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Abstract. In this paper, we propose a mathematical model for HIV-1 infec-

tion with intracellular delay. The model examines a viral-therapy for control-

ling infections through recombining HIV-1 virus with a genetically modified
virus. For this model, the basic reproduction number R0 are identified and its

threshold properties are discussed. When R0 < 1, the infection-free equilib-

rium E0 is globally asymptotically stable. When R0 > 1, E0 becomes unstable
and there occurs the single-infection equilibrium Es, and E0 and Es exchange

their stability at the transcritical point R0 = 1. If 1 < R0 < R1, where

R1 is a positive constant explicitly depending on the model parameters, Es

is globally asymptotically stable, while when R0 > R1, Es loses its stability

to the double-infection equilibrium Ed. There exist a constant R2 such that
Ed is asymptotically stable if R1 < R0 < R2, and Es and Ed exchange their

stability at the transcritical point R0 = R1. We use one numerical example to

determine the largest range of R0 for the local stability of Ed and existence of
Hopf bifurcation. Some simulations are performed to support the theoretical

results. These results show that the delay plays an important role in determin-

ing the dynamic behaviour of the system. In the normal range of values, the
delay may change the dynamic behaviour quantitatively, such as greatly reduc-

ing the amplitudes of oscillations, or even qualitatively changes the dynamical

behaviour such as revoking oscillating solutions to equilibrium solutions. This
suggests that the delay is a very important fact which should not be missed in

HIV-1 modelling.

1. Introduction. Human immunodeficiency virus (HIV) is a serious mortal lentiv-
irus, which can cause acquired immunodeficiency syndrome (AIDS). Reports have
known that many people are killed by AIDS every year, and yet, until today, there
is no effective way to cure the AIDS. Thus, many scientists and researchers have
been focusing on the study of controlling the infections. One of the approaches
developed recently, offered by genetic engineering, is to use recombinant virus ca-
pable of controlling infections of HIV [15, 12]. Recently, Revilla and Garcia-Ramos
established a 5-dimensional ordinary differential system to investigate the control of
the infections by introducing a recombinant virus to fight the virus [13]. Later, this
model was studied by Jiang et al. [6] in detail to show various bifurcation patters
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and rich dynamics, as well as a control study given in [17] by introducing a constant
injection rate of the recombinant virus to this model.

A standard and classic in-host model for HIV infection can be described by the
following differential equations:

ẋ = λ− dx− βxv,
ẏ = βxv − ay,
v̇ = ky − pv,

(1)

where x(t), y(t), v(t) are the density of virus-free host cells, infected cells, and a
pathogen virus, respectively, at time t. The production rate and death rate for the
healthy cells are respectively λ and d. β is the constant rate at which a T-cell is
contacted by the virus. It is also assumed that once cells are infected, they may die
at a rate a due to the action of either the virus or the immune system, and each
produces the pathogens at a rate k during their life which on average has length
1/a.

In [13], a second virus is added into model (1) which may cause the infected cells
to have a second infection, called double-infection, leading to a modified model as

ẋ = λ− dx− βxv,
ẏ = βxv − ay − αwy,
ż = αwy − bz,
v̇ = ky − pv,
ẇ = cz − qw,

(2)

where w(t) and z(t) are the recombinant (genetically modified) virus and double-
infected cells. After the second virus is enrolled, once the cells which have been
infected by the pathogens are infected again by the recombinant, they can be turned
into double-infected cells at a rate αωy, where the recombinants are removed at a
rate qw. The double infected cells die at a rate bz, and release recombinants at rate
cz. Having established the model (2), the authors of [13] analyzed the structure of
equilibrium solutions and presented some simulations. Later, in [6], the authors fully
analyzed the stability of all three equilibrium solutions and bifurcations between
these equilibria, as well as proved the existence of Hopf bifurcation. Further, in [17],
the fifth equation of model (2) is modified as ẇ = η+ cz − qw, where η is a control
parameter to measure the injection rate of the recombinant, and then a complete
dynamical analysis is given in this article, showing that increasing η is beneficial
for controlling/eliminating the HIV virus [17].

In this paper, to further improve the model (2), we introduce a time lag into the
model (2), since in real situation, time is needed for the virus to contact a target cell
and then the contacted cells to become actively affected. This can be described by
the eclipse phase of the virus life cycle. Moreover, we assume that the probability
density that a cell still remains infected for τ time units after being contacted by
the virus obeys an exponentially decay function. Therefore, following the line of
[18, 19], model (2) can be modified to

ẋ(t) = λ− dx(t)− βx(t)v(t),

ẏ(t) = βe−aτx(t− τ)v(t− τ)− ay(t)− αw(t)y(t),

ż(t) = αw(t)y(t)− bz(t),
v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t),

(3)
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where τ denotes the average time for a viral particle to go through the eclipse
phase. Because the dimension of the system is higher than two, model (3) may
exhibit some interesting dynamic behaviors (Hopf bifurcation, limit cycles and even
chaos), which would make the analysis of the system more complicated. Thus, the
main goal of this paper focuses on dynamical behaviour of the system with delay,
in particular, on equilibrium solutions and their bifurcations. More importantly, we
want to find the impact of the delay on the dynamical properties.

