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Abstract. We investigate the question of optimal substrate removal in a
biofilm reactor with concurrent suspended growth, both with respect to the
amount of substrate removed and with respect to treatment process duration.
The water to be treated is fed externally from a buffer vessel to the treatment
reactor. In the two-objective optimal control problem, the flow rate between
the vessels is selected as the control variable. The treatment reactor is mod-
elled by a system of three ordinary differential equations in which a two-point
boundary value problem is embedded. The solution of the associated singular
optimal control problem in the class of measurable functions is impractical to
determine and infeasible to implement in real reactors. Instead, we solve the
simpler problem to optimize reactor performance in the class of off-on func-
tions, a choice that is motivated by the underlying biological process. These
control functions start with an initial no-flow period and then switch to a con-
stant flow rate until the buffer vessel is empty. We approximate the Pareto
Front numerically and study the behaviour of the system and its dependence on
reactor and initial data. Overall, the modest potential of control strategies to
improve reactor performance is found to be primarily due to an initial transient
period in which the bacteria have to adapt to the environmental conditions in
the reactor, i.e. depends heavily on the initial state of the dynamic system.
In applications, the initial state, however, is often unknown and therefore the
efficiency of reactor optimization, compared to the uncontrolled system with
constant flow rate, is limited.

1. Introduction. Biofilms are macrostructures of bacterial cells that are attached
to an immersed surface and/or to each other in an aqueous environment. The first
cells adhere to a surface, become sessile and start producing a gel-like matrix of ex-
tracellular polymeric substances [21]. Formation and growth of the macrostructure
occurs through proliferation among the already sessile bacteria or through attach-
ment of new bacteria from the surrounding aqueous phase. Eventually, bacteria
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may also leave the biofilm by means of various processes collectively known as de-
tachment [19]. Bacteria exist in a suspended mode of growth in addition to biofilms
[28].

Both biofilms and suspended bacteria are used in wastewater treatment for re-
moval of unwanted compounds. In the activated sludge process bacteria are kept
in suspension while substrates enter the reactor with the influent [34]. The treated
water and bacterial sludge then leave the reactor with the effluent. Biofilm reactors
provide a longer retention time for bacteria due to the surface attachment. These
processes are particularly suitable for e.g. nitrogen and phosphorus removal, which
are dominated by slow growing bacteria. Biofilm systems do not require sludge re-
circulation in order to maintain a high biomass density in the reactor, in contrast to
the activated sludge process [29]. New technologies have combined biofilms and ac-
tivated sludge in hybrid or integrated fixed-film activated sludge (IFAS) processes
[17]. Such systems encourage growth of bacteria in both biofilm and suspended
mode and are often implemented as an upgrade of an existing treatment plant.
However, even pure biofilm reactors always contain a certain amount of suspended
biomass which must be removed from the effluent before the treated water can be
released to further treatment steps or into a receiving water body [15].

Mathematical models have long been used in wastewater treatment technolo-
gies to describe and analyze different processes [36]. Both activated sludge models
and biofilm models have a well developed foundation and framework. Although
suspended biomass is an integral part of biofilm reactor systems, it is generally
neglected in biofilm models [26]. It is assumed that suspended biomass does not
contribute to the biofilm system and need not be considered. We investigated the
effects and role of suspended biomass in biofilm reactors in two previous papers. A
one-dimensional single species single substrate model was presented in [22], where
the substrate, biofilm and suspended bacteria exist in a continuous stirred tank
reactor (CSTR). This model is a biofilm extension of the Freter model of microbial
growth with wall attachment that has been studied in [3, 4, 10, 18, 32]. The model
takes into account the exchange of biomass through attachment and detachment
between the biofilm and the suspended biomass. The bacteria will either be com-
pletely washed out from the reactor or exist in both suspended and biofilm form. We
studied the longterm dynamic behavior of the reactor, assuming an infinite constant
flow with unlimited substrate. It was shown that suspended bacteria are relatively
more efficient at substrate removal than the biofilm. The model was extended in a
follow-up study in [23], where microbial complexity was introduced to represent the
nitrification process for a multi-species multi-substrate case. Numerical simulations
showed that suspended biomass need not be considered if the quantity of interest
is the overall reactor performance with respect to ammonium removal, but it plays
a significant role in the intermediate processes of nitrification.

In contrast to these earlier studies that focused on longterm reactor behavior
with an infinite supply of substrates, we focus now on the question of optimizing
the treatment of a finite amount of substrate in finite time. In the setup that we
consider, the biofilm reactor is fed from a storage tank which is to be emptied. This
leads to an optimal control problem with the reactor flow rate as control function. It
should be chosen to minimize two objectives: (i) the amount of untreated substrate
that is discharged from the reactor and (ii) the treatment time. These objectives
are not co-operative and a suitable compromise must be established.
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In the literature, several studies can be found in which optimal control and
optimization are used to improve bioreactor and treatment efficiency. In [13], the
substrate concentration in an activated sludge system with unlimited amount of
incoming substrate and a given final time was minimized by choosing the optimal
flow rate. A sequencing batch reactor (SBR), which has a cyclic filling and emptying
pattern, was studied in [25]. The goal was to minimize the fill and reaction time in
the reactor by varying the flow rate at which the reactor is filled, while satisfying
the end condition at every cycle of achieving a minimum substrate concentration
before the reactor is emptied. The unlimited substrate was supplied either in a
constant manner or by a predefined function. A generic time and spatial optimal
control was discussed in [31], where e.g. a maximization of the amount of biomass
at a given final time in a well-mixed bioreactor by varying the flow was considered.
Furthermore, in [11] the goal was to minimize the time it takes to decrease the
substrate concentration in a polluted lake to a given value by manipulating the flow
with which polluted water is pumped from the lake to a biological treatment reactor
and clean water is pumped back into the lake. A chemostat model was used for the
biological reactor.

In most of these studies it is assumed that substrate is unlimited and the goal is
often to minimize process duration, i.e. a pure time-optimal problem. Our problem
is not only a time-optimal problem, but also involves a second objective to increase
removal efficiency in the reactor. The resulting optimal control problem is singular,
leading to chattering control, and as such is difficult to treat with standard numerical
methods for optimal control.

Moreover, the reactor type that we consider, inspired by modern wastewater
treatment technologies, contains both sessile biofilms and suspended bacteria, while
the studies discussed above largely focus on reactors with suspended biomass only.
Few optimization studies can be found in the literature, in which the focus is on a
biofilm per se, but not the overall performance of an entire reactor. These studies are
set in the context of time-dependent periodic dosing strategies for the eradication
of biofilms with antibiotics [7, 33].

In Section 2, we formulate the model as a dynamic system for biomass and
substrate in the reactor, coupled with a two-point boundary value problem, the
solution of which determines the substrate flux into the biofilm. We introduce the
optimization problem for reactor performance with two objectives, for which we
seek a compromise in the Edgeworth-Pareto sense. In Section 3, we remark on the
problem in the traditional context of optimal control theory and on the difficulties
to tackle the problem in this setting. In Section 4, based on biological consider-
ations, we introduce a two-parametric class of control functions, and simplify the
optimal control problem as a nonlinear vector optimization problem, for which we
approximate the Pareto front numerically. Finally, in Section 5, we discuss briefly
two alternative approaches, which, however, for computational reasons require a
significant simplification of the underlying reactor model. Results and conclusion
are summarized in Section 6.

