ≥ α−→v . Then by the comparison

theorem, −→
I ≥ α exp[s(M − εM2)(t− t)]−→v , t ≥ t,

and hence Ii(t) → +∞(i = 1, 2, · · · , n) which contradicts to Ii(t) → 0. Conse-
quently the unique endemic equilibrium E∗ is globally attractive.

By Theorems 3.2, 3.6 and Lemma 3.3, and limit system theory (see [28, 7]), for
model (16), we have the following theorem.

Theorem 3.7. When R0 < 1, the disease-free equilibrium E0 = (N∗1 , · · · , N∗n, 0,
· · · , 0) is globally asymptotically stable in G. If R0 > 1, the disease-free equilibrium
is unstable and there is a unique endemic equilibrium

E∗ = (S∗1 , · · · , S∗n, I∗1 , · · · , I∗n)

which is globally asymptotically stable with respect to (
−→
N (0),

−→
I (0)) ∈ G.
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4. Numerical simulations. In this section, we will perform a series of numerical
simulations to verify the mathematical analysis. For simulation purpose, we consider
a network with constant recruitment rate A = 5000 and an initial size as Sk(0) =
Ik(0) = 10000, and other parameters are chosen as: µ = 0.006, γ = 0.02 (also see
them in Table 1). The probability rk of an individual entering group k, take two
forms: poisson or scale-free distributions.

Table 1. Description of parameters in system (16).

Parameter Value Comments
A 5× 103 recruitment rate of populations
µ 6× 10−3 natural death rate of populations
γ 2× 10−2 recovered rate of the infectives
τ 0 ∼ 1 contact transmission rate between the infected and susceptible node
λ 4 exponent of poisson distribution
n 100 maximal degree
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Figure 2. (a) The numbers of the S50 and I50; (b) The numbers of
the S100 and I100. Here, τ = 0.0000001, λ = 4 and R0 ≈ 7×10−4 <
1.

Firstly, we give the case that the basic reproduction number R0 < 1 with poisson

distribution rk = e−λλk

k! /Σnk=1
e−λλk

k! with λ = 4. Fig. 2 shows the numbers of the
susceptibles and infectives with k = 50 and 100, respectively. As shown in Fig. 2,
the disease will die out in both cases. If we consider rk = k−4/Σnk=1k

−4, one can
calculate to get R0 ≈ 2×10−3 < 1. As shown in Fig. 3, the disease will also extinct
for the population.

Now, we consider the case when R0 > 1. We still use rk = e−44k

k! /Σnk=1
e−44k

k! . In
Fig. 4, we show the time series of S50, I50, S100 and I100 with R0 ≈ 11. One can
see that the disease will persist and converge to a positive stationary state. If we
change rk as k−4/Σnk=1k

−4, we have R0 ≈ 5 > 1. Similarly, as shown In Fig. 5,
the disease will also converge to a positive stationary state, which means that the
endemic state is stable.

In Fig. 6, we show the degree distribution with respect to k and time. One can
see that, when time is large enough, the degree distribution is stationary. However,
for a short period, the degree distribution varied with time. In other words, the
network in our model is dynamics not static. In Fig. 7, we give the time series
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Figure 3. (a) The number of the S5 and I5; (b) The number
of the S8 and I8. Here, τ = 0.0000001, rk = k−4/Σnk=1k

−4 and
R0 ≈ 2× 10−3 < 1.
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Figure 4. (a) The number of the S50 and I50; (b) The number
of the S100 and I100; (c) The total number of the infective. Here,
τ = 0.008 and R0 ≈ 11 > 1.

of p(5) and p(10) for two kinds of rk and if time is small, p(5) and p(10) change
as time increases. Furthermore, we found that the stationary degree distribution

depends on the form of the probability rk. If rk = e−44k

k! /Σnk=1
e−44k

k! , then the

stationary degree distribution is poisson distributions; if rk = k−4/Σnk=1k
−4, then

the stationary degree distribution is scale-free distributions, which can be seen from
Fig. 8.