The rest of this paper is organized as follows. In next section, for system (3) we
will discuss the well-posedness of the solutions, equilibria and their stability. Also,
in order to properly define biologically meaningful equilibria, the basic reproduction
number R0 will be defined. In Sections 3, 4 and 5, we analyze the stability of the
three equilibria: disease-free equilibrium E0 , single-infection equilibrium Es, and
double-infection equilibrium Ed. It will be shown that E0 is globally asymptotically
stable for 0 < R0 < 1, Es is globally asymptotically stable for 1 < R0 < R1,
where R1 > 1 is a constant defined in terms of the system parameters, and Ed
is asymptotically stable for R1 < R0 < Rh, where Rh denotes a Hopf critical
point from which a family of limit cycles bifurcate. A numerical example is present
in Section 6 to demonstrate the theoretical predictions. Finally, conclusion and
discussion are drawn in Section 7.

2. Well-posedness, boundedness of solutions, equilibria and basic repro-
duction number. Because of biological reasons, all variables in model (3) must
be non-negative. Therefore, for any non-negative initial values, the corresponding
solution must remain non-negative. We have the following result.

Theorem 2.1. All solutions of system (3) remain non-negative, provided the given
conditions are non-negative, and bounded.

Proof. For convenience, let X = C([−τ, 0];R5) be the Banach space of continuous
mapping from [−τ, 0] to R5 equipped with the sup-norm. Let x(t) = (x(t), y(t), z(t),
v(t), w(t))T and xt(θ) = x(t+θ) for θ ∈ [−τ, 0]. By the fundamental theory of FDEs
(see, e.g. [4]), for any initial condition φ ∈ X with φ ≥ 0, we know that there exists
a unique solution x(t, φ) satisfying x(θ, φ) = φ(θ), θ ∈ [−τ, 0].

System (3) can be written as ẋ(t) = f(xt), where

f(xt) =


λ− dxt(0)− βxt(0)vt(0)

βe−aτxt(−τ)vt(−τ)− ayt(0)− αwt(0)yt(0)
αwt(0)yt(0)− bzt(0)
kyt(0)− pvt(0)
czt(0)− qwt(0)

 .

It is easy to see that if any φ ∈ X satisfies φ ≥ 0, φi(0) = 0 for some i, then
fi(φ) ≥ 0. Therefore, according to Theorem 2.1 (on page 81) in [14] we know that
x(t, φ) ≥ 0 for all t ≥ 0 in its maximal interval of existence if φ ≥ 0.

Next, to show the boundedness of the solution (x(t), y(t), z(t), v(t), w(t)), we
define

B(t) = cke−aτx(t) + cky(t+ τ) + ckz(t+ τ) +
ac

2
v(t+ τ) +

bk

2
w(t+ τ).

Then, the derivative of B(t) with respective to time t along the solution of trajectory
of system (3) is given by
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dB(t)

dt

∣∣∣
(3)

= cke−aτ
[
λ− dx(t)− βv(t)x(t)

]
+ ck

[
βe−aτv(t)x(t)− ay(t+ τ)− αw(t+ τ)y(t+ τ)

]
+ ck

[
αw(t+ τ)y(t+ τ)− bz(t+ τ)

]
+
ac

2

[
ky(t+ τ)− pv(t+ τ)

]
+
bk

2

[
cz(t+ τ)− qw(t+ τ)

]
= cke−aτλ− dcke−aτx(t)− a

2
cky(t+ τ)− b

2
ckz(t+ τ)

− pac
2
v(t+ τ)− q bk

2
w(t+ τ)

≤ cke−aτλ−mB(t)


< 0 for B(t) >

ck

m
e−aτ ,

> 0 for B(t) <
ck

m
e−aτ ,

where m = min{d, a2 ,
b
2 , p, q} This implies that B(t) is bounded, so are x(t), y(t),

z(t), v(t) and w(t).

Model (3) has three possible biologically meaningful equilibria: disease-free equi-
librium E0, single-infection equilibrium Es and double-infection equilibrium Ed,
given below:

E0 =
(λ
d
, 0, 0, 0, 0

)
,

Es =
( ap

βke−aτ
,
kβλe−aτ − adp

βak
, 0,

kβλe−aτ − adp
βap

, 0
)
,

Ed =
( λαcp

dαcp+ βbkq
,
bq

αc
,
q(αβλcke−aτ − βabkq − αacdp)

αc(βbkq + αcdp)
,

bkq

αcp
,
αβλcke−aτ − βabkq − αacdp

α(βbkq + αcdp)

)
.

We define

R0 ,
λ

d
· βe

−aτ

a
· k
p

=
kβλ

adp
e−aτ ,

where λ
d is the average number of healthy cells available for infection, βe−aτ

a is the

average number of host cells that each HIV virus infects, and k
p is the average

number of HIV viruses that an infected cell produces. Therefore, R0 is the basic
reproduction number.

It is seen that the disease-free equilibrium is independent of the delay. If R0 < 1,
E0 is the only biologically meaningful equilibrium. If R0 > 1, there is another
biologically meaningful equilibrium Es (single-infection equilibrium). The double-
infection equilibrium Ed exists (biologically meaningful) if and only if Rd > 1,
where

Rd =
αβλcke−aτ − αacdp

βabkq
=
αcdp

βbkq
(R0 − 1).