2. Problem formulation.

2.1. Mathematical model. The single species single substrate model from [22]
was constructed through a coupling between a CSTR mass balance and a traditional
one-dimensional biofilm model. The bacteria are present in the reactor in suspended
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and biofilm form. Microbial growth is limited by a single substrate, which is con-
tinuously supplied to the reactor. Bacterial cells can detach from the biofilm and
become suspended, which in turn can (re-)attach to the biofilm. It is assumed that
the biofilm covers the substratum in the reactor uniformly and that the substrate
diffuses into the biofilm creating concentration gradients due to diffusion and reac-
tion. The flow, with which substrate is supplied, also removes suspended biomass
and unconsumed substrate with the effluent.

Governing equations. The model is formulated with respect to the three de-
pendent variables substrate concentration in the aqueous phase S [g/m3], suspended
biomass u [g] and biofilm thickness λ [m], and reads:

Ṡ =
1

V

(

Q(S0 − S)−
uµu(S)

γ
−ADcj(λ, S)

)

(1)

u̇ = u

(

µu(S)−
Q

V
− ku

)

+Aρd(λ)λ − αu (2)

λ̇ =
γDc

ρ
j(λ, S)− λkλ +

αu

Aρ
− d(λ)λ (3)

where V [m3] is the constant treatment reactor volume, A [m2] the substratum area
in the reactor, Q [m3/d] the influent and effluent flow rate, S0 [g/m3] the influent
substrate concentration, γ [-] the biomass yield from the substrate, ku, kλ [1/d] the
decay rates for suspended and biofilm biomass, Dc [m2/d] the diffusion coefficient
of substrate in the biofilm, ρ [g/m3] the biofilm biomass density and α [1/d] the
attachment rate. The model is essentially a biofilm extension of the Freter model of
microbial growth with wall attachment, which has been studied in [3, 4, 10, 18, 32].
The biofilm detachment function d(λ) that we use is defined as

d(λ) = Eλ, (4)

where E [1/md] is the erosion parameter. This is the most frequently used detach-
ment rate in the biofilm modeling literature.

Using the same notation as in [22] the substrate net flux into the biofilm is defined
through the function j(λ, S) [g/m4]

j(λ, S) :=

{

ρ
γDc

∫ λ

0
µλ(C(z))dz, λ > 0

0 λ = 0,
(5)

where C(z) [g/m3] is the substrate concentration in the biofilm at depth 0 < z ≤ λ.
The specific growth rates for suspended and biofilm biomass are µu(S) [1/d] and
µλ(C(z)) [1/d] respectively, defined as

µu(S(t)) =
µmax
u S(t)

Ku + S(t)
, µλ(C(z)) =

µmax
λ C(z)

Kλ + C(z)
(6)

where µmax
u , µmax

λ [1/d] are the maximum growth rates and Ku,Kλ [g/m3] the
Monod half-saturation concentrations. The local substrate concentration C(z), 0 ≤
z ≤ λ, is found as a solution to the quasi-steady state diffusion reaction equation
posed as a boundary value problem

DcC
′′(z) =

ρ

γ
µλ(C(z)), C′(0) = 0, C(λ) = S. (7)

Here we made use of the standard time scale argument that diffusion and consump-
tion in the biofilm is fast compared to microbial growth.
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Properties of the flux function. We observe that the function j(λ, S) in
(5) depends on S through the boundary condition in (7). As a quantity that is
derived from the solution of a two-point boundary value problem, j(λ, S) is difficult
to evaluate. However, many of its qualitative properties are known [2, 20, 22]: It is
well-defined and twice differentiable for λ > 0, S > 0. We have j(·, 0) = j(0, ·) = 0.
Moreover, j(λ, S) is monotonically increasing in both its arguments and concave in
S. Using standard comparison theorems, the flux function j(λ, S) can be estimated
from below and above by

S

√

θ

Kλ + S
tanh

√

θλ2

Kλ + S
≤ j(λ, S) ≤ S

√

θ

Kλ

tanh

√

θλ2

Kλ

where θ :=
ρµmax

λ

γDc

. The wastewater engineering literature contains several empirical

formulae that approximate j(λ, S). These have been developed based on exper-
imental data but usually contain additional parameters that are reactor specific.
Using two very different approaches [2, 20] one obtain the approximation

j(λ, S) = µλ

λS

Kλ + S
(8)

that only involves parameters of the underlying two-point boundary value problem
(7). Numerically it was verified in [2] that this approximation appears to work
reasonably well for an extended range of realistic biofilm parameters in some realistic
ranges for λ and S, however, primarily for thin biofilms. Below we will normally use
the full flux calculation according to (5) in our numerical simulations and resort to
the flux approximation (8) only where computational costs prevent us from using
(5) in Sections 5.1 and 5.2.

With the above properties of j(λ, S), (1)-(3) is formally an ordinary differential
equation, albeit with a difficult to evaluate right hand side. In [22] its longterm
behavior was analyzed for a constant flow rate Q, where also easy to evaluate
conditions for the stability and instability of the washout equilibrium were derived.

Solutions in the case of non-constant flow rate. In the context of optimal
control problems, the flow rate Q will be the control parameter, i.e. is no longer
constant. The natural setting is to search for control functions Q in the class of
measurable functions. Then, (1) - (3) becomes a non-autonomous system of differ-
ential equations. For non-negative S, u, λ and measurable Q, the right hand side of
(1) - (3) is continuous in the dependent variable for fixed t, and it is measurable
in t for fixed S, u, λ. Thus, solutions of (1)-(3) are understood in the general-
ized sense of Carathéodory [6]. Many of the standard results on ODEs carry over
to Carathéodory differential equations accordingly [35]. The initial value problem
of (1)-(3) with positive initial data possesses a unique solution that remains non-
negative almost everywhere. Moreover, by forming a linear combination of (1), (2),
(3), we obtain for non-negative initial data the upper estimate

V γS(t) + u(t) +Aρλ(t) ≤ V γS(0) + u(0) +Aρλ(0) + γS0

∫ t

0

Q(t)dt. (9)

almost everywhere. Thus, biomass production is bounded by the amount of sub-
strate supplied. Furthermore, if the initial data are positive, there is no interval
(t′, t′′) such that either u(t) = 0, λ(t) > 0 or u(t) > 0, λ(t) = 0 for t′ < t < t′′. These
results carry over directly from [22] to the setting of Carathéodory solutions, using
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Figure 1. Wastewater from the buffer reactor with volume Vb

is pumped to the treatment reactor of volume V at a flow rate
Q, with treated water leaving the reactor at the same rate. The
treatment reactor is aerated from the bottom and contains bacteria
in the form of biofilms and suspended biomass, which ensure that
the process is not oxygen limited but that substrate S is the only
growth limiting factor.

the comparison theorems in [35]. On intervals (t′, t′′) on which Q(t) is continuous,
the solutions of (1)-(3) are differentiable, i.e. traditional ODE solutions.