From the theoretical analysis, one can see that the basic reproduction number
is a quantity to characterize the dynamics of network models. In order to show
the impact of demographics, we look at basic reproduction number with respect

to the parameters µ (death rate), λ (exponent of rk = e−λλk

k! /Σnk=1
e−λλk

k! ) and ν
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Figure 5. (a) The number of the S2 and I2; (b) The number
of the S5 and I5; (c) The total number of the infective. Here,
τ = 0.008, rk = k−4/Σnk=1k

−4 and R0 ≈ 5 > 1.

(a) (b)

Figure 6. Degree distribution is regarded as a function of k and

time. (a) rk = e−44k

k! /Σnk=1
e−44k

k! ; (b) rk = k−4/Σnk=1k
−4. Other

parameter values: A = 5000, γ = 0.02, µ = 0.006 and τ = 0.008.

(exponent of rk = k−ν/Σnk=1k
−ν). When rk is in the form of poisson distribution,

we give the plot of R0 with respect to µ and λ in Fig. 9(a). One can see that R0

is a decreasing function of µ and an increasing function of λ. That is to say, when
µ is small or even zero, R0 > 1 and thus the disease will persist. And when λ is
small, the disease will die out due to that R0 < 1. When rk = k−ν/Σnk=1k

−ν , we
give the plot of R0 with respect to µ and ν in Fig. 9(b). As the death rate and ν
increases, the basic reproduction number decreases.

5. Discussions. In this paper, we propose and study network epidemic models
with demographics, and consider the effect of network topology due to population
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Figure 7. Time series of p(5) and p(10). (a) rk =
e−44k

k! /Σnk=1
e−44k

k! ; (b) rk = k−4/Σnk=1k
−4. Other parameter val-

ues: A = 5000, γ = 0.02, µ = 0.006 and τ = 0.008.
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Figure 8. (a) Stationary degree distribution with rk =
e−44k

k! /Σnk=1
e−44k

k! ; (b) Stationary degree distribution with rk =

k−4/Σnk=1k
−4 (log-log plot). Here, τ = 0.008 and R0 > 1.
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Figure 9. (a) The plot of R0 as a function of µ and λ with

rk = e−λλk

k! /Σnk=1
e−λλk

k! ; (b) The plot of R0 as a function of µ and
ν with rk = k−ν/Σnk=1k

−ν). Other parameter values are taken as:
A = 5000, γ = 0.02 and τ = 0.008.

births or recruitment and deaths. We establish the basic reproduction number R0

for SIS model by investigating the local stability of the infection-free equilibrium.
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We further prove that the infection-free equilibrium of SIS model is globally asymp-
totically stable by qualitative analysis of the dynamics of the model system and by
utilizing the method in [31]. We show that if the basic reproduction number is more
than one, then there exists a unique endemic equilibrium and globally asymptoti-
cally stable for the SIS models.

It is known that, in the static network, basic reproduction number R0 depends
only on the degree distribution. However, in a dynamic network with recruitment
and deaths, it does not depend on the degree distribution. And from the system
(16), we know that the degree distribution of population varies with time before
it reaches the stationary state (see Fig. 10), which is different from the previous
work [23, 24, 20, 21, 22, 12, 13, 26, 5, 2, 4]. Furthermore, we found that basic
reproduction number R0 depends on the demographical parameters (µ or λ) (see
Figs. 8-9). However, R0 does not depend on the recruitment rate A (if recruitment
rate is chosen as a different form, this conclusion may not hold). The reason is that
the infection rate equals to the ratio of the edges connected with the infected in
all the edges in the network, which is similar to the standard infection rate in the
mean-filed epidemic models.

It should be noted that, in our model, we choose Πa(k,
−→
N ) = 1/N . In fact,

Πa(k,
−→
N ) = 1/(N−1) should be a better and realistic choice. Meanwhile, in system

(10), the total population N(t) follows the equation (13). In the future work, we
will investigate the dynamical behavior of the network models N(t) that satisfies
the equation (14) or (15).

In this paper, we only consider the case of the network models with constant
recruitment rate. If we consider cases of changing recruitment rate or other forms
of demographics, one would expect much more complicated dynamics. It will also
be interesting to use network models to study spreading of vector-borne diseases
involving multiple-populations. We are working on to apply network modelings for
vector-borne diseases.
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