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Abstract. Honeybee pollination accounts annually for over $14 billion in

United States agriculture alone. Within the past decade there has been a
mysterious mass die-off of honeybees, an estimated 10 million beehives and

sometimes as much as 90% of an apiary. There is still no consensus on what

causes this phenomenon, called Colony Collapse Disorder, or CCD. Several
mathematical models have studied CCD by only focusing on infection dynam-

ics. We created a model to account for both healthy hive dynamics and hive

extinction due to CCD, modeling CCD via a transmissible infection brought
to the hive by foragers. The system of three ordinary differential equations ac-

counts for multiple hive population behaviors including Allee effects and colony
collapse. Numerical analysis leads to critical hive sizes for multiple scenarios

and highlights the role of accelerated forager recruitment in emptying hives

during colony collapse.

1. Introduction. The honeybee industry has great economic significance. Honey-
bees (Apis mellifera) play a dominant role in pollination, being one of the primary
managed pollinators available for field and outdoor fruit crops [17]. Honeybee polli-
nation accounts annually for $14 billion in United States agriculture alone [16]. One
widely-cited study estimates that pollinators altogether provide over $200 billion to
the global economy [10]. Much of the food production for the world is dependent
on honeybees; in the United States, for example, one third of a person’s diet comes
from insect-pollinated plants, and honeybees are responsible for 80% of that. With
expanding food production there is a further increase in the need for honeybees
[12].

Since 2006, a massive loss of honeybee colonies has been reported. Some apiaries
have lost up to 90% of their colonies [16]. In this time the average overwinter loss of
honeybee colonies in the United States has exceeded 30% consistently [26]. Similar
hive loss has been a concern in Canada, throughout Europe, and in Japan. The
cause of this colony loss is not yet known, and it has been termed Colony Collapse
Disorder, or CCD. Surveys of pathogens associated with colony collapse events
have identified many disease organisms present and several newly described bee
pathogens have been linked with CCD, but at the time of writing no definite single
agent has been identified as the cause of CCD [3, 16]. The emerging consensus
is that CCD is not caused by any single factor but is the result of a complex
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combination of multiple factors, including certain agricultural pesticides, beekeeper-
applied chemicals, poor nutrition, pathogens, and parasites [24]. In CCD, the adult
bees vacate the collapsing hives in droves, leaving behind the queen, her brood,
and frames full of honey and pollen. None of the absconding bees are found dead
near the hive. Strangely, the abandoned stores of honey, which would normally be
‘robbed’ by neighboring bees or other organisms, remain untouched [22].

While previous mathematical models have tried to understand this phenomenon,
they typically focused only on disease dynamics. To the authors’ knowledge, at the
time of writing there was no model that accounted for healthy dynamics alongside
infection dynamics. DeGrandi-Hoffman et al. produced the first time-based model
of honeybee colony growth [19]. Their goal was only to include healthy hive dy-
namics without introducing any sort of infection. Models created after this looked
mostly at infections that are well known such as Varroa mites [5] and the par-
asite Nosema ceranae [11]. Khoury et al. established a model to study different
death rates of foragers and the impact these had on colony growth and development
[13, 15]. They then linked their results to CCD. Eberl et al. also studied a model
connecting Varroa mites to CCD [9]. They found the importance of thresholds for
hive worker bees to maintain and take care of the brood. Sumpter and Martin
studied Varroa infestation’s role on viral epidemics, finding that sufficiently large
mite infestations may make hives vulnerable to collapse from viral epidemics [21].

This study investigates the scenario that CCD is provoked by a transmissible
pathogen or contaminant introduced by foraging activity, in order to understand
how colony collapse might occur as a perturbation of normal hive dynamics. The
model presented in this study therefore begins by accounting for healthy hive dy-
namics. Since CCD only seems to affect worker bees, as they are the ones leaving,
the model only takes into account hive bee and forager bee classes. Infection dy-
namics, postulated on pathogen/contaminant introduction by foragers, are then
incorporated using a term consistent with both direct (bee-to-bee) and indirect
(via contaminated plant vectors) transmission since there is no consensus as to the
precise transmission route for an infection leading to CCD. The model represents a
simple framework to explore these dynamics. Classical qualitative analysis identi-
fies the criteria for each possible outcome, while numerical analysis and parameter
estimates provide context for the operative range of the model. This analysis leads
to some interesting biological results in terms of the parameters of the model, in
particular egg laying and maturation and forager recruitment rates. Results high-
light the influence of the transition rate from hive bee to forager bee, along with
the queen’s reproductive rate, in determining the fate of an affected colony.

2. Model.

2.1. Healthy hive dynamics. The simple hive model includes only two classes:
hive bees (H) and forager bees (F ), assumed uninfected. The bee life cycle sketched
in the model begins with hive bees feeding and cleaning the brood so that they
reach pupation and emerge as adults: eggs are laid by the queen at a constant
rate L, and can therefore later mature into young hive bees at a maximum rate L,
mediated by the efforts of the hive worker class. As the hive bees feed the brood
and clean the hive, the emergence rate is multiplied by a saturation function H

H+Ω ,

where Ω is the number of hive bees needed for the emergence rate to reach 1/2 L.
This fraction gives the proportion of eggs which survive to eclosion, given as an
increasing function of the number of hive workers available to feed and protect the
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brood. Thus the eclosion rate is given by L H
H+Ω . (Khoury et al. [15, 14] use a

similar saturation form to model eclosion but consider it instead as a function of
the entire hive population, not just the hive bees. We consider here the hive bees’
role to be the critical one in fostering emergence, since food shortages prompt hive
bees to forage, as discussed next.)

As their brains and wings develop, hive bees become forager bees, able to bring
food to the hive; this occurs naturally after about 3 weeks (represented in the model
by a rate γ), but the process can be accelerated if the forager class is depleted and
the hive needs more food. The maximum additional maturation rate is given by α,
multiplied by a factor Φ

F+Φ which measures the hive’s need for more foragers, where

Φ is the number of foragers at which the additional maturation rate is α/2. (In
comparison, Khoury et al. [15, 14] consider instead a maximum forager recruitment
rate reduced for large forager classes via social inhibition.) Finally, forager bees die
from natural mortality at a rate µ1. (All the given parameters are taken as constant
over the span of a season, the timescale on which colony collapse is observed.)
Together, these assumptions lead to the system

dH

dt
= L

H

H + Ω
− γH − αH Φ

F + Φ
,
dF

dt
= γH + αH

Φ

F + Φ
− µ1F.

