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Abstract. In this article, we study the rich dynamics of a diffusive predator-

prey system with Allee effects in the prey growth. Our model assumes a prey-
dependent Holling type-II functional response and a density dependent death

rate for predator. We investigate the dissipation and persistence property, the

stability of nonnegative and positive constant steady state of the model, as
well as the existence of Hopf bifurcation at the positive constant solution. In

addition, we provide results on the existence and non-existence of positive non-

constant solutions of the model. We also demonstrate the Turing instability
under some conditions, and find that our model exhibits a diffusion-controlled

formation growth of spots, stripes, and holes pattern replication via numerical

simulations. One of the most interesting findings is that Turing instability in
the model is induced by the density dependent death rate in predator.

1. Introduction. Interaction between prey and predator has been a center re-
search theme in ecology over many decades [1, 2, 5, 9, 15, 19, 24, 27, 33, 35, 39,
41, 54, 62, 65, 80, 81]. A wide variety of temporal prey-predator models have been
investigated to help us understand the steady-state or oscillatory coexistence of
both the species as well as the factors responsible for the system collapse through
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the extinction of one or both the species. Prey-dependent functional responses
play an important role in dynamics of prey-predator models. Gause type predator-
prey models have been studied by many researchers [10, 26, 30, 31, 34, 36, 37, 38,
40, 44, 48, 49, 50, 63]. Gause type predator-prey models with logistic growth for
prey and prey-dependent monotonic functional response can predict two types of
dynamical scenario: stable coexistence and oscillatory coexistence [69]. The Gause
type predator-prey models with non-monotonic prey-dependent functional response
and/or predator’s density dependent functional response exhibit very rich dynamic
behavior [30, 31, 38].

Despite the complicated dynamics of temporal prey-predator models, these mod-
els may not be able to capture the dynamics observed in nature due to their homo-
geneous distribution assumption [55]. The spatiotemporal models of predator–prey
interaction have been studied by many researchers, during the last four to five
decades, to understand the role of random mobility of the individuals or organisms
on the stability and persistence of interacting species [8, 11, 12, 13, 14, 21, 22, 43,
45, 46, 53, 56, 59, 61, 68, 71, 72, 77, 78].

Earlier works with the spatiotemporal models were based upon the derivation
of Turing instability condition and determine the distribution of species over their
habitats with the help of relevant numerical simulations [8, 13, 53, 77]. Consid-
erable amount of attention has been paid to derive the analytical conditions for
the existence and non-existence of non-constant positive steady-states for several
reaction-diffusion equation models for prey-predator interactions. These investi-
gations include the analysis of the predator-prey models with prey-dependent and
predator-dependent functional responses [16, 56, 57, 58, 59, 60, 74, 75, 76]. Qual-
itative theories of the partial differential equations are used to obtain such results
for the coupled nonlinear parabolic type partial differential equations.

Recently, significant amount of attention has been paid by the researchers to
analyze the dynamic models of predator-prey interactions with Allee effect in the
per capita prey growth rate [3, 4, 7, 25, 67, 66, 72, 82]. The so-called Allee effect
in prey growth is described by the positive relationship between any component of
individual fitness and either numbers or density of conspecifics [25, 67]. Generally
speaking, a population is said to have an Allee effect, if it is initially an increasing
function at low population density, then decreases to zero at higher prey density [72].
If the growth rate function is negative for a range of low prey density then the Allee
effect is known as strong Allee effect and in case the prey growth rate function
remain positive until the prey density reaches the carrying capacity is known as a
weak Allee effect.

Gause type predator–prey models with Allee effect in prey growth, both strong
and weak, and with prey-dependent as well as predator-dependent functional re-
sponse has been investigated by the several researchers and various types of dynamic
behaviors are reported [17, 18, 21, 42, 51, 52]. For example, Cai et al [21] considered
a spatial prey-predator model with strong Allee effect in prey growth and Holling
type II functional response. The authors have derived the conditions for nonexis-
tence of nonconstant positive steady-state solution and instability conditions for the
homogeneous as well as heterogeneous steady-states. Analytical findings reveal that
the inclusion of Allee effect enhance the dynamic complexity of the spatio-temporal
model. The mathematical techniques used in [21] to derive the analytical results
are based upon the resources available in Refs.[6, 22, 23, 64].
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In this paper, we focus on the spatiotemporal dynamics of a predator-prey model
with (i) Allee effects in prey, (ii) prey-dependent Holling type-II functional response,
and (iii) density dependent death rate for the predator. We aim to answer the
following questions through our analytic and numerical results:

1. What is the effect of density dependent death rate for the predator on the
spatiotemporal dynamics of our model?

2. How many stationary Turing patterns may there be in our model?

The rest of this article is organized as follows: In Section 2, we describe a
predator–prey model with weak Allee effect in the prey growth and density de-
pendent death rate for the predator. In Section 3, we study the large time behavior
of time dependent solutions, that is to say, we investigate the dissipation and per-
sistence property, the local and global stability of the nonnegative steady states
of the model, as well as the existence of periodic solutions at the positive constant
solution. In Section 4, we first give a prior estimates for the positive solutions of the
model, then give some results on the existence and non-existence of positive non-
constant solutions of the model. In Section 5, we give the conditions of the Turing
instability and perform a series of numerical simulation to show the occurrence of
different patterns. The paper ends with a brief discussion in Section 6.

2. Model derivation. Suppose that the prey individuals N and predator indi-
viduals P move randomly in the space, in this paper, we focus on the following
prey-predator model with density dependent death rate for the predator:

∂N

∂t
= Ng(N)− cN

N + a
P + d1∆N, x ∈ Ω, t > 0,

∂P

∂t
= sP

(
−q − δP +

cN

N + a

)
+ d2∆P, x ∈ Ω, t > 0,

∂N

∂ν
=
∂P

∂ν
= 0, x ∈ ∂Ω, t > 0,

N(x, 0) = N0(x) ≥ 0, P (x, 0) = P0(x) ≥ 0, x ∈ Ω,

(1)

where N(x, t), P (x, t) represent population densities of prey and predator at time
t and location x ∈ Ω ⊂ R2, respectively. Ω is a bounded domain with smooth
boundary ∂Ω. The function cN

N+a describes the predator functional response, which
is Holling type II functional response. c is the rate of capture and a is half satura-
tion constant, q is the death rate of the predator and s is the feed concentration.
The parameter δ is proportional to the density dependent death rate. The non-
negative constants d1 and d2 are the diffusion coefficients of N(x, t) and P (x, t),
respectively. ∆ is the Laplacian operator in two-dimensional space, which describes
the random moving. ν is the outward unit normal vector of the boundary ∂Ω. The
main reason for choosing such boundary conditions is that we are interested in the
self-organization of pattern, and the zero-flux boundary conditions imply that no
external input is imposed from exterior [53].

In this paper, we consider the per capita growth function g(N) as follows:

g(N) = r
(

1− N

K

)
− m

N + b
, (2)

where
m

N + b
is the Allee effects term. And the positive parameters m and b are

Allee effect constants, b is the population size at which fitness is half its maximum
value. The constant m will allow the severity of the Allee effect to be modelled. r



1250 YONGLI CAI, MALAY BANERJEE, YUN KANG AND WEIMING WANG

is the intrinsic growth rate or biotic potential of the prey N , and K is the carrying
capacity.

Notice that

dg(N)

dN
= − r

K
+

m

(N + b)2
and

d2g(N)

dN2
= − 2m

(N + b)3
< 0,

thus g(N) is concave and has a unique critical pointNc =
√
mK/r−b. If where g(N)

is without predator, the temporal population dynamics of prey can be described by
the following ODE:

dN

dt
= Ng(N) = N

(
r
(

1− N

K

)
− m

N + b

)
, (3)

whose dynamics can be summarized as follows:

1. Allee effects: If Nc > 0 (i.e., m > b2r
K ), then g(N) is increasing on [0, Nc]

and is decreasing on [Nc,∞). This is the case that we define prey has Allee
effects, i.e., the per capita growth rate has positive correlation with population
size at low population densities.