Hence,

Rd > 1⇔ R0 > R1, where R1 = 1 +
βbkq

αcdp
.

Note that R1 is independent of the delay.
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3. Stability of the disease-free equilibrium E0. First, for the local stability
of E0, we have the following theorem.

Theorem 3.1. When R0 < 1, the disease-free equilibrium E0 is locally asymptoti-
cally stable; when R0 > 1, E0 becomes unstable and the single-infection equilibrium
Es occurs.

Proof. The linearized system of (3) at the disease-free equilibrium E0 is

ẋ(t) = −dx(t)− βλ
d v(t),

ẏ(t) = βe−aτ λd v(t− τ)− ay(t),

ż(t) = −bz(t),
v̇(t) = ky(t)− pv(t),
ẇ(t) = cz(t)− qw(t),

for which the characteristic equation is given by

(ξ + d)(ξ + b)(ξ + q)
[
ξ2 + (a+ p)ξ + ap− βλk

d
e−(a+ξ)τ

]
= 0.

Obviously, for the local stability of E0, it suffices to only consider the following
equation

D0(ξ) = ξ2 + (a+ p)ξ + ap− βλk

d
e−(a+ξ)τ = 0. (4)

If R0 > 1, it is easy to show for real ξ that

D0(0) = ap(1−R0) < 0, lim
ξ→+∞

D0(ξ) = +∞.

Hence, D0(ξ) = 0 has at least one positive real root. Therefore, if R0 > 1, the
infection-free equilibrium E0 is unstable.

Next, consider R0 < 1. When τ = 0, equation (4) becomes

ξ2 + (a+ p)ξ + ap− βλk

d
= 0. (5)

In order for the two roots of (5) to have negative real part, it requires ap−βλk/d > 0,
which is equivalent to R0|τ=0 < 1. Thus, all the roots of (5) have negative real part
when R0 < 1. From [2], we know that all the roots of (4) continuously depend on
τ . And the assumption

lim sup

{∣∣∣∣Q(ξ, τ)

P (ξ, τ)

∣∣∣∣ : |ξ| → ∞, Re(ξ) ≥ 0

}
< 1, for any τ, (6)

could ensure that there are no roots existing in the infinity for equations in the form
P (ξ, τ) + Q(ξ, τ)e−ξτ = 0 (see [1]). Obviously, (6) holds here for (4), and hence
Re(ξ) < +∞ for any root ξ of (4) when R0 < 1. As a result, for R0 < 1, the only
possibility for the roots of equation (4) to enter into the right half plane is to cross
the imaginary axis when τ increases. Thus, we define ξ = i$, ($ > 0), to be a
purely imaginary root of (4). Then we get

−$2 + i(a+ p)$ + ap− kβλ

d
e−(a+i$)τ = 0. (7)

Taking moduli of (7) gives

H0($2) = $4 + (a2 + p2)$2 + a2p2 −
(kβλ

d
e−aτ

)2
= 0.

Clearly, H0($2) has no positive real roots if R0 < 1. Therefore, all the roots of (4)
have negative real part if R0 < 1.
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Further, for the global stability of E0, we have the following result.

Theorem 3.2. If R0 < 1, the disease-free equilibrium E0 is globally asymptotically
stable, implying that none of the two virus can invade regardless of the initial load.

Proof. We construct the following Lyapunov function:

V0 =
e−aτ

2

[
x(t)− λ

d

]2
+
λ

d
y(t) +

λ

d
z(t) +

aλ

dk
v(t) +

bλ

cd
w(t)

+
λβ

d
e−aτ

∫ t

t−τ
x(η)v(η)dη.

Using non-negativity of the solution andR0 < 1, the derivative of V0 with respective
to time t along the solution of system (3) can be expressed as

dV0
dt

∣∣∣
(3)

= e−aτ
[
x(t)− λ

d

][
λ− dx(t)− βv(t)x(t)

]
+
λ

d

[
βe−aτx(t− τ)v(t− τ)− ay(t)− bz(t)

]
+
aλ

dk

[
ky(t)− pv(t)

]
+
bλ

cd

[
cz(t)− qw(t)

]
+
λβ

d
e−aτ

[
x(t)v(t)− x(t− τ)v(t− τ)

]
=− e−aτ

[
x(t)− λ

d

]2[
d+ βv(t)

]
−
[aλ
dk
p− λ2

d2
βe−aτ

]
v(t)− bqλ

cd
w(t)

=− e−aτ
[
x(t)− λ

d

]2[
d+ βv(t)

]
− apλ

dk
(1−R0)v(t)− bqλ

cd
w(t)

≤ 0,

and the equality holds for x = λ
d , v = w = 0. Thus, by LaSalle’s invariance principle

[8], we conclude that E0 is globally asymptotically stable.

4. Stability of the single-infection equilibrium Es. From the analysis given
in the previous section, we know that at the critical point R0 = 1, the disease-free
equilibrium E0 becomes unstable and bifurcates into the single-infection equilibrium
Es, which exists for R0 > 1. Thus, in order to study the stability of Es, we assume
R0 > 1 in this section. Similarly, for the local stability of Es, we have the following
result.