2.2. Infection dynamics. Since there is no consensus yet on the means by which
individual bees become infected, we construct a model for a hypothetical infection
consistent with either direct bee-to-bee transmission or vector transmission via con-
taminated flowers. We first consider that [healthy] forager bees F become infected
via contact with contaminated plants, and that plants become contaminated via
contact with infected bees. This assumption agrees with the observed dynamics
of CCD as foragers are the ones most affected by the phenomenon. We further
assume that forager bees interact very little with hive bees while foraging, with
only the exchange of collected materials happening. If we further assume that the
rate of bee-plant contacts is saturated in plants but not in bees (i.e., flowers are
not continuously occupied by bees during daylight hours, and if the flower density
increases, bees cannot visit more flowers per day than they are already visiting),
then the populations of infected bees I and contaminated plant vectors V evolve
according to the equations

dI

dt
= βF

V

P
− µ2I,

dV

dt
= β̃

P − V
P

I − c̃V,

where β is the rate of bee infection, µ2 is the per capita mortality rate of infected
bees (µ2 ≥ µ1), c̃ is the rate at which plants clear contamination (e.g., due to rain

and wind), all in units of 1/time, and β̃ is the rate of flower contamination (in units
of plants per bee per day). Plant density P is assumed constant.

To simplify the model, we use a timescale argument to eliminate the plant vectors,
claiming that plant contamination occurs on a faster timescale than the bee epidemic
in a hive, and so we allow dV/dt→ 0 and observe the resulting equilibrium value,

V ∗

P
=

I

I +K
, where K =

P c̃

β̃
.

This allows us to eliminate V , replacing V/P in the system by I/(I+K). In this way
we obtain a simpler model which can also be used under the alternative assumption
that bees become infected by direct contact with each other (in interactions such
as communicating about feeding site locations, rather than indirectly via feeding
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sites acting as vectors), at a rate which saturates as the number of infected bees
increases, with K as the half-saturation constant.

Thus, finally, the model is

dH

dt
= L

H

H + Ω
− γH − αH Φ

F + I + Φ
, (1)

dF

dt
= γH + αH

Φ

F + I + Φ
− µ1F − βF

I

I +K
, (2)

dI

dt
= βF

I

I +K
− µ2I, (3)

where Ω,Φ,K are saturation constants measured in bees and µ2 ≥ µ1.

Table 1. Equilibria of system (1)–(3) and criteria for their exis-
tence and stability (LAS). Stability criteria implicitly assume ex-
istence criteria. All criteria are proven in the appendix, except
stability of endemic equilibria which was verified numerically.

Equilibrium Values Exists when... Stable when...

Extinction (XE) h∗ = f∗ = i∗ = 0 always a < c

Disease-free h∗ = a+γΩ
γΩ+ c

f∗ +1 − 1, a > c or R0 < 1

(DFE1) f∗ =
(a−b)+

√
(a+b)2−4bc

2b , i∗ = 0 b < a < c < (a+ b)2/4b

Disease-free h∗ = a+γΩ
γΩ+ c

f∗ +1 − 1, b < a < c < (a+ b)2/4b never

(DFE2) f∗ =
(a−b)−

√
(a+b)2−4bc

2b , i∗ = 0

Endemic h∗ = (b+d)i∗+b
L
r −[(b+d)i∗+b]

, f∗ = r(i∗ + 1), c < (a− br)(r + 1), or always

(EE1) i∗ = 1
2

{
−
[
r+1
r+k −

a−br
(b+d)r

]
(a − br)(r + k) > (b + d)r(r + 1)

+

√[
r+1
r+k + a−br

(b+d)r

]2
− 4c

(b+d)r(r+k)

}
and (a− br)(r + 1) < c <

[(b+d)r(r+1)+(a−br)(r+k)]2

4(b+d)r(r+k)

Endemic h∗ = (b+d)i∗+b
L
r −[(b+d)i∗+b]

, f∗ = r(i∗ + 1), (a − br)(r + k) > (b + d)r(r + 1) never

(EE2) i∗ = 1
2

{
−
[
r+1
r+k −

a−br
(b+d)r

]
and (a− br)(r + 1) < c <

−
√[

r+1
r+k + a−br

(b+d)r

]2
− 4c

(b+d)r(r+k)

}
[(b+d)r(r+1)+(a−br)(r+k)]2

4(b+d)r(r+k)

3. Analysis.

3.1. Equilibria. The equilibria of system (1)–(3) can be identified and analyzed
via standard methods, using the Jacobian matrix to determine conditions for local
asymptotic stability. Details are presented in the appendix, and results summarized
here. The system has up to five biologically meaningful equilibria: hive extinction,
up to two disease-free equilibria, and up to two endemic equilibria. The second
of each pair, if it exists, is unstable, so this corresponds to three outcomes for the
hive: colony collapse, a healthy hive, or survival in an endemic state. Equilibrium
values and the conditions for [biologically meaningful] existence and for local asymp-
totic stability (LAS) are given in Table 1. For convenience, the state variables are
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rescaled: h∗ = H∗/Ω, f∗ = F ∗/Φ and i∗ = I∗/K. Existence and stability criteria
are likewise given in terms of the following notation: demographic parameters

a = L− γΩ, b = µ1Φ, c = αΩ, (4)

and infection-related parameters

d = βΦ, r = µ2K/βΦ, k = K/Φ. (5)

(a, b, c, d have units of bees/time; r and k are dimensionless.) Of these, a is the only
one not automatically positive, but by inspection of (1), if a ≤ 0 then dH/dt < 0
and the hive dies, so the analysis and graphs that follow consider only the case
a > 0. The assumption that µ2 ≥ µ1 becomes b ≤ dr/k.

This same analysis (using a next-generation operator method [7, 25]) yields the
infection’s basic reproductive number, R0 = βF ∗/µ2K, where F ∗ is the equilibrium
value from the disease-free equilibrium (DFE1 in Table 1). A consequence of this
expression is that R0 is only defined when this equilibrium exists (is nonnegative).

The juxtaposition of the criteria given in Table 1 leads to some interesting dy-
namics, including regions of bistability and even tristability in parameter space.
Existence and stability of disease-free equilibria depend on the demographical quan-
tities a (a measure of the maximum eclosion rate relative to the baseline maturation
rate, signaling the health of the hive worker class), b (a measure of the baseline for-
ager death rate) and c (a measure of the accelerated maturation rate when the
forager class is depleted). Figure 1 summarizes these criteria in terms of the a-b
parameter plane, while Figure 2 illustrates them in terms of a-b-c parameter space.
Basic hive persistence occurs for a > c, at the boundary of which a transcritical
bifurcation occurs (shifting stability from hive extinction to hive persistence); how-
ever, a saddle-node bifurcation to the left of a = c creates a region where an Allee
effect operates, and the hive only survives above a threshold critical size.