2.2. Optimization problem. Reactor setup. The analysis and investigation
of the basic model (1)-(7) in [22] assumed a constant flow rate and essentially
an infinite amount of substrate to be treated; the focus of the investigation was on
longterm behavior, i.e the asymptotics of the model for t → ∞. From an engineering
perspective, it is useful to investigate the question of treating a finite amount of
substrate in finite time. More specifically, one is interested in the problem, for
example, to degrade a given amount of substrate as much as possible in as short a
time as possible.

To this end we consider a treatment reactor, described by (1)-(7) that is fed
from a buffer reactor that contains the volume Vb(t) [m3] of water with a bulk
substrate concentration S0 [g/m3], see Figure 1. The emptying of the buffer reactor
is described by the simple mass balance

V̇b = −Q, (10)

where Q(t) is a non-negative function such that
∫ T

0 Q(t)dt = Vb(0) for some T > 0
and Q(t) = 0 for t > T . This restriction guarantees that the buffer reactor is
emptied in finite treatment time T and that negative buffer volumes are avoided.

Vector optimization problem. The task at hand is now formulated as the
vector optimization problem

min
Q∈Ω





T
∫

0

QSdt

T



 , (11)
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where Ω is the set of admissible flow rates Q : [0, Tmax] → R
+
0 . This set will be

made more precise below. Tmax is the maximum duration of the process we are
prepared to tolerate.

The two objectives are not cooperative. In order to minimize the first objective,
i.e. the amount of substrate in the effluent, one would expect that large process
durations be advantageous, so the microbes have sufficient time to degrade almost all
the substrate. This, however, obviously counters the objective to minimize process
time.

The trade-off between both goals that we seek is a compromise in the sense of
Edgeworth-Pareto optimality, with the positive cone as order cone [12, 16]. We
denote the two objectives by

z1(Q) :=

T
∫

0

QSdt, z2(Q) := T,

and the vector of objectives by Z := (z1, z2)
T . An admissible flow rate Q∗(t) is said

to be Edgeworth-Pareto optimal if a further improvement of one objective is only
possible at the expense of increasing the other. We call then Z∗ = (z1(Q

∗), z2(Q
∗))T

an EP-minimum. We must not expect that the EP-minimum is unique [12, 16].
Rather, we expect that there might be infinitely many such optima. The set of these
optima can be graphically represented in the z1-z2 plane. They form the graph of
a monotonically decreasing function, the so-called Pareto Front. Points below the
graph are not attainable with an admissible flow rate, points above the graph are
not optimal. To compute the Edgeworth-Pareto minima, the vector optimization
problem is converted into a family of scalar optimization problems.

Scalarization with linear functionals. A standard approach to compute
Edgeworth Pareto optima is to scalarize the vector objective function Z with a
monotonically increasing functional F : R2 → R and to solve the scalar problem

min
Q∈Ω

F(Z(Q)). (12)

The solution of this scalar optimization problem is an Edgeworth-Pareto optimal
solution of the vector optimization problem (11). Using linear functionals, the
objective function of (12) becomes

J(Q) := F(Z(Q)) = w1z1 + w2z2, w1 > 0, w2 > 0. (13)

Thus, we arrive at the following optimal control problem in Bolza form:

min
Q∈Ω

wβ

T
∫

0

QSdt+ (1− w)T. (14)

Here β := Tmax/(S0Vb(0)) is a constant that is introduced to rescale the problem
such that both objectives have the same units. This allows to replace w1 and w2 in
(13) by a single dimensionless weight w with 0 < w < 1. The EP-optimum that is
found this way as a solution of (14) depends on the choice of w. The Pareto Front
is the union of these points. In the numerical realization, (14) is solved for a finite
number of weights that is large enough to approximate the Pareto Front well.

Modified Polak Algorithm. An alternative approach to determining the
Pareto Front numerically, which is particularly useful and easy to implement for
our problem due to the special form of z2, is the Modified Polak Algorithm [16].
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The interval (0, Tmax] is divided into a finite number of n subintervals by introducing
0 < T0 < T1 < T2 < ... < Tn := Tmax. For every Ti the problem

min
Q∈Ωi

Ti
∫

0

QSdt (15)

is solved, where the sets

Ωi := {Q ∈ Ω : Q(t) = 0, t > Ti} ⊂ Ω

are the sets of admissible functions such that the reactor is emptied in finite time
Ti. The Pareto Front can be approximated by interpolation after removing those
segments of the curve that perturb monotonicity, if any.

In the next sections we will make use of both approaches to discuss the solutions
of (11), depending on the situation.

3. Remarks on the optimal control problem. Admissible functions in opti-
mal control theory are often defined in the class of measurable functions. Most
standard theorems and results in optimal control theory are derived for these types
of functions. Furthermore, realistically there exists an upper bound Qmax on the
flow rate Q due to the pump capacity between the buffer reactor and the treatment
reactor. We therefore proceed by reformulating our problem and studying the set
of measurable, bounded flow rates.

The constraint onQ, which enforces emptying of the reactor, i.e.
∫ T

0
Qdt = Vb(0),

can be restated in the form of a differential equation for the buffer volume Vb. Thus,
the system of equations (1)-(3) now reads

Ṡ =
1

V

(

Q(S0 − S)−
uµu(S)

γ
−ADcj(λ, S)

)

(16)

u̇ = u

(

µu(S)−
Q

V
− ku

)

+Aρd(λ)λ − αu (17)

λ̇ =
γDc

ρ
j(λ, S)− λkλ +

αu

Aρ
− d(λ)λ (18)

V̇b = −Q (19)

with initial conditions

S(0) = S0, u(0) = u0, λ(0) = λ0, Vb(0) = Vb0 (20)

and an end condition

Vb(T ) = 0 (21)

for the optimal control problem in Lagrange form

min
Q∈Ω

∫ T

0

(wβQS + (1 − w)) dt, subject to Tmin ≤ T ≤ Tmax (22)

where Tmin = Vb(0)/Qmax is the minimum possible time and Ω is the set of admis-
sible control functions. Let

Ω = {Q measurable : 0 ≤ Q ≤ Qmax < ∞}. (23)

It can be shown by using standard existence results [9] that the optimal control
problem (22) with the set of admissible functions Ω, subject to (16)-(19) with initial
conditions (20) and end condition (21) possesses an optimal solution Q∗. The
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optimal solution may be characterized with Pontryagin’s minimum principle [9, 27].
The Hamiltonian is

H = λ1

(

1

V

(

Q(S0 − S)−
uµu(S)

γ
−ADcj(λ, S)

))

+ λ2

(

u

(

µu(S)−
Q

V
− ku

)

+Aρd(λ)λ − αu

)

+ λ3

(

γDc

ρ
j(λ, S)− λkλ +

αu

Aρ
− d(λ)λ

)

+ λ4(−Q) + wβQS + 1− w

(24)

where λ1(t), . . . , λ4(t) are the adjoint variables given by

dλ1

dt
= −

∂H

∂S
= −wβQ+

λ1Q

V
+

(

λ1

V γ
− λ2

)