2. Weak Allee effects: If b2r
K < m < br, then prey has weak Allee effects. For

any positive population, the prey population (3) approaches to

N1 =
r(K − b) +

√
r2(K − b)2 + 4rK(br −m)

2r
.

3. Strong Allee effects: If b2r
K < br < m < r2(K−b)2+4br2K

4rK , then prey has
strong Allee effects with its Allee threshold defined as Nθ where

Nθ =
r(K − b)−

√
r2(K − b)2 + 4rK(br −m)

2r
.

For any initial population in [0, Nθ), the prey population (3) goes to extinction;
and for any initial population in (Nθ,∞), the prey population (3) approaches
to Nθ.

The main aim of this article is to investigate the spatiotemporal dynamics of

model (1) in the case of weak Allee effect, i.e., b2r
K < m < br. The steady states of

model (1) can be written as the following system of coupled elliptic equations:

−d1∆N = N

(
r
(

1− N

K

)
− m

N + b

)
− cN

N + a
P, x ∈ Ω,

−d2∆P = sP

(
−q − δP +

cN

N + a

)
, x ∈ Ω,

∂N

∂ν
=
∂P

∂ν
= 0, x ∈ ∂Ω.

(4)

In the next section, we study the large time behavior of time-dependent solutions.
Especially, we focus on the global attractor and persistence property for solutions of
model (1). Moreover, we investigate the stability of non-negative constant solutions
of (1) and the existence of the Hopf bifurcation.

3. Large time behavior of time-dependent solutions. To understand the
large time behavior of model (1), our first task is to find the global attractor and
the permanent conditions for the solutions.
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3.1. Global attractor and permanence. In this subsection, we will focus on the
global attractor and permanence of model (1). Firstly, we give an assumption.

Assumption 1. q < c− ac

a+K
.

Lemma 3.1. (Dissipation) Under Assumption 1, the non–negative solution (N(x,
t), P (x, t)) of model (1) satisfies

lim sup
t→∞

max
Ω̄

N(x, t) ≤ K, lim sup
t→∞

max
Ω̄

P (x, t) ≤ (c− q)K − aq
δ(a+K)

.

Proof. Since N

(
r

(
1− N

K

)
− m

N + b

)
− cNP

N + a
≤ rN

(
1− N

K

)
in Ω × [0,∞),

the first result follows easily from the simple comparison argument for parabolic
problems [79], and thus there exists T ∈ (0,∞) such that N(x, t) ≤ K + ε for
(x, t) ∈ Ω× [T,∞) for an arbitrary constant ε > 0. It then follows that P (x, t) is
a lower solution of the following problem

∂z

∂t
− d2∆z = sz

(
−q − δz +

c(K + ε)

a+K + ε

)
, x ∈ Ω, t > T,

∂z

∂ν
= 0, x ∈ ∂Ω, t > T,

z(x, T ) = P (x, T ) > 0, x ∈ Ω.

(5)

The comparison argument [79] shows that

lim sup
t→∞

max
Ω̄

P (x, t) ≤ (c− q)K − aq + (c− q)ε
δ(a+K + ε)

which implies the second assertion for any ε > 0 sufficiently small.

Remark 1. Lemma 3.1 shows that

Γ := [0,K]×
[
0,

(c− q)K − aq
δ(a+K)

]
(6)

is a global attractor for all solutions of model (1) in the sense that any non–negative
solution (N(x, t), P (x, t)) of model (1) enters in Γ for large t and for all x ∈ Ω.

The following lemma gives sufficient conditions for the permanence of the solu-
tions for model (1).

Lemma 3.2. Under Assumption 1, if condition

m < br

(
1− c((c− q)K − aq)

arδ(a+K)
− aq

K(c− q)

)
(7)

holds, then any positive solution (N(x, t), P (x, t)) of (1) satisfies

lim inf
t→∞

min
Ω̄
N(x, t) ≥ α, lim inf

t→∞
min

Ω̄
P (x, t) ≥ (c− q)α− aq

a+ α
.

where α =
K

r

(
r − m

b
− c((c− q)K − aq)

aδ(a+K)

)
.

Proof. In view of Lemma 3.1, there exists a T ∈ (0,∞) such that

P (x, t) ≤ (c− q)K − aq
δ(a+K)

+
aε

c
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in Ω× [T,∞) for an arbitrary ε > 0. Thus we have that N(x, t) is an upper solution
of

∂z

∂t
− d1∆z = z

(
r − m

b
− c((c− q)K − aq)

aδ(a+K)
− ε− r

K
N

)
, x ∈ Ω, t > T,

∂z

∂ν
= 0, x ∈ ∂Ω, t > T,

z(x, T ) = N(x, T ) > 0, x ∈ Ω.
(8)

Let N(t) be the unique positive solution of the following problem
ẇ = w

(
r − m

b
− c((c− q)K − aq)

aδ(a+K)
− ε− r

K
w

)
, t > T,

w(T ) = min
Ω̄
N(x, T ) > 0.

Then N(t) is a lower solution of model (8). It follows from (7) that

m < b

(
r − c((c− q)K − aq)

aδ(a+K)

)
= bτ(0) where τ(ε) = r − c((c− q)K − aq)

aδ(a+K)
− ε,

thus there exists a sufficiently small ε > 0 such that m < bτ(ε). So that we have

r − m

b
− c((c− q)K − aq)

aδ(a+K)
− ε > 0. Due to the arbitrariness of ε, we find

lim
t→∞

N(t) =
K

r

(
r − m

b
− c((c− q)K − aq)

aδ(a+K)

)
:= α.

An application of the comparison principle [79] gives the desired limit for N(x, t).
Now one can find T0 ≥ T such that N(x, t) ≥ α− ε in [T0,∞)×Ω for a sufficiently
small but arbitrary ε > 0, and thus P (x, t) is an upper solution of

∂z

∂t
− d2∆z = sz

(
−q − δz +

c(α− ε)
a+ α− ε

)
, x ∈ Ω, t > T0,

∂z

∂ν
= 0, x ∈ ∂Ω, t > T0,

z(x, T0) = P (x, T0) > 0, x ∈ Ω.

(9)

Let us define,

ρ(ε) =
K

r

(
r − m

b
− c((c− q)K − aq)

aδ(a+K)

)
(c− q)− aq + (q − c)ε

then it is easy to check that ρ(0) > 0 by the assumption mentioned in (7). Since
ρ(ε) is decreasing in ε under Assumption 1 and lim

ε→∞
ρ(ε) = −∞, there exists a

unique ε̃ such that ρ(ε̃) = 0. By choosing a sufficiently small ε > 0 with ε < ε̃, we
have ρ(ε) > 0, and thus using the comparison argument [79] we find,

lim inf
t→∞

min
Ω̄
P (x, t) ≥ (c− q)α− aq

a+ α
,

and hence the proof.

A direct application of Lemma 3.1 and Lemma 3.2 gives the following theorem.
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Theorem 3.3. (Permanence) If Assumption 1 and condition (7) hold, there exist
constants 0 < ε < C <∞ such that

ε < lim inf
t→∞

min
Ω̄
N(x, t) < lim sup

t→∞
max

Ω̄
N(x, t) < C,

ε < lim inf
t→∞

min
Ω̄
P (x, t) < lim sup

t→∞
max

Ω̄
P (x, t) < C.

That is, model (1) is permanent.

3.2. Stability of non-negative constant steady states. In this subsection, we
discuss the stability of various constant steady states. The concerned steady-states
are also known as homogeneous steady-states.