The endemic equilibria are likewise introduced via a line of transcritical bifurca-
tions, with an adjacent curve of saddle-node bifurcations, determined as functions
not only of a, b and c, but of the epidemiological measures d (baseline infection
rate), r (a reciprocal of R0, r = f∗1 /R0 with f∗1 as in DFE1) and k (infection
rate saturation relative to saturation in accelerated maturation). As R0 increases
from 0 (r decreases from large values), the line c = (a − br)(r + 1) in the a-b
plane, along which R0 = 1 (the transcritical bifurcation), rises up from the axis
b = 0, remaining tangent to the first saddle-node curve c = (a+ b)2/4b at the point
(a, b) = c

(r+1)2 (2r+ 1, 1). This creates three new regions in the positive quadrant of

(a, b) space (cf. Figure 3): one in which the hive survives in an endemic state, one
in which an Allee effect separates the endemic state (EE1) from hive extinction,
and a third in which the hive goes extinct because of the infection. This last region
(marked ** in Figure 3) is classic colony collapse.

The placement of the additional saddle-node bifurcation curve creating the sec-
ond endemic equilibrium—and, in particular, at what point it meets the line c =
(a− br)(r + 1)—depends on the value of c relative to d, r and k. As shown in the
appendix, this point has coordinates

(a0, b0) =

(
c

2r + k + 1

(r + 1)2
− dr, c(r + k)

r(r + 1)2
− d
)
,

and thus is in the positive quadrant iff c > dr(r+ 1)2/(r+ k). In general, there are
four cases, determined by where b0 falls with regard to 0, c/(r+ 1)2, and c/(r+ 1),
described in Table 2. Figure 4 illustrates the last and most complex of these (with
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Figure 1. Conditions
for existence of DFEs in
the a-b plane for fixed
c: where no DFEs ex-
ist, the hive perishes;
where one DFE ex-
ists, the hive persists;
and where two exist,
an Allee effect operates
(the second DFE being
unstable)
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Figure 2. Conditions
for existence of DFEs in
a-b-c space: no DFEs
above the curved sur-
face, one below the
plane, and two be-
tween the plane and the
curved surface

the endemic saddle-node bifurcation curve crossing the horizontal axis between the
disease-free saddle-node bifurcation curve and the endemic transcritical bifurcation
line, and continuing up to meet the line in the region where a > c). However, the
constraint b < dr/k prevents some of the resulting behaviors from occurring, since
the two saddle-node bifurcation curves intersect at b = dr/k (Cases 3 and 4, see
Figure 4). For b0 > 0, in the interval 0 < b < min(b0, dr/k) the endemic saddle-
node bifurcation extends the region of the endemic Allee effect into the CCD region

Table 2. Cases for where the two endemic equilibrium bifurcation
curves meet, determining the maximum a and b values for which
EE2 can exist. c, d, r, k, b0 are as defined in the main text.

Case c range b0 range Consequence

1 0 < c < d r(r+1)2

r+k b0 < 0 EE2 never exists

2 d r(r+1)2

r+k < c < d r(r+1)2

k 0 < b0 <
c

(r+1)2 endemic Allee extends into colony collapse region

3 d r(r+1)2

k < c < d r(r+1)2

k−r2
c

(r+1)2 < b0 <
c
r+1 endemic Allee extends into colony collapse region

(the latter if k > r2) [endemic Allee extends into extinction region,

extinction/disease-free/endemic tristability]

4 k > r2 and c > d r(r+1)2

k−r2 b0 >
c
r+1 endemic Allee extends into colony collapse region

[endemic Allee extends into extinction region,

extinction/disease-free/endemic tristability,
disease-free/endemic bistability]
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Figure 3. Stable
(LAS) equilibria of
(1)–(3) as functions of
a, b for fixed c, r, in the
case b0 < 0 (Case 1 in
Table 2): * XE, DFE1
(R0 < 1); ** XE only
(R0 > 1). On the thick
ray, R0 = 1; along the
curve R0 = 0 above
this line, while below it
R0 → ∞ approaching
the origin.
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Figure 4. Stable
(LAS) equilibria of
(1)–(3) as functions
of a, b for fixed c, r,
in the case b0 > c

r+1

(Case 4 in Table 2):
XE stable in shaded
region, DFE1 stable
in vertically dashed
region, EE1 stable in
horizontally dashed
region (CCD labels
the region of colony
collapse due to CCD)

(where R0 > 1). For such parameter values, the accelerated forager recruitment is
strong enough to sustain an endemic population when the colony would collapse
under normal forager recruitment.

More complex behavior is possible for b > dr/k, although this is of no biological
interest since it requires (µ1 > µ2) that infected bees remain in the hive more, not
less, time than healthy foragers. This behavior extends the endemic Allee effect
further, into the natural extinction region (where R0 is undefined), only possible
because infection prolongs forager lifetimes when µ1 > µ2. The same phenomenon
is at work in the other effects (as b0 increases to c

r+1 and beyond): first a region
of tristability, in which extinction, healthy hive survival, and endemic survival are
all possible outcomes, and then a region exhibiting classic “backward bifurcation”
effects, in which a large enough initial prevalence enables the infection to persist
but hive survival is guaranteed regardless.

The boundaries of regions in Figures 3 and 4 correspond to bifurcations; for
an additional perspective, the bifurcation diagrams in Figure 5 illustrate the five
different possible combinations of these bifurcations as a increases, for fixed values
of b, c, d, r, k (corresponding to horizontal “slices” of Figures 3 and 4), under the
constraint b < dr/k.

In summary, the model exhibits several different behaviors depending on demo-
graphic (a, b, c) and infection-related (d, r, k) parameters, including a healthy hive,
an endemic state, and hive extinction. Of most interest is the region in parameter
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(a) Cases 1 & 2, [b0 <]b < c
(r+1)2

(c) Cases 1 & 2, c
(r+1)2 < b < c

r+1

(b) Case 2, 0 < b < b0; Cases 3 & 4
(b < dr/k)

(d) Cases 1 & 2, c
r+1 < b < c (e) Cases 1 & 2, b > c

Figure 5. Bifurcation diagrams showing F ∗, I∗ as functions of
a. Solid curves denote stable equilibria; dashed curves illustrate
unstable ones. The extinction equilibrium is in black, disease-free
equilibria are medium-dark gray (DFE1) and medium-light gray
(DFE2), and endemic equilibria are light gray (EE1) and dark gray
(EE2). The two upper graphs illustrate colony collapse due to
CCD.

space representing colony collapse due to the infection. The following section de-
velops some parameter estimates in order to study specific scenarios which might
cause this collapse.