µ′
u(S)u (25)

+Dc

∂j(λ, S)

∂S

(

λ1A

V
−

λ3γ

ρ

)

dλ2

dt
= −

∂H

∂u
= −µu(S)

(

λ1

V γ
+ λ2

)

+ λ2

(

Q

V
+ ku + α

)

−
λ3α

Aρ
(26)

dλ3

dt
= −

∂H

∂λ
= Dc

∂j(λ, S)

∂λ

(

λ1A

V
−

λ3γ

ρ

)

(27)

+ (λ3 − λ2Aρ) (d
′(λ)λ + d(λ)) − λ3kλ

dλ4

dt
= −

∂H

∂Vb

= 0 (28)

with the transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = 0 and λ4(T ) = free. (29)

Pontryagin’s minimum principle states that

H(S∗, u∗, λ∗, V ∗
b , Q

∗, λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4) ≤ H(S∗, u∗, λ∗, V ∗

b , Q, λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4) (30)

for the optimal solution Q∗, where S∗, u∗, λ∗, V ∗
b are the optimal state trajectories

and λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4 the optimal adjoint trajectories. Furthermore, since (22) is a free

final time problem and the Hamiltonian does not explicitly depend on time, at the
optimal solution the Hamiltonian must satisfy

H(S∗, u∗, λ∗, V ∗
b , Q

∗, λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4) = 0 (31)

for all t ∈ [0, T ∗]. The optimal control trajectory can be obtained by minimizing
the Hamiltonian with respect to Q. To this end, the Hamiltonian can be rewritten
as

H = terms without Q+Q

(

wβS +
λ1(S0 − S)

V
−

λ2u

V
− λ4

)

. (32)

Set h = wβS + λ1(S0−S)
V

− λ2u
V

− λ4, this is now the switching function. H is linear
in Q, implying a bang-bang control as the optimal solution, switching between 0
and Qmax. The switching times can be determined with the signs of the switching
function h.

Optimal control problems like (22) that are linear in the control variable, with
bounded control sets, are known to lead to chattering [37]. Such controls are char-
acterized by an infinite number of switches between the lower and upper bound in a
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Q(t) 

t Tswitch

Figure 2. Flow rate Q(t) as an off-on function.

finite amount of time. This type of control regime is, however, not appropriate from
a practical point of view, wherefore this control set will not be considered here.

The solutions to (22) in the class of measurable and bounded admissible functions
(23) depend heavily on Qmax, the upper bound for the flow rate. Giving up this
restriction, we permit Q to be unbounded, i.e. let Ω be the set of measurable,
non-negative flow rates Q defined on [0, Tmax]. For the optimal control problem
(14), i.e., a minimum problem with a linear integrand, and with this definition of
Ω, Fleming and Rishel [9] indicate that impulse control solutions often are found.
These controls are characterized by impulses of the Dirac delta function type and
cause instantaneous jumps between different values in the state variables. Such
a behavior is, for practical purposes, not appropriate and will, therefore, not be
pursued further.

4. A finite-dimensional optimization problem.

4.1. Off-on control functions. The rate with which substrate can be degraded
depends on both, the substrate concentration and the amount of bacterial biomass
in the system. In a typical application, the bacterial populations, wall attached and
suspended, are initially not fully developed, but must adjust to the environmental
conditions in the reactor. Since the overall degradation rate scales with amount of
biomass, in this initial period the reactor performance is limited by small population
sizes. If the flow rate Q in this initial period is too high, much more substrate
is supplied than can be utilized and more substrate might be washed out of the
reactor than degraded. Therefore, a first and simple candidate class for admissible
flow rates are off-on functions. The flow rate is initially turned off for a transient
period during which the bacterial population can establish itself. Later it is switched
on to a constant value until the buffer reactor is empty. With this definition the
admissible functions are the functions

Q(t) =

{

0, for t < Tswitch
Vb(0)

T−Tswitch

, for Tswitch < t ≤ T
. (33)

An example of such a function is shown in Figure 2. Since for practical purposes
the buffer reactor cannot be emptied instantaneously, it is appropriate to intro-
duce the minimum required treatment time Tmin. Every pair (Tswitch, T ) with



ON OPTIMIZATION OF SUBSTRATE REMOVAL IN A BIOREACTOR 1149

Tmin ≤ Tswitch < T ≤ Tmax defines uniquely one such function Q(t) and, con-
versely, every such function is defined by a unique pair (Tswitch, T ). Therefore, the
set of admissible functions is a two-parametric family of functions and finding the
optimal Q∗ ∈ Ω is equivalent to finding the corresponding pair (T ∗

switch, T
∗).

With this choice of admissible controls, the optimal control problem (11) reduces
to a vector optimization problem in two unknown parameters. We use the Modified
Polak Method to scalarize the problem: we solve for selected Ti, i = 0, ..., n with
Tmin = T0 and Tmax = Tn, and T0 < T1 < T2 < ... < Tn the problem

min
Tmin≤Tswitch≤Ti

Ti
∫

0

Q(t)S(t)dt. (34)

with Q according to (33). Thus, the problem reduces to finding the solutions of n+1
scalar optimization problems with one argument for every given Ti. To compute the
objective function requires to solve numerically (1)-(7) and to evaluate the integral
(34).

4.2. Computational setup. The model parameters for the numerical simulations
are found in Table 1, where, as in [22], the parameters were taken from Benchmark
Problem 1 of the International Water Association’s Taskgroup on Biofilm Modelling
[36], which models an aerated reactor with carbon as the only substrate, and from
[22]. As in [22], we use the same parameter values for both biofilm and suspended
biomass, implying that suspended biomass is treated as unattached flocs of microbial
communities.

All simulations, unless otherwise specified, are initiated with the following initial
conditions:

S(0) = 30g/m
3
, u(0) = 0.05g, λ(0) = 0.0001m. (35)

We consider a small laboratory scale buffer reactor with volume Vb = 0.05m3 = 50l.
The minimum and maximum treatment periods were chosen as

Tmin = T0 = 0.1days = 2.4hours and Tmax = Tn = 50days. (36)

The treatment times Ti were selected on a non-equidistant grid with n = 62 points.
The grid points are chosen denser for small T than for large T . All simulations were
executed in MATLAB R2012a using the built-in solvers ode15s (a variable order,
multi-step solver based on the numerical differentiation formulas) for the solution of
the system of ordinary differential equations (1)-(3), bvp4c (a finite difference code
using the three-stage Lobatto IIIa formula, which is a collocation formula [24]) for
the diffusion-reaction equation (7) and fminbnd, a derivative-free method based on
golden section search and parabolic interpolation [24], for the minimization problem
(34).

4.3. Results and discussion. The choice of using a constant flow rate Q requires
no further adjustment after initiation until the buffer reactor is emptied. It will,
therefore, serve as a baseline for comparison with other flow rates to measure effi-
ciency of a control strategy.