Theorem 4.1. If 1 < R0 < R1, the single-infection equilibrium Es is asymptoti-
cally stable; when R0 > R1, Es becomes unstable.

Proof. The linearized system of model (3) at Es = (xs, ys, 0, vs, 0) is

ẋ(t) = −(d+ βvs)x(t)− βxsv(t),

ẏ(t) = βe−aτ
[
vsx(t− τ) + xsv(t− τ)

]
− ay(t)− αysw(t),

ż(t) = αysw(t)− bz(t),
v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t),
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with the corresponding characteristic equation given by D1(ξ)D2(ξ) = 0, where

D1(ξ) = ξ2 + (b+ q)ξ + bq − cα(kβλe−aτ − adp)
βak

,

D2(ξ) = ξ3 +
(
a+ p+

kβλ

ap
e−aτ

)
ξ2 +

[kβλ
ap

e−aτ (a+ p) + ap
]
ξ

+ kβλe−aτ − ap(ξ + d)e−ξτ .

First, note that D1(ξ) can be rewritten as

D1(ξ) = ξ2 + (b+ q)ξ + bq(1−Rd),

which indicates that D1(ξ) = 0 has two roots with negative real part if and only
if Rd < 1 (i.e. R0 < R1), or one positive root and one negative if Rd > 1 (i.e.
R0 > R1). Therefore, if R0 > R1, the single-infection equilibrium Es is unstable.

For D2(ξ) = 0, we rewrite it as

ξ3 + a2(τ)ξ2 + a1(τ)ξ + a0(τ)− (c1ξ + c2)e−ξτ = 0, (8)

where

a2(τ) = a+ p+
kβλ

ap
e−aτ , a1(τ) =

kβλ

ap
e−aτ (a+ p) + ap,

a0(τ) = kβλe−aτ , c1 = ap, c2 = apd.

It is easy to see that ξ = 0 is not a root of (8) if R0 > 1, since

a0(τ)− c2 = kβλe−aτ − apd = apd(R0 − 1) > 0.

When τ = 0, (8) becomes

ξ3 + a2(0)ξ2 + (a1(0)− c1)ξ + a0(0)− c2 = 0. (9)

Applying the Routh-Hurwitz criterion (see [3]), we know that all the roots of (9)
have negative real part, because

a2(0) = a+ p+
kβλ

ap
> 0,

a1(0)− c1 =
kβλ

ap
(a+ p) > 0,

a0(0)− c2 = kβλ− apd = apd(R0|τ=0 − 1) > 0,

and

a2(0)(a1(0)−c1)− (a0(0)−c2) =
(
a+ p+

kβλ

ap

)kβλ
ap

(a+ p)− (kβλ− apd)

=
k2β2λ2

a2p2
(a+ p) +

kβλ

ap
(a2 + ap+ p2) + apd > 0.

Therefore, any root of (8) has negative real part when τ = 0. As discussed in
Section 3, we know that all the roots of equation (8) depend continuously on τ .
Also, (6) holds for (8), and hence Re(ξ) < +∞ if D2(ξ) = 0. Then, the roots of
equation (8) can only enter into the right half plane by crossing the imaginary axis
when τ increases. Thus, we define ξ = i$ ($ > 0) to be a purely imaginary root
of (8), and then obtain

−i$3 − a2(τ)$2 + ia1(τ)$ + a0(τ)− (ic1$ + c2)e−i$τ = 0,
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Taking moduli of the above equation results in

Hs($
2) = $6 +

[
a22(τ)− 2a1(τ)

]
$4

+
[
a21(τ)− 2a0(τ)a2(τ)− c21

]
$2 + a20(τ)− c22 = 0.

(10)

Since
a22(τ)− 2a1(τ) = a2 + p2 + d2R2

0 > 0,

a21(τ)− 2a0(τ)a2(τ)− c21 = d2(a2 + p2)R2
0 > 0,

a0(τ)2 − c22 = a2p2d2(R2
0 − 1) > 0,

all the coefficients of Hs($
2) are positive. Then the function Hs($

2) is monoton-
ically increasing for 0 ≤ $2 < ∞ with Hs(0) > 0. This implies that equation (10)
has no positive roots if R0 > 1. Hence, all the roots of (8) have negative real part
for τ > 0 if R0 > 1.

Also, we we can show the global stability of Es, as given in the following theorem.

Theorem 4.2. If 1 < R0 < R1, the single-infection equilibrium Es is globally
asymptotically stable, implying that the recombinant virus can not survive but the
pathogen virus can.

Proof. We construct the Lyapunov function Vs = V1 + βxsvse
−aτV2 with

V1 = e−aτ (x− xs lnx) + (y − ys ln y) + z +
a

k
(v − vs ln v) +

b

c
w,

V2 =

∫ t

t−τ

(x(η)v(η)

xsvs
− ln

x(η)v(η)

xsvs

)
dη.