3.2.1. Existence of non-negative constant steady state solutions. Apart from the
trivial constant steady state E0 = (0, 0), the other non–negative constant steady
states of model (1) are the non-negative solutions of the following two coupled
equations,

P =
1

c
(N + a)

(
r
(
1− N

K

)
− m

N+b

)
=

1

c
(N + a)g(N) := h1(N),

P =
1

δ(N + a)

(
(c− q)N − aq

)
:= h2(N).

(10)

For P = 0, from h1(N) = 0, we can get one semi–trivial constant steady state

N1 =
r(K − b) +

√
r2(K − b)2 − 4rK(m− br)

2r
,

and there is no constant steady state with N = 0.

Figure 1. The positive constant solutions of model (1). Blue
curve is the prey nullcline and predator nullclines are depicted in
green (δ = 0.125, one), cyan (δ = 0.225, three), red (δ = 0.270452,
two) and black (δ = 0.325, one) color. The blue line is based on
h1(N), and others h2(N).
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For the existence of positive constant solution, after solving N from the second
equation h2(N) = P and substituting it into the first equation h1(N) = P , we can
obtain a polynomial equation about P with degree 5, therefore the equation at least
has one real root. That is to say, model (1) may be having one or more positive
equilibria, namely E∗ = (N∗, P ∗).

In Fig.1, as an example, four plots of the predator nullcline is presented for four
different values of δ and keeping other parameters fixed at r = 1, K = 10, m = 0.45,
b = 0.9, c = 1, a = 0.5 and q = 0.4. When δ = 0.125, model (1) has one positive
constant steady state; and δ = 0.225, there are three positive constant steady states;
δ = 0.270452, model (1) has two positive constant steady states; while δ = 0.325,
model (1) has one positive constant steady state. In addition, note that the plots
of h1(N) is a parabola with downward opening, thus we can know that model (1)
at least has one positive constant steady state. From Fig.1, one can know that the
number of interior constant steady states varies from 1 to 3 depending upon the
magnitude of δ.

Remark 2. If there is no density dependent death rate for the predator, i.e. δ = 0,
the existence of non-negative constant steady state solutions of model (1) can be
seen in [21] in details.

3.2.2. Local stability of non-negative constant steady states. In this subsection, we
shall analyze the locally asymptotic stability of the non–negative constant steady
states for model (1).

For the sake of simplicity, we rewrite model (1) in a compact form as follows:
wt = D∆w + F (w), x ∈ Ω, t > 0,

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) = (N0(x), P0(x)T , x ∈ Ω,

(11)

where w = (N(x, t), P (x, t))T , D = diag(d1, d2) and

F (w) =

 N

(
r

(
1− N

K

)
− m

N + b
− cP

N + a

)
sP

(
−q − δP +

cN

N + a

)
 .

Let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues of the operator −∆ on Ω with
the zero–flux boundary conditions, and E(µi) be the eigenspace corresponding to
µi in H1(Ω̄). Let

X =
{

w ∈ [H1(Ω)]2
∣∣∣ ∂νw = 0 on ∂Ω

}
, (12){

φij |j = 1, ...,dimE(µi)
}

be an orthonormal basis of E(µi), Xij =
{

cφij

∣∣∣c ∈ R2
}

,

then

X =

∞⊕
i=1

Xi, where Xi =

dimE(µi)⊕
j=1

Xij (13)

Next, we give the main results on the local stability of the non–negative constant
steady states of model (1). For the proof of this, we need the following assumption.
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Assumption 2.
(a) g(N∗) + (N∗ + a)g′(N∗) > 0;
(b) δ(a+N∗)2)((a+N∗)g′(N∗) + g(N∗))− ac2 < 0,

where g′(N∗) =
m

(N∗ + b)2
− r

K
.

Theorem 3.4. (a) For the positive constant steady state E∗ = (N∗, P ∗) of
model (1):
(a1) under Assumptions 2, it is locally asymptotically stable if

s > max

{
d2cN

∗(g(N∗) + (a+N∗)g′(N∗))

d1δ(a+N∗)2g(N∗)
,
cN∗(g(N∗) + (a+N∗)g′(N∗))

δ(a+N∗)2g(N∗)

}
.

(14)

(a2) If g(N∗) + (N∗ + a)g′(N∗) < 0, it is locally asymptotically stable.
(b) The semi–trivial constant steady state E1 = (N1, 0) of model (1) is locally

asymptotically stable if
r(K − b) +

√
r2(K − b)2 − 4rK(m− br)

2r
<

aq

c− q
.

Proof. (a) The linearization of model (1) at the positive constant steady state E∗ =
(N∗, P ∗) can be expressed by:

wt = £(w)≡D∆w + Jw,

where

J =

 N∗g′(N∗) +
cN∗P ∗

(a+N∗)2
− cN∗

a+N∗
acsP ∗

(a+N∗)2
−sδP ∗

 .

For each i ≥ 0, Xi is invariant under the operator £, and λ is an eigenvalue of
£ if and only if λ is an eigenvalue of the matrix Ai = −µiD + J for some i ≥ 0.
Thus the stability of the positive constant steady state is reduced to consider the
characteristic equation Det(λI −Ai) = 0, where,

det(λI −Ai) = λ2 − Tr(Ai)λ+ Det(Ai) := ϕi(λ), (15)

and

Tr(Ai) = −µi(d1 + d2) + Tr(J),

Det(Ai) = d1d2µ
2
i −

(
d2N

∗
(
g′(N∗) +

g(N∗)

a+N∗

)
− d1sδP

∗
)
µi + Det(J),

with

Tr(J) = N∗
(
g′(N∗) +

g(N∗)

a+N∗

)
− sδP ∗,

Det(J) = − sN∗P ∗

(a+N∗)3

(
δ(a+N∗)2)((a+N∗)g′(N∗) + g(N∗))− ac2

)
.

If g(N∗) + (N∗ + a)g′(N∗) < 0, we have Tr(Ai) < 0, Det(Ai) > 0. If Assumptions
2 and (14), one can check that Tr(J) < 0, Det(J) > 0. It follows from (14) that
Det(Ai) > 0 > Tr(Ai) for i ≥ 0. Therefore, the eigenvalues of the matrix −µiD+J
have negative real parts. It thus follows from the Routh–Hurwitz criterion that, for
each i ≥ 0, the two roots λi1 and λi2 of ϕi(λ) = 0 all have negative real parts.

In the following, we prove that there exists an η > 0 such that

Re{λi1} ≤ −η, Re{λi2} ≤ −η. (16)
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Let λ = µiξ, then

ϕi(λ) = µ2
i ξ

2 − Tr(Ai)µiξ + Det(Ai) := ϕ̃i(ξ). (17)

Since µi →∞ as i→∞, it follows that

lim
i→∞

ϕ̃i(ξ)

µ2
i

= ξ2 + (d1 + d2)ξ + d1d2 := ϕ̃(ξ). (18)

Clearly, ϕ̃(ξ) has two negative roots: −d1 and −d2. Thus, let d̃ = min {d1, d2},
then Re{ξ1},Re{ξ2} ≤ −d̃. By continuity, we see that there exists i0 such that the

two roots ξi1, ξi2 of ϕ̃i(ξ) = 0 satisfy Re{ξi1} ≤ −
d̃

2
,Re{ξi2} ≤ −

d̃

2
, ∀i ≥ i0. In

turn, Re{λi1},Re{λi2} ≤ −
µid̃

2
≤ − d̃

2
, ∀i ≥ i0. Let

−η̃ = max
1≤i≤i0

{
Re{λi1},Re{λi2}

}
.

Then η̃ > 0 and (16) holds for η = min

{
η̃,
d̃

2

}
.

Consequently, the spectrum of £, which consists of eigenvalues, lies in {Reλ ≤
−η}. In the sense of [32], we obtain that the positive constant steady state solution
E∗ = (N∗, P ∗) of the model (1) is uniformly asymptotically stable.