Solution of the vector optimization problem. The Pareto Front for the
optimal control problem (11), as determined by the Modified Polak Algorithm is
shown in Figure 3a. This curve is monotonically decreasing from (max z1,min z2) to
(min z1,max z2) with respect to z2: decreasing z2 further will only be possible at the
expense of increasing z1 and vice versa. Increasing the treatment time T allows a
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Table 1. Model parameters.

Symbol Name Value Unit Reference
A inner reactor area 0.0647 m2 [22]
α attachment rate 1 d−1 [22]
Dc diffusion coefficient 10−4 m2d−1 [36]
E erosion parameter 1000 m−1d−1 [22]
γ yield of biomass from substrate 0.63 − [36]
kλ, ku decay rates 0.4 d−1 [36]
Kλ, Ku Monod half-saturation concentrations 4 gm−3 [36]
µmax
λ , µmax

u maximum specific growth rates 6 d−1 [36]
ρ biomass density 10000 gm−3 [36]
V treatment reactor volume 0.001 m3 [22]
Vb buffer reactor volume 0.05 m3 assumed

0 10 20 30 40 50
0

0.5

1

1.5

objective z
2

ob
je

ct
iv

e 
z 1

0 10 20 30 40 50
0

20

40

60

80

100

treatment time T (days)

tr
ea

te
d 

w
as

te
w

at
er

 (
%

)

 

 

0 10 20 30 40 50
0

1

2

3

treatment time T (days)

re
la

tiv
e 

im
pr

ov
em

en
t i

n 
z 1 w

ith
 o

pt
im

al

of
f−

on
 fc

n.
 v

s.
 c

on
st

an
t Q

 (
%

)

const. Q
off−on Q

a) b) c)

Figure 3. a) Edgeworth-Pareto minima of (11) with z1 =
∫ T

0 QSdt and z2 = T . b) Percentage of treated wastewater in
relation to initial amount of untreated wastewater as a function of
treatment time T for constant flow rates Q = Vb/T (solid line) and
optimal off-on functions (blue asterisks). c) Relative improvement
(%) in objective z1 of off-on functions compared to the constant
flow rate.

further reduction of substrate in the outflow. Therefore, we can view the amount of
substrate that can be degraded as a function of treatment time T . A steep incline
in the Pareto Front is visible for T < 5, after which the curve levels off. Short
treatment times imply high flow rates and, therefore, high washout of substrate.
Hence, reactor performance increases drastically with increased treatment time for
small T . On the other hand, for large T (T > 10 in our example) most substrate
is removed, so that only a small further improvement in performance is noted for
large T .



ON OPTIMIZATION OF SUBSTRATE REMOVAL IN A BIOREACTOR 1151

Each point on the Pareto curve is an EP minimum of (11) and represents a
compromise between treatment time and reactor performance. In general it depends
on user preferences which of these compromises to accept. One might argue that
of all the EP minima a distinguished one is the point on the Pareto front that is
closest in some suitable metric to the (unachievable) ideal target (Tmin, 0).

We found the solution of this goal programming problem [12, 16] by normalizing
the z1- and z2-axis, computing the Euclidean distance

√

(

z1 − 0

Vb(0)S0

)2

+

(

z2 − Tmin

Tmax

)2

and minimizing over T . The closest point on the Pareto Front was found at T =
5.09285 days with z1 = 0.14499.

We plot the optimal performance of the off-on-controlled reactors as a function
of treatment time T in Figure 3b as blue asterisks, together with the performance
of the uncontrolled reactor, i.e. the reactor with constant flow rate Q = Vb(0)/T .
Both curves are very close to each other, with hardly any difference visible. When
comparing the off-on functions with the constant flow rate Q we see a small im-
provement in reactor performance with off-on functions over constant Q in Figure
3c. The relative improvement ranges between approximately 0.5% and 3.5%. For
short treatment times the improvement remains small and begins increasing when
the treatment time is increased, reaching a maximum around T = 10 days, after
which it slowly decreases.
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Figure 4. The optimal switching times Tswitch determined by the
modified Polak method for the optimal control problem (11) in a)
with a close-up for 0.1 ≤ T ≤ 1 in b).

Figures 4a-b show the optimal switching times T ∗
switch as a function of T . The

function initially decreases as treatment time increases until a minimum is reached
around 0.2 days. The function begins to increase again when the treatment time is
further increased. An increased switching time implies a longer bacterial adjustment
time during which the flow rate is zero. We find T ∗

switch � T , with T ∗
switch roughly
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in the interval [0.025, 0.045] for 0.1 ≤ T ≤ 50. A possible explanation for the initial
drop in the switching time is that for very short treatment times T < 0.2 the system
is entirely dominated by washout.
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Figure 5. Time evolutions of a) substrate concentration S [g/m3],
b) suspended biomass u [g] and c) biofilm thickness λ [µm] for the
treatment times T = 2 (dashed), T = 5 (solid) and T = 14 days
(dotted). The time-axis has been normalized to facilitate graph
visibility.

In Figure 5 we plot the time evolutions of the three state variables S, u, λ for
three selected treatment times T = 2, 5, 14 days. The time-dependent functions are
plotted on a normalized time axis. Initially, while the flow is turned off, the substrate
in the treatment reactor is degraded by suspended and wall attached biomass, which
increases. The flow is switched on rather early, which is clearly visible in Figure 5a.
This brings fresh substrate into the reactor. Hence S increases. Simultaneously, the
flow washes out some of the suspended biomass, whence u decreases. The biofilm
thickness keeps increasing throughout. Eventually all three state variables level off.
The treatment time T has an effect on the state that is attained by the reactor.
The longer the treatment period, the smaller is the final substrate concentration.
Smaller bulk substrate concentrations imply that the biofilm that can be sustained
will be thinner, as observed in Figure 5a. While the effect of treatment time T on the
suspended biomass is clearly visible, it is not as straightforward to summarize. For
one, shorter process duration implies higher substrate concentrations and therefore
faster growth of suspended biomass. On the other hand, shorter process duration
implies higher flow rates and therefore higher washout of suspended biomass. The
latter phenomenon is also reflected by the minimum to which u dips after the flow
is turned on. For T > 5, the value that u levels off at does not change notably.

Complementing the above data, we plot in Figure 6 the quantities S(T ∗
switch),

u(T ∗
switch), λ(T

∗
switch) as functions of T , i.e. the state of the reactor at the optimal

time to turn on the flow. Their respective initial values are plotted for comparison.
The substrate concentration in Figure 6a shows that the final concentrations in the
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Figure 6. Values at T (solid) and Tswitch (x-marks) with the ini-
tial values (dashed) for a) substrate concentration S [g/m3], b)
suspended biomass u [g] and c) biofilm thickness λ [µm] for differ-
ent treatment times T [days].

reactor after the treatment are higher than the concentrations at the time of flow
start, S(T ) > S(T ∗

switch), for short treatment times T < 5. This was also observed
in Figure 5a for T = 2 days. However, for T > 5 we have S(T ) ≈ S(T ∗

switch).
A completely different pattern is seen for the suspended biomass in Figure 6b,

where u(T ∗
switch) > u(T ) for all T . By comparing this figure with Figure 5b we see

that the considerable drop in biomass occurs after the start of the flow, i.e. right
after Tswitch. The final concentrations u(T ) reach a peak around T = 5 days after
which they decrease.