Substituting Es into (3) yields three identities Gi ≡ 0, i = 1, 2, 3, where G1 =
λ− dxs − βxsvs, G2 = βe−aτxsvs − ays, G3 = kys − pvs. Then we have

V1,xẋ = V1,xẋ− e−aτ
(

1− xs
x

)
G1 −

v

vs
G2 −

av

kvs
G3

= dxse
−aτ
(

2− xs
x
− x

xs

)
+ βxsvse

−aτ
(

1− xs
x
− xv

xsvs

)
+
ap

k
v,

V1,y ẏ = V1,y ẏ +G2

= βxsvse
−aτ
[
1 +

(y − ys)x(t− τ)v(t− τ)

yxsvs

]
− ay + α(ys − y)w,

V1,v v̇ = V1,v v̇ +
(

1− yvs
ysv

)
G2 +

a

k
G3 = βxsvse

−aτ
(

1− yvs
ysv

)
+ ay − ap

k
v,

V1,z ż = αyw − bz, V1,wẇ = bz − bq

c
w,

which yields

V1,xẋ+ V1,y ẏ + V1,z ż + V1,v v̇ + V1,wẇ

= βxsvse
−aτ
[
3− xs

x
− yvs
ysv

+
(y − ys)x(t− τ)v(t− τ)

yxsvs
− xv

xsvs

]
+ dxse

−aτ
(

2− xs
x
− x

xs

)
+
αdp

βk
(R0 −R1)w,

(11)

where ys = dp
βk (R0 − 1) has been used. And for V2, we have

dV2
dt

=
xv

xsvs
− x(t− τ)v(t− τ)

xsvs
+ ln

x(t− τ)v(t− τ)

xv
. (12)
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Combining (11) and (12) yields

dVs
dt

∣∣∣
(3)

= V1,xẋ+ V1,y ẏ + V1,z ż + V1,v v̇ + V1,wẇ + βxsvse
−aτ dV2

dt

= dxse
−aτ
(

2− xs
x
− x

xs

)
+
αdp

βk
(R0 −R1)w + βxsvse

−aτW,

where

W = 3− xs
x
− yvs
ysv
− ysx(t− τ)v(t− τ)

yxsvs
+ ln

x(t− τ)v(t− τ)

xv
≤ 0,

because the following inequality

n−
n∑
i=1

bi
ai

+ ln

n∏
i=1

bi
ai
≤ 0,

holds for any positive ai and bi (see [7]). Therefore, dVs
dt |(3) ≤ 0 when R0 < R1,

and the equality holds when x = xs, y = ys, v = vs, w = 0. Then, by LaSalle’s
invariance principle [8], we conclude that Es is globally asymptotically stable.

5. Stability of the double-infection equilibrium Ed. At the critical point
R0 = R1, the single-infection equilibrium Es becomes unstable and the double-
infection equilibrium Ed comes into existence for R0 > R1. To discuss the stability
of Ed, we assume R0 > R1 in this section. We have the following result for the
stability of Ed.

Theorem 5.1. For model (3), there exists an R2 > R1 such that the double-
infection equilibrium Ed is asymptotically stable for R1 < R0 < R2.

Proof. The linearized system of (3) at Ed = (xd, yd, zd, vd, wd) is

ẋ(t) = −(d+ βvd)x(t)− βxdv(t),

ẏ(t) = βe−aτ
[
vdx(t− τ) + xdv(t− τ)

]
− (a+ αwd)y(t)− αydw(t),

ż(t) = αwdy(t)− bz(t) + αydw(t),

v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t).

(13)

By straightforward but tedious algebraic manipulations, we obtain the characteristic
equation of (13), given by

D(ξ) = (ξ + p)(ξ + dR1)
[
ξ(ξ + b+ q)

(
ξ + a

R0

R1

)
+ abq

(R0

R1
− 1
)]

− apR0

R1
ξ(ξ + d)(ξ + b+ q)e−ξτ

= ξ5 +

4∑
i=0

Aiξ
i −

3∑
i=1

Biξ
ie−ξτ = 0,

(14)

where

A4 = dR1 + a
R0

R1
+ b+ p+ q,

A3 = (b+ p+ q)
(
dR1 + a

R0

R1

)
+ p(b+ q) + adR0,
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A2 = ad(b+ p+ q)R0 + p(b+ q)
(
dR1 + a

R0

R1

)
+ abq

(R0

R1
− 1
)
,

A1 = adp(b+ q)R0 + abq(p+ dR1)
(R0

R1
− 1
)
,

A0 = abdpq(R0 −R1),

B3 = ap
R0

R1
, B2 = ap(b+ d+ q)

R0

R1
, B1 = apd(b+ q)

R0

R1
,

showing that all Ai (i = 1, 2, 3, 4) and Bj (j = 1, 2, 3) are positive for R0 > R1.
When τ = 0, it has been shown in [6] that there exists a constant R∗2 > R1 such

that Ed is locally asymptotically stable when R0 ∈ (R1, R
∗
2), implying that all the

roots of (14)|τ=0 have negative real part.
Obviously, D(ξ) satisfies (6), which implies that D(ξ) = 0 has no roots in the

infinity Re(ξ) = +∞. Following the procedure as shown in Sections 3 and 4, we
let R($) and S($) respectively be the real and imaginary part of D(i$) ($ > 0),
given by

R($) = A4$
4 −A2$

2 +A0 +B2$
2 cos($τ) + (B3$

2 −B1)$ sin($τ),

S($) = $5 −A3$
3 +A1$ −B2$

2 sin($τ) + (B3$
2 −B1)$ cos($τ).