(b) The linearization of model (1) at the semi–trivial constant steady state E1 =
(N1, 0) can be expressed by:

wt = £(w) = D∆w + J1w,

where

J1 =

 N1

(
m

(N1 + b)2
− r

K

)
− cN1

a+N1

0 s

(
−q +

cN1

a+N1

)
 ,

It follows from
r(K − b) +

√
r2(K − b)2 − 4rK(m− br)

2r
<

aq

c− q
that Tr(J1) < 0,

Det(J1) > 0. The remaining arguments are rather similar as above. The proof is
complete.

3.2.3. Global stability of positive constant steady states. In this subsubsection, we
explore sufficient conditions of global stability of the positive constant steady state

solution E∗ = (N∗, P ∗) for model (1) with weak Allee effect (i.e. b2r
K < m < br).

Before stating the main theorem, we recall the following result which can be found
in [73].
Lemma 3.5. [73] Let c1 and c2 be two positive constants. Assume that ϕ,ψ ∈
C1([c1,∞)), ψ(t) ≥ 0 and ϕ is bounded from below. If ϕ′(t) ≤ −c2ψ(t) and ψ′(t) ≤
c3 in [c1,∞) for some constant c3, then lim

t→∞
ψ(t) = 0.

In the following, C denotes a generic positive constant which does not depend
on x ∈ Ω̄ and t ≥ 0.

Theorem 3.6. Under Assumptions 1 and 2, the positive constant steady state
solution E∗ = (N∗, P ∗) of model (1) is globally asymptotically stable if the following
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condition holds:
m

b(N∗ + b)
+
g(N∗)

a
<

r

K
. (19)

Proof. By Lemma 3.1, the solution (N(x, t), P (x, t)) of model (1) is bounded uni-
formly on Ω̄, that is, ‖N(·, t)‖∞, ‖P (·, t)‖∞ ≤ C. Furthermore, it follows from
Theorem A2 in [20] that

‖N(·, t)‖C2+α(Ω̄), ‖P (·, t)‖C2+α(Ω̄) ≤ C, ∀ t ≥ 1, α ∈ (0, 1). (20)

We adopt the Lyapunov function:

V (t) =

∫
Ω

[
V1(N(x, t)) + V2(P (x, t))

]
dx, (21)

where V1(N) =

∫ N

N∗

ξ −N∗

ξ
dξ, V2(P ) =

(N∗ + a)

as

∫ P

P∗

η − P ∗

η
dη. Then V (t) ≥ 0

and V (t) = 0 if and only if (N,P ) = (N∗, P ∗). Then,

dV

dt
=

∫
Ω

(
(N −N∗)

N

∂N

∂t
+

(N∗ + a)

as

(P − P ∗)
P

∂P

∂t

)
dx

=

∫
Ω

(N −N∗)
(
r − rN

K
− m

N + b
− cP

N + a
+ d1

∆N

N

)
dx

+
N∗ + a

a

∫
Ω

(P − P ∗)
(
−q − δP +

cN

N + a
+ d2

∆P

sP

)
dx

=

∫
Ω

I(N, P )dx− d1N
∗
∫
Ω

|∇N |2

N2
dx− d2(N∗ + a)P ∗

as

∫
Ω

|∇P |2

P 2
dx,

where

I(N, P ) = (N −N∗)
(
r − rN

K
− m

N + b
− cP

N + a

)
+
N∗ + a

a
(P − P ∗)

(
−q − δP +

cN

N + a

)
.

After some algebraic calculations, we have

I(N, P )

= −(N −N∗)2

(
r

K
− m

(N∗ + b)(N + b)
− cP ∗

(N∗ + a)(N + a)

)
−δ(N

∗ + a)

a
(P − P ∗)2

≤ −(N −N∗)2

(
r

K
− m

b(N∗ + b)
− cP ∗

a(N∗ + a)

)
− δ(N∗ + a)

a
(P − P ∗)2.

(22)
In view of (19), we have

I(N, P ) ≤ −C
(

(N −N∗)2 + (P − P ∗)2
)
.

It follows from (20) that

dV

dt
≤ −C

∫
Ω

(
(N −N∗)2 + (P − P ∗)2 + |∇N |2 + |∇P |2

)
dx

 ,
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and

d

dt

∫
Ω

(
(N −N∗)2 + (P − P ∗)2 + |∇N |2 + |∇P |2

)
dx


= 2

∫
Ω

(Nt(N −N∗) + Pt(P − P ∗) +Nt∆N + Pt∆P ) dx

≤ C.
Hence, by Lemma 3.5, we get

lim
t→∞

∫
Ω

(N−N∗)2dx = 0, lim
t→∞

∫
Ω

(P −P ∗)2dx = 0, lim
t→∞

∫
Ω

(|∇N |2 + |∇P |2)dx = 0.

(23)
It follows from the Poincaré inequality that

lim
t→∞

∫
Ω

(N − N̄)2dx = lim
t→∞

∫
Ω

(P − P̄ )2dx = 0, (24)

where N̄(t) =
1

|Ω|

∫
Ω

Ndx. Clearly,

|Ω||N̄(t)−N∗|2 =

∫
Ω

(N̄ −N∗)2dx ≤ 2

∫
Ω

(N − N̄)2dx+ 2

∫
Ω

(N −N∗)2dx.

From (23) and (24), we have

lim
t→∞

N̄(t) = N∗, lim
t→∞

P̄ (t) = P ∗. (25)

On the other hand, (20) implies that there exists a subsequence of {tn} and non–

negative functions Ñ , P̃ ∈ C2(Ω̄) such that

lim
n→∞

(‖N(·, tn)− Ñ‖C2(Ω̄, ‖P (·, tn)− P̃‖C2(Ω̄) = (0, 0).

In view of (25), we know that Ñ = N∗, P̃ = P ∗. Therefore,

lim
n→∞

(‖N(·, tn)−N∗‖C2(Ω̄, ‖P (·, tn)− P ∗‖C2(Ω̄) = (0, 0).

Thus, from this and the local asymptotic stability of E∗ we can conclude that the
homogeneous steady-state E∗ is globally asymptotically stable.

Remark 3. According to Theorem 3.6, the global stability of E∗ = (N∗, P ∗) of
model (1) with weak Allee effect means that, however quickly or slowly the two
species diffuse, they will be spatially homogeneously distributed as time converges
to infinity.

3.3. Hopf bifurcation. In this subsection, we derive the conditions of Hopf bifur-
cation for model (1), that is the condition under which the coexisting homogeneous
steady-state loses stability through Hopf-bifurcation.

For the emergency of the Hopf bifurcation at the positive constant steady state
E∗, the matrix Ai = −µiD+J must have an eigenvalue on the imaginary axis [47],
i.e. Tr(Ai) ≡ 0. The only possible critical values of m are m(k) such that

−µk(d1 + d2) +N∗
(

m(k)

(N∗ + b)2
− r

K

)
+

cN∗P ∗

(a+N∗)2
− sδP ∗ = 0,

for k ≥ 0. At m = m(k), Tr(Ai) = (d1 + d2)(µk − µi), and therefore if k ≥ 1,
then Tr(Ai) > 0 for all 0 ≤ i < k and the matrix Ai = −µiD + J has at least 2k
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eigenvalues with positive real parts. Therefore, the only value of s at which Hopf
bifurcation hypotheses may be satisfied is

s = s(0) :=
N∗

δP ∗

(
cP ∗

(N∗ + a)2
+

m

(N∗ + b)2
− r

K

)
. (26)

Near s(0), the complex conjugate pair κ(s)± iω(s) is given by

κ(s) =
1

2
Tr(J), ω2(s) = Det(J)− κ2(s).

since κ(s(0) = 0 and Det(J) > 0, we have ω2(s) 6= 0. In addition, it is easy to check

d

ds
κ(s)|s=s(0) = −δP ∗ 6= 0,

and thus we have the following theorem.