For all T , λ(T ∗
switch) in Figure 6c, the biofilm thickness when the flow is turned on,

is only slightly higher than the initial biofilm thickness. However, the final biofilm
thickness λ(T ) varies considerably for different T . For short treatment times T < 20
we have λ(T ) > λ(T ∗

switch) with a maximum reached around T = 1. For T > 30 we
find thickness λ(T ) < λ(0) < λ(T ∗

switch), due to substrate limitations in the biofilm.
In Figure 6 the maxima of suspended biomass and biofilm thickness in depen-

dence on the length of the treatment period are most likely related to substrate
depletion: For small T the biomass at the end of the treatment time increases be-
cause the more time the bacteria are given the more substrate they can remove and
hence grow. However, for longer process durations, the system becomes eventually
substrate depleted which explains the monotonic decrease in biomass for large T
due to starvation and washout.

Dependency of reactor performance on initial data. The definition of
off-on functions in 4.1 was motivated by an initial adaptation period for the bac-
teria before the flow was turned on, characterized by the switching time Tswitch.
Therefore, sensitivity of the reactor performance to initial data S(0), u(0), λ(0) is
interesting. In order to investigate the effects on the solution by varying initial
data we performed a study in which initial data for suspended biomass and biofilm
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Figure 7. Relative improvement in objective z1 with optimal off-
on flow rate Q compared with constant Q (%) for varying initial
a) suspended biomass u0 and b) biofilm thickness λ0.

thickness were varied. A Pareto Front was approximated for each variation (data
not shown), and for comparison, the reactor performance was also calculated for
the constant flow rate. Initial suspended biomass u0 was 0.005, 0.02, 0.1 and 0.5
g, compared with the standard 0.05 g; initial biofilm thickness λ0 was 10, 50, 200
and 500 µm, compared with the standard 100 µm. Figure 7 shows the relative im-
provement in objective z1 when using optimal off-on flow rate functions compared
with constant Q. The dashed lines denote the standard values for u0 and λ0 that
were used throughout the previous simulations. Only one initial value was varied
in each instance. We see in Figure 7a that the largest improvement is obtained
for the smallest amount of initial suspended biomass. The improvement increases
with increasing treatment time and the overall improvement ranges between 0.5%
and 5%. The less suspended biomass is initially present, the more pronounced is
the effect of the flow control compared to the uncontrolled system for process dura-
tions T > 2. This statement does not hold for smaller process durations, where the
washout rate after the flow is turned on might be substantial. Increasing process
duration for T > 3 leads to an increasing improvement by control, up to T ≈ 10
when the reactor performance levels off.

The results for varying biofilm biomass are plotted in Figure 7b. The overall
improvement ranges approximately between 0.5% and 12%. For a very thin initial
biofilm thickness λ(0) = 10µm the largest relative improvement can be found for
all T . The improvement increases monotonically with respect to T for the three
thickest initial biofilms. However, for the thinner biofilm with λ(0) = 10µm we
see first an increase to a local maximum around T = 3days after which a decrease
occurs.
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In both simulation experiments run here, the relative gain by control with off-on
functions is biggest if the initial amount of biomass is smallest. This confirms the
reasoning that led us to choose this type of control functions: The initial off-period
is required for the bacterial populations to attain a sufficiently large population size
to be efficient in substrate degradation.
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Figure 8. Effect of increased surface area on the controlled treat-
ment process. For an increasing number of carrier chips c in the
treatment vessel we show: a) Pareto Front of the off-on controlled
system, along with the treatment performance of the uncontrolled
reactor, b) Relative improvement of the controlled system com-
pared to the uncontrolled system with, c) optimal switching time
T ∗
switch.

Sensitivity with respect to biofilm growth area. In the technical real-
ization the wastewater treatment process can be accelerated by providing a larger
substratum area A for biofilm to grow on. In Moving Bed Biofilm Reactors, this
is achieved by adding suspended biofilm carrier chips into the completely mixed
treatment vessel. To investigate the effect of control on such an improved reactor,
we repeat the numerical control experiment for different numbers c of such carriers.
The initial data were set to the default values again.

The results of this simulation experiment are plotted in Figure 8. The surface
area was Amin = 0.0648m2 ≤ A ≤ 1.08m2 = Amax, corresponding to 0 ≤ c ≤ 150
carriers added. For Tmin < T < Tmax = 25 we plot the Pareto Front along with
the substrate removed by the uncontrolled (Q = const) reactor in subplot a), the
relative efficiency of the off-on controlled reactor compared to the uncontrolled re-
actor in subplot b), and the optimal switching time T ∗

switch in subplot c). Qualita-
tively, the results for added carrier chips are the same as for the previously studied
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case. As intended, adding biofilm growth area accelerates the treatment process,
i.e. quantitative differences are observed. Increasing the biofilm growth area A
makes treatment more efficient: the Pareto Fronts computed for larger values of c
lie under the fronts for smaller values of c. For small treatment times T , adding car-
riers increases the efficiency of the controlled system compared to the uncontrolled
one with Q = const. The improvement, however, remains modest, below 5%. For
larger treatment times T , the improvement achieved by a carrier augmented con-
trolled system compared to the uncontrolled system becomes smaller. The optimal
switching time decreases with an increased number of carrier chips added.

Discussion. Using off-on functions to control the process, the largest improve-
ment compared to an uncontrolled reactor was found for the mid-range treatment
time of 10-15 days. For short treatment times the throughput in water is high and
a substantial amount of substrate might be washed out. On the other hand, for
long treatment times the bacteria are exposed to the substrate for a long period of
time and can deplete to a great extent. A small improvement is obtained with the
off-on functions by allowing the bacteria to establish themselves by consuming the
substrate that is already in the reactor before the flow rate is turned on.

The dependency of the reactor performance on the initial suspended biomass and
initial biofilm thickness was investigated. A significant difference could be observed
between the smallest and largest amount of biomass initially present. Neverthe-
less, the relative improvement in reactor performance compared with the efficacy of
the constant flow rate was smaller than 12%, with most cases ranging between 1%
and 5%. Overall, the efficiency of controlling the process as implemented here is
not great. Moreover, the initial state that has some effect on optimal reactor per-
formance is very difficult to assess in applications, including controlled laboratory
experiments. Therefore, for practical purposes it is doubtful that reactor perfor-
mance can be reliably improved by controlling the flow rate, compared to the much
simpler setup of emptying the buffer vessel at a constant flow rate.

4.4. Sensitivity of reactor performance with respect to perturbations of
the constant flow rate. The previous results lead to the question how slight per-
turbations of the constant flow rate affect the reactor performance. To investigate
this, we study for fixed T the effect of random perturbations of the constant flow
rate Q on the amount of substrate in the effluent, i.e. objective z1. For given T
we calculate the constant flow rate Q = Vb/T and perform random perturbations
of this value Q with up to 1%, 10% and 20%. To this end we divide the interval
[0, T ] into 10 subintervals in which the flow rate is constant. We always maintain
∫ T

0
Q(t)dt = Vb(0). See Figure 9 for an example.

Table 2. Difference between maximum/minimum value of z1 for
random perturbations of up to 1%, 10% and 20%, and the z1 ob-
tained for a constant flow rate Q.