3.2. Parameter estimation and quantitative analysis. Some model parame-
ters were taken or estimated from the literature. Bodenheimer estimated an egg-
laying rate of 1000–2000 eggs/day [2], so we take the average of the two extremes
(1500) for L. A honeybee’s brain [27] and wings typically mature, enabling it to
forage, in about 3 weeks (1/γ = 21 days), although the period can be shortened to
as little as 1 week (7 days) [1]. This maximum rate γ + α then leads to a value
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of α = 1
7 −

1
21 = 2

21 days−1. Finally, a typical forager survives about 3 weeks
(1/µ1 = 21 days) before its wings wear out, stranding it [1].

Ranges for the remaining parameters were estimated more heuristically. For
instance, the death or departure rate for infected forager bees µ2 should certainly
exceed the mortality rate µ1 of uninfected foragers, but in fact infected foragers
are likely to develop symptoms of infection much sooner after contamination than
that. For numerical purposes we estimate that an infected bee discovers/manifests
its illness within a day of contagion, and therefore suppose µ2 ≈ 1/day. Likewise in
estimating the rate β of potentially infectious contacts made by foragers, whether
with contaminated flowers or other infected bees, the primary exposure is in the
foraging process, where bees come into contact with up to thousands of flowers per
day (see estimation for K below) and potentially thousands of other foragers from
the hive. At a bare minimum, therefore, we expect β ≥ 1/day.

For the half-saturation constants we consider typical hive dynamics to come up
with a range or upper bound for possible values. For Ω, we consider that the hive
must have a certain number of hive bees in order for eclosion to occur. Mature hive
populations vary from 15,000–25,000 in the spring, at the start of foraging season,
to 50,000–60,000 at summer’s end. If we assume that a hive of 50,000 bees has
an eclosion (brood emergence rate) of at least 90%, this makes H

H+Ω ≥ 0.9 with
H = 25, 000 bees if we assume the hive population is split evenly between hive and
forager bees (assuming the drone population is comparatively very small), leading
to an upper bound of Ω ≤ 2778 bees. Assuming 90% eclosion is reached for smaller
hives than 50,000 bees leads to an even lower estimate for Ω.

For Φ we similarly assume that a mature hive of 50,000 bees uses no more than
10% additional forager recruitment, so that under a 50/50 hive worker/forager split,
F = 25, 000 bees makes Φ

Φ+F ≤
1
10 . This again leads to an upper bound of Φ ≤

2778 bees; if additional forager recruitment tapers off faster, the bound for Φ is
even lower. For simplicity we will round both bounds to 3000 bees.

For K we apply data from flowers to the plant-based definition K = P c̃/β̃ given

in developing the model, with plant density P , flower contamination rate β̃, and
plant contamination clearance rate c̃. California almonds are estimated to bloom
at a density of about 2 million blooms per acre [23], and two hives are commonly
used per acre, making each hive responsible for pollinating 1 million flowers (so let
P = 106 plants). Foragers are commonly cited to make around thirty trips a day

and can visit up to 100 flowers in a single trip, making β̃ ≈ 3000 plants/bee/day. We
assume the plants take about a week to clear any contamination, making c̃ = 1

7/day.
Using these data we get an estimate for K of about 50 bees.

Parameter estimates and ranges are summarized in Table 3.
These estimates produce values of a ≥ 1357, b ≤ 143, and c ≤ 286, all unaf-

fected by the gross uncertainty in infection-related parameters. Although the half-
saturation constants Ω and Φ also have considerable uncertainty, reducing them
from their upper bound of 3000 bees/day preserves the ordering b < c < a as long
as Φ ≤ 2Ω. Also, given that K << Φ and µ2 ≤ β, r = µ2K/βΦ << 1, so that
not only is b < c but also b < c/(r + 1)2. The significance of these inequalities
can be seen by returning to Figure 3. a > c guarantees hive survival in some form;
b < c/(r + 1)2 ensures that the infection will not die out (R0 > 1 when the hive
survives), and for lower values of a corresponds to the region where colony collapse
occurs (marked ** in the figure). The two inequalities together place the parameter
set in the region where a sole endemic equilibrium is the global attractor.
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Table 3. Parameter definitions, estimates, and units

Parm. Meaning Estimate/Units
L Egg production/maximum eclosion rate 1500 bees/day [20]
γ Normal hive-to-forager recruitment rate 1/21 day−1 [1]
α Maximum addl. hive-to-forager recruitment rate 2/21 day−1 [1]
µ1 Death rate of healthy forager bees 1/21 day−1 [1]
µ2 Death/departure rate of infected bees 1 day−1

β Maximum bee infection rate ≥ 1 day−1

Ω Half-saturation const. for brood eclosion/maturation ≤ 3000 bees
Φ Half-saturation const. for addl. forager recruitment ≤ 3000 bees
K Half-saturation const. for bee infection 50 bees

The parameter estimates are therefore consistent with CCD save that the egg
production rate is about 3–4 times as high as in the CCD region. Since widespread
CCD has been observed, one possible inference is a missing feedback mechanism in
the model, perhaps the dependence of the queen on the workers’ food production,
which is obviously severely curtailed when a large proportion of foragers are infected
or gone.

As one illustration of how the model accounts for colony collapse, we consider
a scenario in which the egg-laying/maximum eclosion rate L has been reduced to
630 bees/day. Figure 6 illustrates the dynamics that result when a hive operating at
the disease-free equilibrium (stable in the (H,F )-subspace where I = 0) sees one of
its foragers infected at time t = 50 days1. The infection dynamics quickly exhaust
first the forager class and then the hive worker class, until it is no longer possible to
sustain the hive and the colony collapses. In a second, related scenario, L remains
at its original value and one infected forager is introduced at time 0, leading to an
endemic state, until at time 50 the rate L is reduced to 210 bees/day, shifting the
dynamics to a region in which the infection causes colony collapse (Figure 7; note
healthy and infected forager curves are nearly equal). Both scenarios highlight the
vulnerability to CCD of hives operating under an Allee effect.

4. Discussion. In order to understand how Colony Collapse Disorder affects nor-
mal honeybee population dynamics, we constructed a simple model tracking hive
bees and forager bees, with nonlinear transition rates reflecting the influence of the
worker classes on these processes, and introducing CCD via a hypothetical conta-
gion spread to foragers. Saturation in the eclosion, additional forager recruitment,
and infection rates creates a rich bifurcation structure which yields complex be-
haviors, including Allee effects and so-called backward bifurcations. As many as
three possible outcomes can occur: healthy hive survival, endemic persistence, and
colony collapse, with one specific region (marked ** in Figure 3) representing CCD:
extinction due to infection. This extends previous results such as those of [9, 15] to
include CCD through an explicit infection.