Theorem 3.7. (Hopf bifurcation) Under Assumption 2, then the constant steady-
state E∗ of model (1) loses stability through Hopf bifurcation at

s =
cN∗(g(N∗) + (a+N∗)g′(N∗))

δ(a+N∗)2g(N∗)
.

4. Non–constant time-independent positive steady states. For model (1) or
(4), the existence of a nonconstant time-independent positive solution, also called
stationary pattern, is an indication of the richness of the corresponding partial
differential equation dynamics. In recent years, stationary pattern induced by dif-
fusion has been studied extensively, and many important phenomena have been
observed [59].

In this section, we discuss the existence and non-existence of non–constant steady
states of model (1).

4.1. A priori estimates for positive solutions of model (4). From now on,
we will deduce a priori estimates of positive upper and lower bounds for positive
solutions of model (4). In order to obtain the desired bounds, we recall the following
maximum principle [45] and Harnack Inequality [43]. For simplicity, denote Θ :=
(r, K, m, a, b, c, q, δ, s).

Lemma 4.1. (Maximum principle [45]) Let Ω be a bounded Lipschitz domain in
Rn and g ∈ C(Ω̄× R).

(a) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

∆w(x) + g(x, w(x)) ≥ 0 in Ω,
∂w

∂ν
≤ 0 on ∂Ω.

If w(xM ) = max
Ω̄

w(x), then g(xM , w(xM )) ≥ 0.

(b) Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

∆w(x) + g(x, w(x)) ≤ 0 in Ω,
∂w

∂ν
≥ 0 on ∂Ω.

If w(xm) = min
Ω̄
w(x), then g(xm, w(xm)) ≤ 0.

Lemma 4.2. (Harnack Inequality [43]) Let w ∈ C2(Ω)∩C1(Ω̄) be a positive solution
to ∆w(x) + c(x)w(x) = 0, where c ∈ C(Ω̄), satisfying zero–flux boundary conditions
on Ω̄. Then there exists a positive constant C∗ = C∗(‖c‖∞, Ω), such that

max
Ω̄

w ≤ C∗min
Ω̄
w.
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Now we state and prove the relevant theorem for the bounds of the solutions for
the model (4) over its domain of definition Ω.

Theorem 4.3. (The bounds of the solutions) Assume that Assumption 1 holds. Let

d̃ be an arbitrary fixed positive number. There exists a positive constant C = C(Γ),

such that if d1, d2 ≥ d̃, any positive solution (N(x), P (x)) of model (4) satisfies

C ≤ N(x), P (x) ≤ max

{
K,

(c− q)K − aq
δ(a+K)

}
. (27)

Proof. In view of Assumption 1, by applying Lemma 3.1, it is easy to see that

N(x), P (x) ≤ max

{
K,

(c− q)K − aq
δ(a+K)

}
.

Let c1(x) =
1

d1

(
Ng(N)− cN

N + a
P

)
, c2(x) =

1

d2
sP

(
−q − δP +

cN

N + a

)
.

Then, in view of the second of inequality of (27), there exists a positive constant

C = C(Γ) such that ‖c1(x)‖∞, ‖c2(x)‖∞ ≤ C provided that d1, d2 > d̃.
Now, it suffices to verify the lower bounds of N(x) and P (x). We will verify the

conclusion by a contradiction argument.
On the contrary, suppose that the conclusion is not true, then, by Lemma 4.2,

there exist sequences {d1,i}∞i=1 and {d2,i}∞i=1 with d1,i, d2,i > d̃ and the positive
solution (Ni, Pi) of model (4) corresponding to (d1, d2) = (d1,i, d2,i), such that

max
Ω

Ni(x)→ 0 or max
Ω

Pi(x)→ 0 as i→∞, (28)

and (Ni, Pi) satisfies

−d1,i∆Ni = Ni

(
r − r

K
Ni −

m

Ni + b
− cPi
Ni + a

)
, x ∈ Ω,

−d2,i∆Pi = sPi

(
−q − δPi +

cNi
Ni + a

)
, x ∈ Ω,

∂Ni
∂ν

=
∂Pi
∂ν

= 0, x ∈ ∂Ω.

Integrating by parts, we obtain that, for i = 1, 2, ...,
∫

Ω

Ni

(
r − r

K
Ni −

m

Ni + b
− cPi
Ni + a

)
dx = 0,∫

Ω

sPi

(
−q − δPi +

cNi
Ni + a

)
dx = 0.

(29)

By the regularity theory for elliptic equations [29], we see that there exists a sub-

sequence of {(Ni, Pi)}∞i and two non–negative functions Ñ , P̃ ∈ C2(Ω), such that

(Ni, Pi)→ (Ñ , P̃ ) in [C2(Ω)]2 as i→∞. By (28), we have that Ñ ≡ 0 or P̃ ≡ 0.
Letting i→∞ in (29) we obtain that

∫
Ω

Ñ

(
r − r

K
Ñ − m

Ñ + b
− cP̃

Ñ + a

)
dx = 0,∫

Ω

sP̃

(
−q − δP̃ +

cÑ

Ñ + a

)
dx = 0.

(30)
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We consider the following two cases:

Case 1. Ñ ≡ 0. The first equation of (29) shows that there exists xi ∈ Ω̄ such that

r − r

K
Ni(xi)−

m

Ni(xi) + b
− cPi(xi)

Ni(xi) + a
= 0.

Assume xi → x0 ∈ Ω̄ as i→∞, it follows from m < br that

P̃ (x0) =
a

c

(
r − m

b

)
> 0, (31)

and the second equation of (30) becomes

∫
Ω

sP̃ (−q − δP̃ )dx = 0, which implies

P̃ ≡ 0. This contradicts the result (31).

Case 2. P̃ ≡ 0. The first equation of (30) becomes

∫
Ω

Ñ

(
r − r

K
Ñ − m

Ñ + b

)
dx = 0.

As
1

2
ε̃ ≤ N(x) ≤ K, it follows that Ñ =

r(K − b) +
√
r2(K − b)2 + 4rK(br −m)

2r
=

N1, and the second equation of (30) becomes

∫
Ω

sP̃

(
−q − δP̃ +

cN1

N1 + a

)
dx = 0.

Since
aq

c− q
> N1, we have

P̃ =
1

δ

(
(c− q)N1 − aq

)
,

which derives a contradiction. This completes the proof.

4.2. Non–existence of non–constant positive steady states. In Theorem 3.6,
the global asymptotic stability of the positive constant steady state implies the
non–existence of non–constant steady state of model (1) regardless of the diffusion
coefficients. This subsection is devoted to the consideration of the non–existence
for the non–constant positive solutions of model (4), and in the below results, the
diffusion coefficients do play a significant role.

Theorem 4.4. (Non–existence of non–constant steady state) Let µ1 be the smallest
positive eigenvalue of the operator −∆ on Ω with zero–flux boundary condition.

Under Assumption 1, let D2 be a fixed positive constant satisfying D2 >
s(c− q)
µ1

.

Then there exists a positive constant D1 = D1(Γ, D2) such that model (4) has no
positive non–constant steady-state provided that d1 ≥ D1, d2 ≥ D2.
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Proof. Let (N(x), P (x)) be any positive solution of model (4) and denote ḡ =

|Ω|−1
∫

Ω

gdx. Then, multiplying the first equation of model (4) by (N − N̄) inte-

grating over Ω, we find

d1

∫
Ω

|∇(N − N̄)|2dx =

∫
Ω

(N − N̄)N

(
r − rN

K
− m

N + b
− cP

N + a

)
dx

=

∫
Ω

(N − N̄)2

(
r − r

K
(N + N̄)− bm

(N̄ + b)(N + b)

− acP

(N̄ + a)(N + a)

)
dx− cN̄

N̄ + a

∫
Ω

(N − N̄)(P − P̄ )dx,

≤ r
∫

Ω

(N − N̄)2 + c

∫
Ω

|N − N̄ ||P − P̄ |dx.