Solving the equations R($) = 0 and S($) = 0 for sin($τ) and cos($τ), and then
substituting the results into the identity, sin2($τ) + cos2($τ) = 1, yields

H($2)

(B3$2 −B1)2$2 +B2
2$

4
= 0 ⇐⇒ H($2) = 0,

where H($2) = $10 + a1$
8 + a2$

6 + a3$
4 + a4$

2 + a5, with

a1 = A2
4 − 2A3,

a2 = 2A1 − 2A2A4 +A2
3 −B2

3 ,

a3 = 2A0A4 − 2A1A3 +A2
2 + 2B1B3 −B2

2 ,

a4 = A2
1 − 2A0A2 −B2

1 ,

a5 = A2
0.

(15)

In what follows, we shall prove that there exists an R2 > R1 such that all the
roots of H(x) = 0 have negative real part when R0 ∈ (R1, R2), that is, there are no
positive real roots for H($2) = 0. Therefore, for R0 ∈ (R1, R2), the roots of (14)
stay in the left half complex plane and Ed is locally asymptotically stable.

The necessary and sufficient conditions for Re(x) < 0 when H(x) = 0 are given
by

∆1 = a1 > 0,

∆2 = a1a2 − a3 > 0,

∆3 = a3∆2 − a1(a1a4 − a5) > 0,

∆4 = a4∆3 − a5
[
a2∆2 − (a1a4 − a5)

]
> 0,

∆5 = a5∆4 > 0.

A straightforward calculation shows that

∆1 = R2
1d

2 + a2
R2

0

R2
1

+ p2 + (b+ q)2 > 0,

for any positive parameter values. Obviously, ∆5 = A2
0∆4 > 0 when ∆4 > 0.
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For ∆2, ∆3 and ∆4, it is not easy to determine their signs for general R0. Hence,
we take a continuity argument below. At R0 = R1,

∆2|R0=R1 = d4(R2
1 − 1)2F1 + d2(F 2

1 + 2d2F1 − a2p2)(R2
1 − 1)

+
[
(b+ q)2 + d2

]
(a2 + d2 + p2)F1 > 0,

∆3|R0=R1 = d2
[
d2(a2 + p2)R4

1 + (a4 + a2p2 + p4)R2
1 + a2p2

]
F2 > 0,

where

F1 = a2 + p2 + (b+ q)2 > 0,

F2 = d2(F1 − a2)(F1 − p2)(R2
1 − 1) + (b+ q)2

[
d2 + (b+ q)2

]
F1 > 0.

and ∆4|R0=R1
= a2d2p2(b + q)2(R2

1 − 1)∆3|R0=R1
> 0. We know that ∆i, i =

2, 3, 4, continuously depend on R0. Hence, there exists an R2 ≤ R∗2 such that ∆i,
i = 2, 3, 4, are all greater than zero if R1 < R0 < R2.

In [6], it is also proved that Ed could lose its stability through Hopf bifurcation
when R0|τ=0 is far greater than R1. So when τ > 0, Hopf bifurcation may occur
from Ed if R0 is further increased from R1. To obtain the critical point at which a
Hopf bifurcation takes place, we need solve the equations R($) = 0 and S($) = 0
for τ and $, if we take τ as our bifurcation parameter. Then, we can determine the
corresponding value(s) of R0, and choose the smallest one Rh satisfying Rh > R1.
Denote by τh and $h the corresponding values of τ and $.

Following [5], there are three additional conditions which need to be satisfied,

R($)=0 ⇒ S($) 6=0
(
or S($)=0 ⇒ R($) 6=0

)
for R1<R0<Rh, (16)

∂D(ξ, τ)

∂ξ

∣∣∣∣
ξ=i$h,τ=τh

6= 0, (17)

and

Re
(dξ
dτ

)∣∣∣∣
ξ=i$h,τ=τh

< 0. (18)

The condition (16) implies that there are no solutions satisfying R($) = S($) = 0
if R0 ∈ (R1, Rh), for which the characteristic equation D(ξ) = 0 given in (14) does
not have purely imaginary roots. From the proof of Theorem 5.1, we know that all
roots of D(ξ) = 0 have negative real part for R0 ∈ (R1, Rh), which means that the
equilibrium Ed is asymptotically stable if R1 > R0 < Rh. If all the three conditions
(16), (17) and (18) hold, we then conclude that (14) has a pair of purely imaginary
roots and all other roots with negative real part at τ = τh (i.e., at R0 = Rh),
implying existence of a Hopf bifurcation. Therefore, at the critical point τ = τh,
Ed loses its stability and bifurcates into a family of limit cycles.

6. Numerical simulation. In this section, we present a numerical example and
some simulations by using dde23 from the software MATLAB R2012a, to illustrate
the theoretical results obtained in previous sections.
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Figure 1. Simulation of system (3) for τ = 1.6 ∈ (τ2, τ1), showing
convergence to the stable equilibrium Es.