1% 10% 20%
|max(z1)− z1(Qconst)|/z1(Qconst) (%) 0.0513 0.6837 1.7189
|min(z1)− z1(Qconst)|/z1(Qconst) (%) 0.0620 0.4688 0.7439

For each percentage class we randomly chooseN = 1000 such perturbations of the
constant flow rate. In Figure 10 we plot the histograms of the reactor performance



ON OPTIMIZATION OF SUBSTRATE REMOVAL IN A BIOREACTOR 1157

0 0.2 0.4 0.6 0.8 1
0.044

0.046

0.048

0.05

0.052

0.054

0.056

treatment time T (days)

flo
w

 r
at

e 
(m

3 /d
ay

)

 

 

10 % perturbed Q
constant Q

Figure 9. Random perturbation of the constant flow rate Q
(dashed) by up to 10% (solid) as functions of the treatment time.

Figure 10. Values of objective function z1 for random perturba-
tions of the constant flow rate Q with up to 1%, 10% and 20%,
represented by histograms with five bins. The vertical dashed line
marks the value of z1 obtained with constant Q. The value of z1
obtained with the optimal off-on function was 0.7129.

index. Table 2 shows the largest distances from z1(Qconst) for each of the percentage
classes. Larger perturbations cause a wider range in z1, i.e. the amount of untreated
substrate in the effluent. However, this range is not symmetrically centered around
the value obtained with constant Q. The higher the perturbation, the more the
respective histograms appear skewed with respect to the constant flow rate. A
larger perturbation is more likely to worsen the value of z1 than to improve it. This
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effect can also be seen for the larger perturbations in Table 2, where the differences
between the maximum values and constantQ are larger than the differences between
the minimum values and constant Q. Nevertheless, the largest changes in z1 are
1-2 orders of magnitude smaller than the actual perturbations in Q, i.e. reactor
performance is robust with respect to small deviations from the constant flow rate.
In all cases, the optimal reactor performance obtained with off-on function control
is lower than the results obtained in this experiment.

5. Other control functions.

5.1. Q switching between 0 and Qmax in discrete time intervals. Inspired
by the chattering control for measurable, bounded Q, we now define Ω as the set
of non-negative piecewise constant functions, that can switch between 0 and Qmax

a finite number of times. For a fixed final time T the interval [0, T ] is divided
into n equidistant subintervals Ii := [Ti−1, Ti) with T0 < T1 < .... < Tn. In each
subinterval, the function Q can either take the value 0 or Qmax. Moreover, it has

to satisfy the reactor condition
∫ T

0
Q(t)dt = Vb(0). Thus, the number m of intervals

in which Q = Qmax is then m := nVb(0)/(TQmax), where the parameters need to
be such that m < n is an integer. We refer to this class of functions as zero-max

functions ΩZ .
Numerical method. An initial guess for Q in the class of zero-max functions

is chosen randomly. We employ a greedy algorithm [8] to find the optimal solution

with respect to the objective function
∫ T

0 QSdt. The greedy algorithm explores
the neighborhood of the current best guess, and makes a locally optimal choice to
update the best guess. This process is iterated until no further improvements are
possible. For this purpose, we define a neighborhood of a zero-max function as the
set of all zero-max functions which differ from the current function in exactly one
interval with Q = 0 and one with Q = Qmax.

The Greedy Algorithm requires numerous solutions of the reactor model and
is, therefore, computationally extremely expensive. The lion’s share of computing
time is here incurred by the computation of the substrate flux into the biofilm,
requiring the solution of a two-point-boundary value problem. To ease this and
make computations feasible, we use the flux approximation (8) instead of (5). The
underlying model then, in fact, becomes the Freter model [10, 18], albeit with
different detachment and re-attachment terms.

Results. In Figure 11a we plot a randomly chosen initial guess for Q along with
the optimal solution found by the Greedy Algorithm after 104 local decisions in
Figure 11b, for T = 10, Qmax = 0.01, n = 50,m = 25. The optimal solution starts
with a short off-period with Q = 0, switches to Q = Qmax until the reactor is emp-
tied and then switches back to Q = 0. The Greedy algorithm by construction finds
a local minimum. Therefore, we repeated the simulation five times with different
randomly chosen initial data. In all cases the optimal solution found was the same.

Within the class of zero-max functions tested here, the optimal control function
is the one that resembles the optimal off-on function found previously the most. Of
course, the choice of switching time here is constrained by the discretization of the
interval [0, T ]. For comparison, we computed also the optimal, grid independent
switching time from 0 to Qmax where it stays for a period of Vb(0)/Qmax. This
value is found to be t = 0.1663 days, within the first subinterval of the time grid.
To assess the efficiency of this control we computed for comparison the optimal off-
on function (33), but with the flux approximation (8) instead of (5). The optimal
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Figure 11. a) Initial guess of the piecewise constant flow rateQ(t)
with randomly distributed switches between the lower and upper
bound. b) Solution obtained with the greedy algorithm after 104
steps.

reactor performance for zero-max functions with m = 25 was found to be about
1.5 times higher than the optimal reactor performance found for functions of type
(33). This could be improved be refining the time grid, which however, would incur
a substantial increase in computing time.
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Figure 12. Optimal zero-max functions found with the greedy
algorithm for different values T < 5.
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We repeated these simulations for other values of T , keeping the number of
subintervals of [0, T ] the same. The result obtained for values T ≥ 5 are qualitatively
the same as found for T = 10 and documented above. In all cases the optimal control
switches from 0 to Qmax after the first subinterval and stays there until the reactor
is empty. The reactor performance is worse than for the optimal off-on functions.

For smaller T , on the other hand, the optimal zero-max control function is dis-
tinctively different, see Figure 12. It is characterized by switching several times
between 0 and Qmax for small t � T . The number of such jumps in the control
functions increases for smaller T , and is in part due to the smaller subintervals.
Another important aspect is the increase of Qmax for smaller T due to m = 25
being kept the same. In Figure 12 Qmax varies between 0.1 and 0.025 for T = 1 and
T = 4, respectively. We performed additional simulations with a fixed Qmax = 0.05
and a fixed number of max-intervals m = 25 for T = 2 and T = 4. In order to
obtain 25 max-intervals the number of subintervals for T = 4 was increased to
n = 100. The optimal zero-max control function found by the greedy algorithm is
the same for these two treatment times up to T = 2, see Figure 13. Thereafter, for
T = 4 the function remains at 0 until the end. Thus, it seems that the value of
Qmax strongly influences the optimal zero-max solution rather than the length of
the treatment time. The optimal zero-max solutions for small T are characterized
by many rapid switches between 0 and the maximum feasible flow rate, mimicking
the chattering control with infinitely many switching points that characterizes the
solutions to the original infinite-dimensional control problem (22). In this finite-
dimensional setup, the number of such switches possible is bounded by the number
of degrees of freedom n and the minimum duration of a single on- or off-interval is
bounded by T/n.
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Figure 13. Optimal zero-max functions found with the greedy
algorithm for Qmax = 0.05m3/day and T = 2 and 4 days.