(32)
In a similar manner, multiplying the second equation in model (4) by (P − P̄ ) and
from Theorem 4.3, we have

d2

∫
Ω

|∇(P − P̄ )|2dx

=

∫
Ω

s(P − P̄ )P

(
−q − δP +

cN

N + a

)
Pdx

=

∫
Ω

s(P − P̄ )2

(
cN̄

N̄ + a
− q − δ(P + P̄ )

)
dx

+

∫
Ω

acsP

(N̄ + a)(N + a)
(N̄ −N)(P − P̄ )dx

≤ s(c− q)
∫

Ω

(P − P̄ )2dx+

∫
Ω

acsP

(N̄ + a)(N + a)
|N̄ −N ||P − P̄ |dx

≤ s(c− q)
∫

Ω

(P − P̄ )2dx+ L̃

∫
Ω

|N̄ −N ||P − P̄ |dx,

(33)

where the positive constant L̃ dependent on Θ.
It follows from (32), (33) and the ε-Young Inequality that

d1

∫
Ω

|∇(N − N̄)|2dx+ d2

∫
Ω

|∇(P − P̄ )|2dx

≤
∫

Ω

(
r(N − N̄)2 + s(c− q)(P − P̄ )2

)
dx+ 2L

∫
Ω

|N̄ −N ||P − P̄ |dx

≤
∫

Ω

((
r +

L

ε

)
(N − N̄)2 + (s(c− q) + εL) (P − P̄ )2

)
dx

(34)

for L =
L̃+ c

2
and an arbitrary positive constant ε. It follows from the well–known

Poincaré inequality that

d1

∫
Ω

|∇(N − N̄)|2dx+ d2

∫
Ω

|∇(P − P̄ )|2dx

≤ 1

µ1

((
r +

L

ε

)∫
Ω

|∇(N − N̄)|2dx+ (s(c− q) + εL)

∫
Ω

|∇(P − P̄ )|2dx
)
.
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Since d2µ1 > s(c − q) from the assumption, we can find a sufficiently small ε such

that d2µ1 ≥ s(c− q) + εL. Finally, by taking D1 :=
1

µ1

(
r +

L

ε

)
, one can conclude

that N = N̄ and P = P̄ , which asserts our results.

4.3. Existence of non–constant positive steady states. In this subsection, we
shall discuss the existence of the positive non–constant solution of model (4). We
denote w∗ = E∗. Unless otherwise specified, in the following section, we always
require that Assumption 2 holds.

Let X be the space defined in (12) and let

X+ = {(N, P ) ∈ X| N, P > 0 on Ω̄}.

We rewrite model (4) in the form:{ −∆w = G(w), w ∈ X+,

∂nw = 0 on ∂Ω,
(35)

where

G(w) =


N

d1

(
r − r

K
N − m

N + b
− cP

N + a

)
sP

d2

(
−q − δP +

cN

N + a

)
 .

Define a compact operator F : X+ → X+ by

F(w) := (I−∆)−1{G(w) + w},

where (I−∆)−1 is the inverse operator of I−∆ subject to the zero–flux boundary
condition. Then w is a positive solution of model (35) if and only if w satisfies

(I−F)w = 0, in X+.

To apply the index theory, we investigate the eigenvalue of the problem

− (I−Fw(w∗))Ψ = λΨ, Ψ 6= 0, (36)

where Ψ = (Ψ1,Ψ2)T and Fw(w∗) = (I−∆)−1(I + A) with

A =


1

d1

(
N∗
(

m

(N∗ + b)2
− r

K

)
+

cN∗P ∗

(a+N∗)2

)
− cN∗

d1(a+N∗)

acsP ∗

d2(a+N∗)2
−sδP

∗

d2


:=

 d−1
1 a1 −d−1

1 a2

d−1
2 a3 −d−1

2 a4

 .

In fact, after calculation, (36) can be rewritten as
−(λ+ 1)∆Ψ + (λI−A)Ψ = 0, x ∈ Ω,

∂nΨ = 0, x ∈ ∂Ω,

Ψ 6= 0.

(37)

Observe that (37) has a non–trivial solution if and only if Det(λI+(µi+1)−1(µiI−
A)) = 0 for some λ ≥ 0 and i ≥ 0. That is to say, λ is an eigenvalue of (36), and
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so (37), if and only if −λ is an eigenvalue of the matrix (µi + 1)−1(µiI−A) for any
i ≥ 0. Therefore, If I−Fw(w∗) is invertible, if and only if, for any i ≥ 0 the matrix

Mi := µiI−A =

 µi − d−1
1 a1 d−1

1 a2

−d−1
2 a3 µi + d−1

2 a4


is invertible. A straightforward computation yields:

Det(Mi) = d−1
1 d−1

2

(
d1d2µ

2
i + (d1a4 − d2a1)µi + a2a3 − a1a4

)
. (38)

For the sake of convenience, we denote

H(d1, d2, µi) = d1d2µ
2
i + (d1a4 − d2a1)µi + a2a3 − a1a4.

Then H(d1, d2, µi) = d1d2Det(Mi).
If (d1a4− d2a1)2 > 4d1d2(a2a3− a1a4), then H(d1, d2, µi) = 0 has two real roots

µ± given by

µ+(d1, d2) =
1

2d1d2

(
d2a1 − d1a4 +

√
(d1a4 − d2a1)2 − 4d1d2(a2a3 − a1a4)

)
,

µ−(d1, d2) =
1

2d1d2

(
d2a1 − d1a4 −

√
(d1a4 − d2a1)2 − 4d1d2(a2a3 − a1a4)

)
.

Set
B := B(d1, d2) = {µ : µ ≥ 0, µ−(d1, d2) < µ < µ+(d1, d2)},

Sp = {µ0, µ1, µ2, · · ·},
where m(µi) is the multiplicity of µi.

To compute index(I − F ,w∗), we can assert the following conclusion by Pang
and Wang [56]:

Lemma 4.5. ([56]) Suppose H(d1, d2, µi) 6= 0 for all µi ∈ Sp. Then

index(I−F ,w∗) = (−1)σ,

where

σ =


∑

µi∈B∩Sp

m(ui), if B ∩ Sp 6= ∅,

0, if B ∩ Sp = ∅.

In particular, if H(d1, d2, µi) > 0 for all µ ≥ 0, then σ = 0.

From Lemma 4.5, if we want to calculate the index of index(I−F ,w∗), the key
step is to determine the range of µi for which H(d1, d2, µi) < 0. For the proof of
this, we need the following assumption.

Assumption 3.

(a) s <
d2cN

∗A(N∗)

d1δ(a+N∗)2g(N∗)
;

(b)

N∗A(N∗)

d1(a+N∗)
− sδ(a+N∗)g(N∗)

cd2

> 2

√
− sN∗g(N∗)

d1d2c(a+N∗)2

(
δ(a+N∗)2)A(N∗)− ac2

)
,

where A(N∗) = (a+N∗)g′(N∗) + g(N∗)
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Theorem 4.6. (Existence of non–constant st
eady state) Under the conditions of Theorem 4.3 and Assumption 3, if µ− ∈

(µi, µi+1) and µ+ ∈ (µj , µj+1) for some 0 ≤ i < j, and

j∑
k=i+1

m(uk) is odd, then

model (4) has at least one non–constant solution.