Table 1. Parameter notations and the sources for their values

Definition Value(day−1) Source
λ Production rate of host cell 0 ∼ 10 cell/mm3 [11]
d Death rate of host cell 0.01 [9]
β Infection rate of host cell by virus 0.004 mm3/vir [13]
a Death rate of HIV-1 infected cell 0.5 [11]
α Infection rate by recombinant Assumed α = β [13]
b Death rate of double-infected cell 2 [13]
k HIV-1 production rate by a cell 50 vir/cell [13]
p Removal rate of HIV-1 3 [11]
c Production rate of recombinant 2000 vir/cell [13]

by a double-infected cell
q Removal rate of recombinant Assumed q = p [13]

The notations and typical values of the parameters used in model (3) are given
in Table 1.The precise value of τ is not obtained. But it is estimated that the value
of τ is between 1.0 ∼ 1.5 days [11]. Here, we choose τ as the bifurcation parameter.

For computer simulation, we set λ = 1, d = 1/180, α = β = 1/260, a = 0.5,
b = 2, p = q = 3, k = 80, c = 1800. Then, R0 = 480/13e−0.5τ and R1 = 17. The
disease-free equilibrium E0 is now given by

E0 = (180, 0, 0, 0, 0),
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which is globally asymptotically stable for τ > τ1 = 7.2176734929, i.e., R0 < 1.
When τ < τ1, E0 becomes unstable and the single-infection equilibrium Es occurs,
given by

Es = (
39

8
e0.5τ , 2e−0.5τ − 13

240
, 0,

160

3
e−0.5τ − 13

9
, 0),

which is globally asymptotically stable for τ1 > τ > τ2 = 1.5512468048. See Figure 1
for the simulations of system (3) when τ = 1.6.

Further decreasing τ to pass through the critical value τ2 will cause Es to lose
its stability, giving rise to the double-infection equilibrium,

Ed = (
180

17
,

13

15
,

8

17
e−0.5τ − 13

60
,

208

9
,

4800

17
e−0.5τ − 130).

The corresponding characteristic equation (14) at the above Ed becomes

D(ξ) = ξ5 +
(240

221
e−0.5τ +

1457

180

)
ξ4 + (

5828

663
e−0.5τ +

709

45
)ξ3

+
(15664

663
e−0.5τ − 19

12

)
ξ2 +

(4796

221
e−0.5τ − 557

60

)
ξ

+
24

13
e−0.5τ − 17

20
−
(720

221
ξ3 +

212

13
ξ2 +

20

221
ξ
)
e−(ξ+0.5)τ = 0.

(19)

Let R($, τ) and $S($, τ) be the real and imaginary parts of D(i$) ($ > 0),
yielding

R($, τ) =
(240

221
e−0.5τ +

1457

180

)
$4 −

(15664

663
e−0.5τ − 19

12

)
$2 +

24

13
e−0.5τ − 17

20

+
(720

221
$3 − 20

221
$
)
e−0.5τ sin($τ) +

212

13
$2e−0.5τ cos($τ),

S($, τ) = $4 −
(5828

663
e−0.5τ +

709

45

)
$2 +

4796

221
e−0.5τ − 557

60

+
(720

221
$2 − 20

221

)
e−0.5τ cos($τ)− 212

13
$e−0.5τ sin($τ),
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0
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Figure 2. Plots of the curves R($, τ) = 0 and S($, τ) = 0 in the
τ -$ plane with ($, τ) ∈ [0, 2.1]× [0, 2].
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Solving the equations R($, τ) = 0 and S($, τ) = 0 by using the built-in com-
mand “fsolve” in Maple results in

(τ3, $3) = (0.8357983104, 0.4193565828).

Taking into account(720

221
$3− 20

221
$
)

sin($τ)+
212

13
$2 cos($τ) ≥ − 4

221

√
$2(32400$2 + 1)($2 + 25),

we have R($, τ) ≥ R̃($), where

R̃($) =
4

221

[
60$4 − 3916

3
$2 + 102−$

√
(32400$2 + 1)($2 + 25)

]
e−0.5τ

+
1457

180
$4 +

19

12
$2 − 17

20
.
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Figure 3. Simulation of system (3) for τ = 1.45, 1.2 and 1.0,
taken from the interval τ ∈ (τ3, τ2), showing convergence to the
stable equilibrium Ed.

It can be shown that for any τ > 0, R̃($) > 0 if $ > 2.1. Thus, there are no
roots of R($, τ) = 0 for $ > 2.1, implying that the curve R($, τ) = 0 in Figure 2
must be below the horizontal line $ = 2.1 (not shown in Figure 2), and so (τ3, $3) is
the only intersection point. Given that all the roots of (19) continuously depend on
τ , it follows from Theorem 5.1 that Ed is asymptotically stable when τ2 > τ > τ3.
The simulations for τ = 1.45, 1.2 and 1.0 are shown in Figure 3, from which we
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Figure 4. Simulation of system (3) for τ = 0.8 < τ3, showing
bifurcation to a stable limit cycle.

observe that all the components of a solution have more oscillating behaviors with
larger amplitude, and they take longer time to converge to Ed when τ is decreased
from τ2 to τ3.

Finally, to consider possible Hopf bifurcation, first it is easy to see from Figure 2
that

S($, τ) = 0 =⇒ R($, τ) < 0, for τ2 < τ < τ3,

indicating that condition (16) is satisfied. Moreover, the other two conditions also
hold:

∂D(ξ, τ)

∂ξ

∣∣∣∣
ξ=i$3,τ=τ3

= −9.8115344435 + 0.7314225159 i 6= 0,

and

Re
(dξ
dτ

)∣∣∣∣
ξ=i$3,τ=τ3

= −0.0137073586 < 0.