The primary condition for ensuring hive survival independently of initial hive
size (a > c) is that the egg-laying rate exceed the maximum forager recruitment
rate at the egg-laying half-saturation threshold, a measure of the robustness of

1The illustrative value of Ω used in Figure 6 exceeds the rough bound derived in the text by
a factor of 2–3, but numerous factors including the proportions of hive workers in the hive and of

eclosion saturation could explain this.
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Figure 6. State vari-
ables vs. time for a
colony collapse scenario
with L = 630 bees/day
in which a single in-
fected forager is intro-
duced after 50 days
(other parameters are
as in Table 3, ex-
cept Ω = 8000 bees,
Φ = 500 bees). Hive
workers in dark gray,
healthy foragers in light
gray, infected foragers
in black.
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Figure 7. State vari-
ables vs. time for
a colony collapse sce-
nario in which a sin-
gle infected forager is
introduced at time 0,
and L is reduced to
210 bees/day at time 50
(other parameters are
as in Table 3, except
Ω = Φ = 1500 bees).
Hive workers in dark
gray, healthy foragers
in light gray, infected
foragers in black.

hive dynamics independent of the effects of CCD. If this criterion fails to hold,
then extinction is always possible; if, however, bees live long enough on average to
become foragers under accelerated recruitment (b < c), then hive survival may still
be possible under an Allee effect (through a backward bifurcation in the healthy
hive dynamics), where a large enough worker population can sustain the hive.

Infection dynamics add complexity to the hive dynamics. On a base level, when
R0 > 1 any hive survival becomes an endemic state. However, CCD also affects the
hive’s ability to survive, draining it to the point of collapse in circumstances when a
large enough healthy hive would normally survive (long-lived bees but a borderline
egg production rate). This is classic colony collapse. If the additional hive-to-
forager recruitment (as measured by c) is great enough, the range of parameter
values which cause colony collapse is reduced but not eliminated (via the endemic
saddle-node bifurcation). This peculiar outcome derives from CCD’s depletion of
the forager class spurring greater recruitment into the forager class (hive survival
normally depends on the worker population).

Although the rescaled model exhibits multistability which makes all 7 possi-
ble combinations of the three outcomes (healthy hive, endemic state, and extinc-
tion) possible for some parameter values near the boundaries of the simple sur-
vival/extinction and healthy/infected hive thresholds—most strikingly superimpos-
ing the Allee effect and the infection-related backward bifurcation in a region of
tristability, where initial hive size and outbreak magnitude determine whether the
hive survives as well as whether the infection persists—the constraint on relative
departure rates of infected foragers allows only an Allee effect and classic R0-based
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infection persistence, apart from the colony collapse outcome. The model’s primary
limitations are the focus on the hive bees’ role in fostering eclosion and the foragers’
role in spreading infection through encounters at feeding sites outside the hive and
in collaborative efforts to exploit them.

Our rough numerical estimates place a typical commercial hive in a scenario
where the infection persists but should not drive the colony to collapse; however, a
weakened egg laying/maximum eclosion rate, as may happen if a depleted forager
class fails to bring in sufficient food, would bring the hive into CCD territory. Future
work may entail incorporation of this dependence of eclosion on the forager pop-
ulation; Khoury et al. recently studied possible mechanisms for modeling food in
this context [14]. In the meantime, the present model allows us not only to identify
through R0 what criteria enable CCD-promoting infections to invade a hive, but the
critical thresholds for a hive to survive such an invasion: namely, the balance be-
tween egg production and maximal forager recruitment (a demographic tug-of-war
on the hive worker class). The depletion of the hive via infection accelerating for-
ager loss, which in turn accelerates hive worker recruitment to replace lost foragers,
is consistent with the conclusions of [15] but goes further to illustrate explicitly how
contagion can lead to rapid colony collapse. Although CCD is modelled here via a
generic contagion, and no control methods are explicitly incorporated, the associ-
ation of low eclosion and even lower forager mortality rates, relative to emergency
hive-to-forager recruitment (b << a << c), with colony collapse (cf. Figures 3 and
4) highlights the vulnerability of hives which rely on long-lived foragers to maintain
the hive worker-forager balance when eclosion is slow, since a CCD-related infec-
tion outbreak can upset that balance by draining the forager class below the Allee
threshold. In such a case, only boosting eclosion can avert the hive’s vulnerability
to CCD.

Future work may also consider contagion of CCD-related infection agents (whet-
her parasites, viruses, or contaminants) among multiple hives with shared food
sources, as is common in commercial uses of honeybees as pollinators.

Acknowledgments. This article grew out of a project [8] supported by NSF UBM-
Institutional grant DUE-0827136 as part of the UTTER Program at UT Arlington
(http://www.uta.edu/math/utter). The authors of this manuscript acknowledge
and thank their co-authors on the original project.

Appendix. Equilibrium analysis. The equilibrium conditions can be summa-
rized as follows:

• From (3) either (i) I∗ = 0 or (ii) βF ∗ = µ2(I∗ +K).
• From (1) either (iii) H∗ = 0 or (iv) L/(H∗ + Ω) = γ + α Φ

F∗+I∗+Φ .

• Taking (i) and (iii) in (2) yields the extinction equilibrium (XE) H∗ = F ∗ =
I∗ = 0.

• Taking (ii) and (iii) in (2) yields the biologically meaningless equilibrium H∗ =
0, F ∗ = µ2K/(µ1 + β), I∗ = −µ1K/(µ1 + β) < 0.

• Taking (i) and (iv) in (2) yields (v) µ1F
∗ = (γ + α Φ

F∗+Φ )H∗ which leads to

disease-free equilibria (DFE).

• Taking (ii) and (iv) in (2) yields (vi) (µ1 + β I∗

I∗+K )F ∗ = (γ + α Φ
F∗+I∗+Φ )H∗

which leads to endemic equilibria (EE).

http://www.uta.edu/math/utter
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Local stability analysis involves the system’s Jacobian matrix,

J =


LΩ

(H∗+Ω)2 −
(
γ + αΦ

F∗+I∗+Φ

)
Ψ Ψ(

γ + αΦ
F∗+I∗+Φ

)
−µ1 − β I∗

I∗+K −Ψ −Ψ− βF ∗ K
(I∗+K)2

0 β I∗

I∗+K βF ∗ K
(I∗+K)2 − µ2

 ,
where Ψ = αH∗Φ

(F∗+I∗+Φ)2 . For the XE this simplifies to

J(XE) =

 L
Ω − (α+ γ) 0 0

(α+ γ) −µ1 0
0 0 −µ2

 ;

since µ1, µ2 > 0, the XE is thus locally asymptotically stable (LAS) iff L < (α+γ)Ω;
that is, a small hive dies out when the maximum birth rate of new bees is less
than the maximum hive-to-forager recruitment rate at the hatching half-saturation
constant.