Proof. Since Assumption 3, equivalently, (d1a4 − d2a1)2 > 4d1d2(a2a3 − a1a4), it
follows that µ± exists. On the contrary, suppose that model (4) has no non–constant
positive solution. By Theorem 4.4, we can fixed d̄1 > d1 and d̄2 > d2 such that

(i) model (4) with diffusion coefficients d̄1 and d̄2 has no non–constant solutions;
(ii) H(d̄1, d̄2, µi) > 0 for all µ ≥ 0.
By virtue of Theorem 4.3, there exists a positive constant C = C(Γ) such that for

and D̃1 ≥ d1, D̃2 ≥ d2, any solution (N,P ) of model (4) with diffusion coefficients

D̃1 and D̃2 satisfies C−1 < N, P < C, x ∈ Ω̄.
Set

M =
{

(N, P ) ∈ C(Ω)× C(Ω) : C−1 < N, P < C in Ω)
}
,

and define
Φ : M× [0, 1]→ C(Ω)× C(Ω)

by
Φ(w, θ) = (I−∆)−1{G(w, θ) + w},

where

G(w, θ) =


(
θd1 + (1− θ)d̄1

)−1 ·N
(
r − r

K
N − m

N + b
− cP

N + a

)
(
θd2 + (1− θ)d̄2

)−1 · sP
(
−q − δP +

cN

N + a

)
 .

It is clear that finding the positive solution of model (35) becomes equivalent to
finding the fixed point of Φ(w, 1) in M. Further, by virtue of the definition of M,
we have that Φ(w, θ) = 0 has no fixed point in ∂M for all 0 ≤ θ ≤ 1.

Since Φ(w, t) is compact, the Leray–Schauder topological degree

deg(I− Φ(w, θ),M, 0)

is well defined. From the invariance of Leray–Schauder degree at the homotopy, we
deduce

deg(I− Φ(w, 1),M, 0) = deg(I− Φ(w, 0),M, 0). (39)

In view of µ− ∈ (µi, µi+1) and µ+ ∈ (µj , µj+1), we have B(d1, d2) ∩ Sp = {µi+1,
µi+2, ···, µj}. Clearly, I−Φ(w, 1) = I−F . Thus, if model (4) has no other solutions
except the constant one w∗, then Lemma 4.5 shows that

deg(I− Φ(w, 1),M, 0) = index(I−F , w∗) = (−1)
∑j
k=i+1m(uk) = −1. (40)

On the contrary, by the choice of d1 and d2, and (ii) above, we have that
B(d̄1, d̄2) ∩ Sp = ∅ and w∗ is the only fixed point of Φ(u, 0). It therefore follows
from Lemma 4.5 that

deg(I− Φ(w, 0),M, 0) = index(I−F , w∗) = (−1)0 = 1. (41)

From (39)–(41), we get a contradiction. Therefore, there exists a non–constant
solution of model (4). The proof is completed.

One direct application of Theorem 4.6 is presented as the following corollary.
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Corollary 1. Under the conditions of Theorem 4.3, if a1 > 0,
a1

d1
∈ (µj , µj+1) for

some j ≥ 1, and

j∑
i=1

m(µi) is odd, then there exists a positive constant d∗ such that

model (4) has at least one non–constant solution if d2 > d∗.

Proof. Since a1 > 0, it follows that if d2 is large enough then (d1a4 − d2a1)2 >
4d1d2(a2a3 − a1a2) and 0 < µ−(d1, d2) < µ+(d1, d2). Furthermore,

µ−(d1, d2)→ 0, µ+(d1, d2)→ a1

d1
, as d2 →∞.

Since
a1

d1
∈ (µj , µj+1) for some j ≥ 1, there exists d0 � 1 such that

µ+(d1, d2) ∈ (µj , µj+1), 0 < µ−(d1, d2) < µ1, ∀d2 ≥ d0.

Therefore, for d2 > 0 large,

j∑
i=1

m(µi) is odd which implies (i) and (ii) in Theo-

rem 4.6. This concludes the proof.

5. Turing instability and pattern formation. In the previous section, we prove
that there are non-constant positive steady states in model (1). In this section, we
will focus on that, if the parameters are properly chosen, the non-constant positive
steady states can give birth to Turing stationary patterns as a result of diffusion.
First of all, we will give the conditions of Turing instability for model (1).

5.1. Turing instability. In this subsection, we mainly focus on the conditions
of Turing instability of the solutions to model (1) with weak Allee effect. Math-
ematically speaking, a positive constant steady state E∗ is unstable due to Tur-
ing instability or diffusion–induced instability, which was emphasized by Turing in
his pioneering work in 1952 [70], means that E∗ is an asymptotically stable ho-
mogeneous steady state for the spatially homogeneous version of model (1) (i.e.
d1 = d2 = 0) but is unstable for model (1). The instability arises due to the small
heterogeneous perturbation around the homogeneous steady–state.

If the homogeneous steady-state of model (1) is unstable, then one of the eigen-
values of matrix Ai = −µiD+ J has positive real part, which depends on the signs
of trace and determinant of Ai:

Tr(Ai) = −µi(d1 + d2) + Tr(J),

Det(Ai) = d1d2µ
2
i −

(
d2

(
N∗g′(N∗) +

cN∗P ∗

(a+N∗)2

)
− d1sδP

∗
)
µi + Det(J).

According to the definition of the Turing instability, in the case without diffusion
(i.e., d1 = d2 = 0), E∗ is stable, then Tr(J) < 0 and Det(J) > 0 hold, thus
Tr(Ai) < 0 is always true. Hence if Ai has an eigenvalue with positive real part,
then it must be a real value one and the other eigenvalue must be a negative real
one. A necessary condition is

s <
d2cN

∗(g(N∗) + (a+N∗)g′(N∗))

d1δ(a+N∗)2g(N∗)
.
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Otherwise Det(Ai) > 0 for all µi ≥ 0 since Det(J) > 0. For the Turing instability,
we need Det(Ai) < 0 for some µi > 0. Notice that Det(Ai) achieves its minimum:

min
µi

Det(Ai) =

4d1d2Det(J)−
(
d2

(
N∗g′(N∗) +

cN∗P ∗

(a+N∗)2

)
− d1sδP

∗
)2

4d1d2
, (42)

at the critical value µ∗ > 0 when

µ∗ =
1

2d1d2

(
d2

(
N∗g′(N∗) +

cN∗P ∗

(a+N∗)2

)
− d1sδP

∗
)
.

If Assumption 3 (a) holds and min
µi

Det(Ai) < 0, then E∗ is an unstable equilibrium

with respect to model (1). Summarizing the above calculation, we conclude

Theorem 5.1. (Turing instability) Under Assumptions 2 and 3, the positive con-
stant steady state solution E∗ = (N∗, P ∗) of model (1) with weak Allee effect is
Turing unstable.

Remark 4. In the case δ = 0, i.e., without density dependent death rate for
the predators in model (1), in view of the case without diffusion (d1 = d2 = 0),
E∗ of model (1) is stable, which means that Tr(J) < 0 and Det(J) > 0, and we
can only obtain Tr(Ai) < 0, Det(Ai) > 0. As a consequence, there is no Turing
instability in model (1) with δ = 0 [21]. And in the case with the density dependent
death rate δ > 0, the term −d1sδP

∗ in Det(Ai) can make Det(Ai) < 0, which
results in Turing instability. And Theorem 5.1 shows that the density dependent
death rate for the predators may be one of the determining factors induced Turing
instability in model (1), i.e., Turing patterns emerge. Biologically speaking, the
density dependent death rate δ > 0 has depressing effect on the growth rate of
the predator, i.e., cause the reduction in predator growth rate. And a growing
population has a greater abundance of young individuals whereas older individuals
appear in greater numbers in an equilibrium population, and older individuals are
more likely to have lower intrinsic mortality [68].