Thus, the roots of (19) have positive real part when τ < τ3, and (19) has a pair
of purely imaginary roots at τ = τ3, implying existence of a Hopf bifurcation.
Therefore, we conclude that when τ2 > τ > τ3, the equilibrium solution Ed is
asymptotically stable. At the critical point, τ = τ3, Ed loses its stability through
a Hopf bifurcation, giving rise to limit cycles. See the simulation shown in Figure
4. Further, the stability of limit cycles and the direction of bifurcations can be
determined by using the center manifold theory and normal form theory for delay
differential equations (e.g., see [16]). Detailed discussions on this part are out of
the scope of this paper.
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Figure 5. Simulation of system (3) for τ = 0, showing oscillating behaviour.

In order to demonstrate the importance of the delay to be included in the model,
in the following we will compare the results obtained above to that given at τ = 0.
It is easy to see that R0|τ=0 = 480

13 > R1 = 17, and thus both the disease-free
equilibrium, E0, and the single-infection equilibrium, E1, are unstable when τ = 0.
To find the stability of the double-infection equilibrium, Ed, we set τ = 0 in (19) to
obtain

D(ξ) = ξ5 +
365197

39780
ξ4 +

211709

9945
ξ3 +

15209

2652
ξ2 +

163463

13260
ξ +

259

260
,

which yields a purely pair and three negative eigenvalues: 0.03214833+0.76348925 i,
−0.08306245, −3.91260798, and −5.24904353, indicating that Ed is also unstable.
Therefore, at τ = 0, the system must exhibit oscillating behaviour, as shown in
Figure 5. Comparing the results in this figure with that in Figure 4 shows that
at τ = 0, the solution trajectory converges much fast to reach its steady-state
value than that in Figure 4 for τ = 0.8 More importantly, it is noted that the
amplitudes of the oscillations in Figure 5 is almost double of that in Figure 4
though their frequencies are almost not changed. The above observation shows that
lack of even small delay in model (2) can cause significant quantitative changes in
solutions. Moreover, for normal values of delay, the model (3) with delay can exhibit
qualitatively different behaviour, compared with the model (2) without delay. For
example, at τ = 1.2 days, which is within the normal range of delays τ ∈ (1.0, 1.5)
days [11], model (3) shows convergence to the stable double-infection equilibrium
Ed, see Figure 3. At the marginal normal value τ = 1.6, model (3) gives the stable
single-infection equilibrium Es, see Figure 1. These significant qualitative changes
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due to existence of delay can not be observed from the model (2) without delay
involved. This indeed suggests that the delay is a very important fact which should
not be missed in model (2).

7. Conclusion and discussion. In this paper, we present a more realistic HIV-1
model of fighting a virus with another virus by adding delay to the model. The de-
tailed analytic study has shown that the improved model with delay, like the model
without delay, also has three equilibrium solutions: the disease-free equilibrium E0,
single-infection equilibrium Es, and double-infection equilibrium Ed, and a series of
bifurcations occur as the basic reproduction number, R0, is increased. It has shown
that E0 is globally asymptotically stable for R0 ∈ (0, 1), and becomes unstable at
the transcritical bifurcation point R0 = 1, and bifurcates into Es, which is globally
asymptotically stable for R0 ∈ (1, R1). Es loses its stability at the another tran-
scritical bifurcation point R0 = R1, and asymptotically stable for R0 ∈ (R1, Rh).
Finally, Ed becomes unstable at the Hopf critical point R0 = Rh, and bifurcates
into a family of limit cycles.

When the delay is chosen as the bifurcation parameter, it is shown that the delay
plays an important role in determining the dynamic behaviour of the system. In
the normal range of values, the delay may change the dynamic behaviour quantita-
tively, such as greatly reducing the amplitudes of oscillations, or even qualitatively
changes the dynamical behaviour such as revoking oscillating solutions to equilib-
rium solutions. This indeed suggests that the delay is a very important fact which
should not be missed in HIV-1 modelling.

In this paper, only Hopf bifurcation has been considered. It is interesting to
know whether the model can exhibit double Hopf bifurcation if, besides the delay,
one more system parameter is chosen as second bifurcation parameter. Another
interesting question arises if we include another fact of delay to model (3), that
is, the existence of virus production period for new virions to be produced within
and released from the infected cells (see [10]). When this second delay is included,
model (3) becomes

ẋ(t) = λ− dx(t)− βx(t)v(t),

ẏ(t) = βe−aτ1x(t− τ1)v(t− τ1)− ay(t)− αw(t)y(t),

ż(t) = αw(t)y(t)− bz(t),
v̇(t) = ke−ãτ2y(t− τ2)− pv(t),

ẇ(t) = cz(t)− qw(t),

(20)

where τ1 and τ2 represent the latent period and virus production period, respec-
tively. Then for this model, future work includes the study on the dynamical be-
haviour and bifurcation patterns of the model, and how the two delays influence
stability and bifurcations. More interestingly, with these two delays as bifurcation
parameters, can the model exhibit double Hopf bifurcation? Studying these ques-
tions will help to well understand the impact of delays on dynamical behaviour of
HIV-1 model.
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