A. Disease-free equilibria. We have equilibrium conditions (i), (iv) and (v).
Substituting (i) I∗ = 0 in (iv) and solving for H∗ yields

H∗ =
L

γ + α Φ
F∗+Φ

− Ω, (6)

which we in turn substitute into (v):

µ1F
∗ =

(
γ + α

Φ

F ∗ + Φ

)[
L

γ + α Φ
F∗+Φ

− Ω

]
,

which simplifies to

µ1F
∗ = L− Ω

(
γ + α

Φ

F ∗ + Φ

)
.

Multiplying through by (F ∗ + Φ) and moving everything to one side allows us to
rewrite this condition as a quadratic in F ∗/Φ, f(F ∗/Φ) = 0, where

f(x) = x2 +Bx+ C, with B =
µ1Φ− (L− γΩ)

µ1Φ
, C =

αΩ− (L− γΩ)

µ1Φ
.

It is convenient to introduce the following notation to simplify: a = L−γΩ, b = µ1Φ,
c = αΩ. Then B = (b− a)/b, C = (c− a)/b, and the condition that the expression
for H∗ in (6) be positive is (F ∗/Φ) + 1 > c/a. Note that b, c > 0, and that a > 0 in
all interesting cases, since if a ≤ 0 the hive will die out (as dH/dt < 0).

The roots of f are (−B ±
√
B2 − 4C)/2. If C < 0 (c < a), the discriminant

dominates |B|, and f has one positive and one negative root. If C = 0 (c = a), f has
one zero root and one root of sign oppositeB. If 0 < C < B2/4 (a < c < (a+b)2/4b),
|B| dominates the discriminant, and f has two roots of sign opposite B. (Note that
a ≤ (a+b)2/4b⇔ 4ab ≤ a2 +2ab+b2 ⇔ 0 ≤ a2−2ab+b2 = (a−b)2, so this interval
always exists.) If C = B2/4 (c = (a+ b)2/4b), f has one root of sign opposite B. If
C > B2/4 (c > (a + b)2/4b), f has no real roots. The condition B < 0 that when
f has a root, f has a positive root, is a > b.

Thus f has one positive root when c < a and two positive roots when b < a <
c < (a+ b)2/4b. (Note in both cases a positive root requires a > 0.) The boundary
curve (a + b)2 = 4bc crosses the line a = b in the a-b plane at the origin and the
point (c, c), so for any fixed value of c the existence of DFEs in the first quadrant is
given as in Figure 1: a single DFE to the right of the vertical line a = c and a pair
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of DFEs below the boundary curve between the origin and the line a = c. Note that
in the latter case b < c. Figure 2 gives a three-dimensional sketch of these regions
in a-b-c parameter space.

When c < a (unique DFE), the criterion (F ∗/Φ) + 1 > c/a to make H∗ > 0 in
(6) is automatically satisfied. When instead b < a < c < (a + b)2/4b, the criterion
can be shown to be satisfied as follows:

c > a
bc

a2
>

b

a

−a+ b

a
+
bc

a2
> −1

−4(a+ b)
bc

a
+ 4

(
bc

a

)2

> −4bc

(a+ b)2 − 4(a+ b)
bc

a
+ 4

(
bc

a

)2

> (a+ b)2 − 4bc

(a+ b)− 2
bc

a
>

√
(a+ b)2 − 4bc

(a+ b)−
√

(a+ b)2 − 4bc > 2
bc

a(
F ∗

Φ
+ 1

)
=

(a+ b)−
√

(a+ b)2 − 4bc

2b
>

c

a

shows the criterion holds for the smaller F ∗, which implies that it must hold for the
larger F ∗ as well. The step where square roots are taken in the above progression
is justified (|a+ b− 2 bc

a | = a+ b− 2 bc
a ) by c < (a+ b)2/4b⇒ 4bc < a2 + 2ab+ b2,

so 2bc < ab+ (a2 + b2)/2 < ab+ a2 since b < a, and thus 2bc/a < a+ b.
To determine stability of DFEs, we consider the Jacobian

J(DFE) =


LΩ

(H∗+Ω)2 −
(
γ + αΦ

F∗+Φ

)
αH∗Φ

(F∗+Φ)2
αH∗Φ

(F∗+Φ)2(
γ + αΦ

F∗+Φ

)
−µ1 − αH∗Φ

(F∗+I∗+Φ)2 − αH∗Φ
(F∗+Φ)2 −

βF∗

K

0 0 βF∗

K − µ2

 .
The last entry gives one eigenvalue, which is negative iff βF ∗/µ2K < 1. This
criterion addresses disease dynamics, and a quick calculation using a next-generation
operator method ([7] or [25]) yields R0 = βF ∗/µ2K, so this is the condition R0 < 1
(a DFE can only be LAS if the disease dynamics are weak).

The remaining 2×2 submatrix involving the hive population dynamics decouples
from the disease dynamics and can be analyzed using the 2-D Routh-Hurwitz criteria
(negative trace and positive determinant). The trace of the submatrix can be seen

to be negative if one uses (iv) to observe that the upper left entry is − LH∗

(H∗+Ω)2 < 0.

Since the entry in row 2, column 1 can similarly be rewritten L
H∗+Ω using (iv), the

determinant of the submatrix is now

LH∗

(H∗ + Ω)2

[
µ1 −

αΩΦ

(F ∗ + Φ)2

]
.

Thus the stability condition that the determinant be positive simplifies to

µ1(F ∗ + Φ)2 > αΩΦ, or

(
F ∗

Φ
+ 1

)2

>
c

b
.
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In the case where the DFE is unique, we have c < a, so that (a + b)2 − 4bc >
(a− b)2; thus the unique positive F ∗ has(
F ∗

Φ
+ 1

)2

>

(
F ∗

Φ
+ 1

)
=

(a+ b) +
√

(a+ b)2 − 4bc

2b
>

(a+ b) + |a− b|
2b

≥ a

b
>
c

b
,

satisfying the condition.
In the case where two DFEs exist, we have c < (a+ b)2/4b, so that the larger F ∗

has(
F ∗

Φ
+ 1

)2

=

(
(a+ b) +

√
(a+ b)2 − 4bc

2b

)2

>

(
(a+ b)

2b

)2

=
(a+ b)2

4b2
>
c

b
,

again satisfying the condition. However, the smaller F ∗ can be shown not to obey
the condition, applying the triangle inequality

√
m2 + n2 < m+ n to√

(a+ b)2 <
√

(a+ b)2 − 4bc+
√

4bc

(a+ b)−
√

(a+ b)2 − 4bc < 2b
√
c/b(

F ∗

Φ
+ 1

)
=

(a+ b)−
√

(a+ b)2 − 4bc

2b
<

√
c/b.