5.2. Pattern formation. In this section, we mainly answer our proposed questions
2 in the introduction via numerical simulations. All our numerical simulations
employ the zero–flux boundary conditions and within a spatial domain of size 100×
100 (the lattice size). The numerical integration of model (1) is performed by using
a finite difference approximation for the spatial derivatives and an explicit Euler
method for the time integration [28] with a time step size of 1/100. The initial
condition is always a small amplitude random perturbation around the positive
constant steady state solution E∗ = (N∗, P ∗) of model (1). After the initial period
during which the perturbation spread, either the model goes into a time dependent
state, or to an essentially steady state solution (time independent).

In the numerical simulations, different types of dynamics are observed and it
is found that the distributions of predator and prey are always of the same type.
Consequently, we can restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey N , for instance. We have taken
some snapshots with red (blue) corresponding to the high (low) value of prey N .

Now, we show the Turing pattern for the different values of the parameters. Via
numerical simulation, one can see that the model dynamics exhibits spatiotemporal
complexity of pattern formation, including hot spots, stripes and cold spots Turing
patterns.
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In the numerical simulations, the following parameters are fixed as

r = 1, K = 10, m = 0.1, b = 0.9, c = 1, q = 0.35, δ = 0.0425, d1 = 0.015, d2 = 1.
(43)

First, we choose (a, s) = (1.5, 3). Note that

3 = s >
cN∗(g(N∗) + (a+N∗)g′(N∗))

δ(a+N∗)2g(N∗)
= 2.8990,

3 <
d2cN

∗(g(N∗) + (a+N∗)g′(N∗))

d1δ(a+N∗)2g(N∗)
= 193.264,

Det(J) = 0.5370, Tr(A)2 − 4Det(A) = 0.0423 > 0,

then we can conclude, from Theorem 5.1, that the positive constant steady state
solution E∗ = (N∗, P ∗) = (1.2056, 2.2512) of model (1) is Turing unstable.

In Fig. 2, we show the time process of spots pattern formation of the prey N
at t = 0, 100, 3000 for the parameters as (43) and (a, s) = (1.5, 3). In this case,
there exhibits a competition between stripes and spots. The pattern takes a long
time to settle down, starting with a homogeneous state E∗ = (1.2056, 2.2512) (c.f.,
Fig. 2(a) ), the random perturbations lead to the formation of stripes and spots
(c.f., Fig. 2(b) ), and the later random perturbations make these stripes decay, and
ending with the time–independent regular spots pattern (c.f., Fig. 2(c)), which
is isolated zones with low prey densities, and we call this pattern as hot spots
pattern. Ecologically, hot spots pattern shows that the prey population are driven
by predators to a very high level in those regions. The final result is the formation
of patches of high prey density surrounded by areas of low prey densities. That’s
to say, under the control of these parameters, the prey is predominant in the area.

When changing the value of (a, s) to (2, 2.2), and keep other parameters un-
change, we have

2.2 = s >
cN∗(g(N∗) + (a+N∗)g′(N∗))

δ(a+N∗)2g(N∗)
= 1.6918,

2.2 <
d2cN

∗(g(N∗) + (a+N∗)g′(N∗))

d1δ(a+N∗)2g(N∗)
= 112.785,

Det(J) = 0.3687, Tr(A)2 − 4Det(A) = 0.0222 > 0.

In this case, from Theorem 5.1, we can know that Turing instability emerges, and
we can obtain the stationary stripes pattern, c.f., Fig. 3.

While choosing (a, s) = (2.5, 1.5), we have

1.5 = s >
cN∗(g(N∗) + (a+N∗)g′(N∗))

δ(a+N∗)2g(N∗)
= 0.8412,

1.5 <
d2cN

∗(g(N∗) + (a+N∗)g′(N∗))

d1δ(a+N∗)2g(N∗)
= 56.08,

Det(J) = 0.2393, Tr(A)2 − 4Det(A) = 0.0014 > 0.

The conditions of Theorem 5.1 hold and E∗ = (1.8233, 2.9858) is Turing unstable.
Via numerical simulation, we can obtain the stationary cold spots pattern, c.f.,
Fig. 4.

Comparing Fig. 4 with Fig. 2(c), we find that they share similarities. Fig. 2(c)
consists of red (maximum density of N) spots on a blue (minimum density of N)
background, i.e., the preys are isolated zones with high population density. While
in Fig. 4 consists of blue (minimum density of N) spots on a red (maximum density
of N) background, i.e., the preys are isolated zones with low population density.
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(a)

(b)

(c)

Figure 2. Stationary hot spots pattern in model (1). The param-
eter values are taken as (43) and (a, s) = (1.5, 3). The zero-flux
boundary condition is used and initial condition is small perturba-
tion around the homogeneous steady-state E∗ = (1.2056, 2.2512).
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Figure 3. Stationary stripes pattern in model (1) with parameter
values as (43) and (a, s) = (2, 2.2). The zero-flux boundary condi-
tion is used and initial condition is small perturbation around the
homogeneous steady-state E∗ = (1.8233, 2.9858).

Figure 4. Stationary cold spots pattern in model (1) with param-
eter values as (43) and (a, s) = (2.5, 1.5). The zero-flux boundary
condition is used and initial condition is small perturbation around
the homogeneous steady-state E∗ = (2.5354, 3.6122).

6. Conclusions and remarks. Dynamical complexity of spatiotemporal model
of a prey-predator model with weak Allee effects in the prey growth and density
dependent death rate of predator is thoroughly investigated in this paper. Here
we have obtained the lower and upper bounds of time-dependent solutions of the
coupled nonlinear partial differential equations with Neumann boundary condition.
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Derivation of the bounds along with certain parametric restrictions lead to the
persistence condition of both species at all future time (c.f., Theorem 3.3). We
have derived the local and global stability conditions for all possible homogeneous
steady-states involved with the model (c.f., Theorems 3.4 and 3.6). Stability of the
homogeneous steady-states are dependent upon the parametric restrictions. The
conditions obtained for the local and global stability of constant coexistence steady-
state are implicit conditions as the components of the steady-state can not be found
explicitly. Coexistence steady-state loses stability through Hopf bifurcation (c.f.,
Theorem 3.7). Complicated analytical conditions for stability of extinction steady-
state and coexistence steady-state prevent us to comment about the possibility of
having bistable scenario.

Apart from the constant steady-state the model under consideration also admits
non-constant steady-state. Existence of non-constant steady-state depends upon
certain parametric restrictions involving intrinsic rate constants and rate of dif-
fusivity of prey and predator species (c.f., Theorem 4.6). The conditions we have
derived here are unable to determine the boundaries in the parametric domain where
we find non-uniform distribution of two species over their habitat as the relevant
conditions are highly implicit. The implicit conditions prevent us to understand the
most sensitive parameter towards the generation of non-constant steady-states.

Biologically, we partially provide answers to the two questions proposed in the
introduction: What is the effect of density dependent death rate for the predator on
the spatiotemporal dynamics of our model? How many stationary Turing patterns
may there be in our model? We summarize our main findings as follows:

1. Density dependent death rate can induce Turing instability: When
δ = 0, model (1) without density dependent death rate for the predator, there
is no Turing instability. From Theorem 5.1, one can know that the positive
constant steady state E∗ = (N∗, P ∗) of model (1) with weak Allee effect is
Turing unstable. That’s to say, density dependent death rate for the predator
is the determining factors induced Turing instability in the model. In this
case, despite that the solutions are stable, the diffusion can de-stabilize the
symmetric solutions so that the system with diffusion added can have the
symmetry-breaking capabilities, i.e., form the stationary Turing pattern.

2. The model dynamics exhibits rich and complex pattern formation:
Via numerical simulations in Figures 2, 3 and 4, we find that the model dy-
namics exhibits formation growth to hot spots (i.e, Fig. 2), stripes (i.e, Fig. 3)
and cold spots (i.e, Fig. 4) pattern replication. This shows that the pattern
formation of the model (1) is not simple, but rich and complex.
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