Thus the smaller DFE is unstable when it exists, whereas the larger DFE is LAS
(when it exists) iff R0 < 1.

B. Endemic equilibria. We have equilibrium conditions (ii), (iv) and (vi). Rescal-
ing h∗ = H∗/Ω, f∗ = F ∗/Φ and i∗ = I∗/K and defining d = βΦ, r = µ2K/βΦ and
k = K/Φ, we rewrite (ii) as f∗ = r(i∗+1), from which f∗+i∗k+1 = (r+k)i∗+(r+1),
(iv) becomes L

h∗+1 = γΩ + c
f∗+i∗k+1 , and (vi) becomes (γΩ + c

f∗+i∗k+1 )h∗ =

(b+ d i∗

i∗+1 )f∗. In addition, the constraint µ2 > µ1 becomes b < dr/k.

Substituting (iv) in (vi) yields

L
h∗

h∗ + 1
=

(
b+ d

i∗

i∗ + 1

)
f∗,

whence (using (ii))

h∗ =

(
b+ d i∗

i∗+1

)
f∗

L−
(
b+ d i∗

i∗+1

)
f∗

=
[(b+ d)i∗ + b]r(i∗ + 1)

L(i∗ + 1)− [(b+ d)i∗ + b]r(i∗ + 1)

=
(b+ d)i∗ + b

L
r − [(b+ d)i∗ + b]

.

Thus

h∗ + 1 =
L

L− r[(b+ d)i∗ + b]
, so that

L

h∗ + 1
= L− r[(b+ d)i∗ + b].

This result, together with (iv), gives

L− r[(b+ d)i∗ + b] = γΩ +
c

(r + k)i∗ + (r + 1)
,

from which
a− r[(b+ d)i∗ + b] =

c

(r + k)i∗ + (r + 1)
,

and (multiplying through by the denominator)

[(a− br)− (b+ d)ri∗] [(r + k)i∗ + (r + 1)] = c.
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This is quadratic in i∗, and can be written in the form g(i∗) = 0, where

g(x) = A′x2 +B′x+ C ′, with

A′ = (b+ d)r(r + k) > 0,

B′ = (b+ d)r(r + 1)− (a− br)(r + k),

C ′ = c− (a− br)(r + 1).

Note that if a ≤ br then B′, C ′ > 0 and g has no real roots. We therefore assume
otherwise in the analysis that follows. We also observe that each positive root
of g corresponds to a biologically meaningful EE (i.e., all components positive)
by noting that, for i∗ > 0, from (ii) f∗ = r(i∗ + 1) > 0, and then from (vi)

h∗ = (b+ d i∗

i∗+1 )f∗/(γΩ + c
f∗+i∗k+1 ) > 0.

Now g has one positive root iff c < (a − br)(r + 1) (C ′ < 0), two positive roots
iff (a− br)(r + k) > (b+ d)r(r + 1) (B′ < 0) and

(a− br)(r + 1) < c <
[(b+ d)r(r + 1) + (a− br)(r + k)]

2

4(b+ d)r(r + k)

(0 < C ′ < (B′)2/4A′), and no real roots otherwise. We also note that the above
interval always exists (i.e., the lower bound is not above the upper bound) as long
as a > br, by algebra similar to that used in analyzing the DFE(s).

The condition c < (a − br)(r + 1) (C ′ < 0) for a unique positive EE has a
boundary which is linear in a and b (considering c, r > 0 fixed) and intersects the
boundary curve for the existence of 2 DFEs (a + b)2 = 4bc tangentially at the

point
(

2r+1
(r+1)2 c,

1
(r+1)2 c

)
. Below (or to the right of) this line there exists a unique

positive EE. The condition R0 > 1 is closely related but not equivalent: We can
rewrite R0 = f∗1 /r, where f∗1 is the value of f∗ at the larger DFE,

f∗1 =
(a− b) +

√
(a+ b)2 − 4bc

2b

(for this term to be real we must have (a + b)2 ≥ 4bc, but if not, then a < c
and the hive dies out, the XE being stable, so R0 becomes meaningless). Then
R0 > 1⇔ f∗1 > r; substituting and simplifying yields√

(a+ b)2 − 4bc > (2r + 1)b− a. (7)

Squaring both sides of (7) gives

(a+ b)2 − 4bc > [(2r + 1)b− a]2, (8)

which simplifies (and is equivalent) to c < (a−br)(r+1) (C ′ < 0). However, (7) and
(8) are not equivalent: (8) implies (7), since (8) implies, first, that (a+b)2−4bc ≥ 0

(so it has a square root), and, second, that
√

(a+ b)2 − 4bc > |(2r+ 1)b−a|, which
implies (7) (since |z| ≥ z for any z). (7) only implies (8) if in addition it is known
that (2r + 1)b− a > 0.

The relevance of this additional condition becomes clear if we graph the bound-
aries of these conditions in the a–b plane of Figure 1. The lines (2r+1)b−a = 0 and
c = (a − br)(r + 1) intersect precisely at the point where the latter line is tangent
to the curve (a + b)2 = 4bc. Thus the boundary R0 = 1 is that part of the line
c = (a − br)(r + 1) above this point, i.e., R0 > 1 includes the region below (or to
the right of) this line, where a unique EE exists, and also the region left of this line
and below the curve (Figure 3), which remains to be studied.
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The three conditions B′ < 0, 0 < C ′ < (B′)2/4A′ for two EEs to exist can be

written in terms of a: a > θ2 = br
(

1 + r+1
r+k

)
+ dr

(
r+1
r+k

)
, a < θ1 = br + c

r+1 ,

and a > θ3 = 2
√

cr
r+k

√
b+ d + br

(
k−1
r+k

)
− dr

(
r+1
r+k

)
, respectively. Whether they

can all be satisfied simultaneously (max(θ2, θ3) < a < θ1) depends on the infection-
related parameters (d, r, k). We observe first that θ3 ≤ θ1 (with equality iff c =
(b+ d)r(r + 1)2/(r + k), where they are tangent) since

2

√
c

(b+ d)r

r + k
− (b+ d)r

r + k
(r + 1) ≤ c

r + 1
⇔

(√
c

r + 1
−
√

(b+ d)r

r + k
(r + 1)

)2

≥ 0.

Similar algebra shows that the interval of a values exists iff

θ2 < θ3 < θ1 ⇔ c >
(b+ d)r(r + 1)2

r + k
⇔ b < b0 =

c(r + k)

r(r + 1)2
− d;

otherwise θ3 < θ1 < θ2, making it impossible to satisfy the criteria for 2 EEs to
exist.

The region 2EE = {θ3 < a < θ1, 0 < b < b0} where two endemic equilibria exist
may interact with the regions of existence for DFEs (Figure 3) in four different
ways, depending upon where on the line a = θ1 the apex of region 2EE sits: (1)
below the a-axis (b0 < 0); (2) above the a-axis but below the point where the line
a = θ1 intersects the curve (a + b)2 = 4bc (0 < b0 <

c
(r+1)2 ); (3) above that point

but left of the line a = c ( c
(r+1)2 < b0 <

c
r+1 ); or (4) to the right of the line a = c

(b0 >
c
r+1 ). In general, the higher on this line the apex sits, the more complex the

resulting behavior may be. We consider each case in turn, describing it in terms of
constraints on c as functions of the infection parameters d, r, k.

In case (1), c < dr(r+1)2

r+k , so that b0 < 0 and there are no points (a, b) with

a, b > 0 for which two EEs exist (region 2EE is empty, Figure 8(a)).

In case (2), dr(r+1)2

r+k < c ≤ dr(r+1)2

k , making 0 < b0 <
c

(r+1)2 . We observe that

the curve a = θ3 intersects the a-axis (b = 0) where a = 2
√
c dr
r+k − dr

(
r+1
r+k

)
; this

is positive iff 4c > dr(r+1)2

r+k , which is clearly true in the case c > dr(r+1)2

r+k where the

region 2EE exists. Since the region 2DFE = {2
√
bc − b < a < θ3, 0 < b < c

(r+1)2 }
where two unstable DFEs exist then contains all 3 of the vertices of region 2EE, it
is reasonable to investigate whether 2EE sits entirely inside 2DFE, and it turns out
that it does (Figure 8(b)).

We can see that 2EE ⊂ 2DFE by verifying that their left (curved) boundaries

are nested: θ0 = 2
√
bc− b < θ3. First, we rewrite the condition b < b0 as c > (b+

d)r(r+ 1)2/(r+k). Then this condition together with the requirement c ≤ dr(r+1)2

k
that the apex of 2EE sit below the apex of 2DFE on the line a = θ1 (both of which
are satisfied by 2EE in case (2)) leads to the compound inequality

(b+ d)r

r + k
(r + 1)2 < c ≤ dr

k
(r + 1)2,

which implies/requires (by transitivity) that bk < dr. This latter fact then also

implies that b < (b+d)r
r+k . Now b < b0 implies that c

(r+1)2 >
(b+d)r
r+k , so that

2

√
c

r + 1
> 2

√
(b+ d)r

r + k
>
√
b+

√
(b+ d)r

r + k
.
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Figure 8. Existence of two endemic equilibria in the a-b plane
for fixed c, r, d, k: (a) top left, case 1, where the region 2EE (θ3 <
a < θ1 for 0 ≤ b < b0) is empty; (b) top right, case 2, where the
region 2EE fits entirely inside the region 2DFE (θ0 < a < θ1 for
0 ≤ b < c

(r+1)2 ); (c) bottom left, case 3, where 2EE extends beyond

2DFE but remains within a < c; (d) bottom right, case 4, where
2EE extends beyond the line a = c. All terms are as defined in the
main text.

We now multiply by (r + 1)

(√
b−

√
(b+d)r
r+k

)
, which, since b < (b+d)r

r+k , is negative:

2
√
c

(
√
b−

√
(b+ d)r

r + k

)
< (r + 1)

(
b− (b+ d)r

r + k

)
⇔ θ0 < θ3.

Thus we conclude that in case (2) the region 2EE fits entirely inside the region
2DFE. [The two regions coincide exactly iff d = k = 0.]

In case (3), c > dr(r+1)2

k and, if k > r2, c < dr(r+1)2

k−r2 . The first of these inequalities
simply places the apex of 2EE above that of 2DFE, so that neither region is a subset
of the other (Figure 8(c)). In order to keep the apex of 2EE left of the line a = c, we
require b0 <

c
r+1 , which with some algebra can be shown equivalent to the condition

c(k − r2) < dr(r + 1)2. This inequality holds for all positive c if k ≤ r2; if instead
k > r2, then it can be rewritten as c < dr(r + 1)2/(k − r2). In case (3), 2EE
overlaps not only with 2DFE but with the region where no DFEs exist (presumably
creating bistability between the XE and a stable EE), and with the region where
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2DFEs exist and R0 < 1 (presumably creating a striking tristability among the XE,
a stable DFE, and a stable EE).

Finally, in case (4) k > r2 and c > dr(r+1)2

k−r2 , so that 2EE extends to the right
of the line a = c, to overlap with the region where a single, stable DFE exists
(presumably creating a DFE/EE bistability) as well as with the regions mentioned
in case (3) (Figure 8(d)).

In summary, the model’s qualitative behavior can be described in terms of four
cases in c (with thresholds in terms of purely infection-related parameters d, r, k):

(1) c ≤ dr(r+1)2

r+k , where no EEs should occur above the line a = θ1;

(2) dr(r+1)2

r+k < c ≤ dr(r+1)2

k , where region 2EE fits completely within 2DFE;

(3) c > dr(r+1)2

k and, if k > r2, c < dr(r+1)2

k−r2 , where region 2EE extends beyond
2DFE;

(4) k > r2 and c > dr(r+1)2

k−r2 , where region 2EE extends beyond the line a = c.
Regions in the a-b plane where only XE, only a single DFE, or only a single EE, is
globally asymptotically stable (GAS) exist under all four scenarios, as do a [trian-
gular] region where both the XE and a unique EE are LAS, and one with XE/DFE
bistability. (It is also worth noting that in all four scenarios there is a region where
the hive dies out due to disease, as opposed to natural causes.) In cases 2–4 part
of the XE/EE bistability region features a second, unstable EE. In cases 3 and 4
there is a surprising region of XE/DFE/EE tristability, and in case 4 there is even
a region of DFE/EE bistability.

However, the constraint b < dr/k precludes the behaviors unique to Cases 3
and 4, since some algebra shows that b = dr/k precisely where θ0 = θ3, which for
Cases 3 and 4 occurs below c

(r+1)2 . Thus for Cases 3 and 4, the behavior of the

original (unrescaled) system is limited to the region 0 < b < dr/k which features
colony collapse but never allows DFE1 and EE1 to be stable simultaneously, nor
does it allow EE1/EE2 to exist when DFE1/DFE2 do not exist as well—both of
those outcomes would require µ2 < µ1, infected forager bees remaining longer in the
hive than their uninfected counterparts. Thus the only five bifurcation diagrams
possible (in a) are those depicted in Figure 5.
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