The locally optimal solution found with the greedy algorithm can depend on the
initial data. However, there is not much variation in reactor performance between
such local optima. The Pareto Front obtained with zero-max functions with a
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fixed number of subintervals, as described here, lies above the Pareto Front of the
optimal off-on functions, and above the reactor performance achieved with constant
flow rate, see Figure 14, implying a worse control of the reactor, even compared to
the uncontrolled constant flow rate. Furthermore, the increased number of switches
between 0 and Qmax in Figure 12 is unrealistic for practical applications.
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Figure 14. Pareto Fronts for zero-max functions and off-on func-
tions with flux approximation (8). For comparison the data ob-
tained with the constant flow rate for varying T are included.

5.2. Optimal control software. Optimal control problems with singular arcs,
state constraints and discontinuous controls are known challenges for general pur-
pose optimal control software [5]. Such software packages, in particular those based
on the direct method, can be understood loosely as searching for the optimal control
within a finite dimensional class of functions, usually described by the number of
basis functions used to approximate the optimal control, e.g. the number of subin-
tervals into which [0, Tmax] is divided. For comparison purposes, we applied two
such general purpose optimal control solvers to the problem at hand in Section 3:
ACADO Toolkit (Version 1.0.2613beta, June 2011, [14]) and DIDO (Version 7.3.6,
[30]). As in Section 5.1 also here the flux approximation was used. We were not able
to obtain a robustly converging solution with the former software, probably because
of the difficulties to mimic a chattering control. The latter, instead of computing
the solution, is designed to determine candidates for solutions which are then to
be subjected to further tests. In Figure 15 we plot two such candidates that we
obtained for T = 10 days, discretized with 50 and 100 nodes, with 0 ≤ Q ≤ 0.05
m3/day. There are oscillations in the beginning and in the end of the treatment pe-
riod with a relatively smooth arc in between. The amount of oscillations is increased
for the larger number of discretization nodes and the largest value attained by Q
is ≈ 0.016 � 0.05 m3/day. Here, as for the off-on and zero-max functions, the flow
rate is turned off for a few time segments in the initial phase of the treatment. As
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in the case of zero-max functions, the oscillatory patterns probably might be inter-
preted as an attempt to mimic chattering in the finite dimensional class of control
functions and the frequency of the oscillations increases with the number of degrees
of freedom. Moreover, along the trajectory found we observe for the Hamiltonian
H ≈ 0, which in accordance with (31) might be taken as an indication that the
computed solution is optimal for a neighboring regularized problem. To investigate
this, however, is beyond the scope of this study. None of the numerical candidate
functions that we were able to obtain for the problem at hand were competitive,
with respect to reactor performance, with the much simpler optimal off-on function
of Section 4.1.
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Figure 15. Optimal control Q found for the optimal control prob-
lem (14) with the flux approximation (8) by DIDO for 50 (solid
black) and 100 (dashed blue) time discretization nodes of T = 10
days, where 0 ≤ Q ≤ 0.05 m3/day.

5.3. Remarks on computational aspects. One can argue that a finer discretiza-
tion of the intervals [0, T ] or [0, Tmax] shall improve the performance of the ap-
proaches discussed in this section and that, eventually, the results might be com-
petitive with the much simpler off-on function of section 4.1. Such a refinement,
however, goes hand in hand with an increase in computing time required for the
problem. For example, the number of neighbors to be computed in each iteration
of the algorithm in Section 5.1 scales quadratically with the number of subintervals
into which [0, T ] is divided.

On a personal computer, the time to compute a single point of the Pareto Front
with off-on functions, using the solution of the two-point boundary value problem
for the substrate concentration (5) to compute the substrate flux into the biofilm,
is in the order of minutes. Using instead the flux approximation (8) is in the order
of seconds. On the other hand, computing the best zero-max function with the
substrate flux approximation for a given T is in the order of hours; moreover, the
solution depends on the initial guesses, i.e. the problem needs to be solved several
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times. Similarly, the time it takes to solve for a single weight w the optimal control
problem with optimal control software is in the order of days. These numbers
will multiply drastically if the full two-point boundary value problem is solved to
compute substrate fluxes. Taking these considerations into account, refining the
time discretization in the methods of Sections 5.1, 5.2 to achieve results comparable
to or better than the results achieved with the much simpler off-on function of
Section 4.1 becomes prohibitive.
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Figure 16. Pareto fronts for off-on functions computed with (8)
and (5), substrate on effluent for constant flow rate Q = Vb(0)/T
computed with (8) and (5), and the Pareto front for for zero-max
functions with (8).

Furthermore, the flux approximation (8) was used in Sections 5.1 and 5.2 to re-
place (5) because it is computationally much cheaper. It has been shown previously
that this formula is able to give a good approximation for a wide range of realistic
biofilm model parameters and a wide range of biofilm thicknesses and substrate
concentrations. The flux approximation of the Monod kinetics resembles the flux
of a zero-order kinetics biofilm model [2]. This is likely a good approximation in
the very early stages of the control period, where the substrate concentration is still
relatively large and the biofilm thickness small [20]. On the other hand, the goal of
the optimization is to reduce the substrate concentration, i.e. to reach low substrate
concentrations S(t). At low substrate concentration, e.g. in the later stages of the
control interval, Monod kinetics is known to be better approximated by first order
kinetics [20]. To investigate the suitability of the approximation (8) for the problem
at hand, we compare in Figure 16 the Pareto fronts for off-on functions computed
with (8) and (5), substrate in effluent for constant flow rate Q = Vb(0)/T computed
with (8) and (5), and the Pareto front for zero-max functions with (8). These
results indicate, that substrate in effluent computed with the flux approximation
overestimates substrate removal. This mandates that the computationally much
more expensive (5) should be used instead of (8). In the context of the approaches



1164 ALMA MAŠIĆ AND HERMANN J. EBERL

of Section 5.1, 5.2, however, this is prohibitive. Therefore, zero-max functions have
no advantages compared to the off-on functions, which yield better solutions to the
optimal control problem and are computationally more efficient.

6. Conclusion. In this paper, we formulated and studied an optimal control prob-
lem for a bioreactor with biofilm and suspended biomass with a limited amount of
substrate and treatment time. The bioreactor model is a biofilm extension of the
Freter model with wall attachment. For a one-dimensional single species single
substrate model, the optimal control problem was formulated with two objectives:
to minimize the treatment time and the amount of substrate in the effluent. The
flow rate between the buffer reactor and the bioreactor was selected as the control
for the problem. All results were compared against the constant flow rate, which
characterizes the uncontrolled treatment. For computational reasons, of particular
interest were the off-on functions, which allow the biomass in the bioreactor to es-
tablish itself while the flow is turned off before the flow is turned on and the buffer
reactor is emptied. We reached the following conclusions:

• The Pareto Front for off-on functions shows that for small treatment times
the optimal removal efficiency of the reactor changes drastically, whereas it
levels off for larger T . For large T almost all the substrate can be removed,
whereas for small T a considerable amount leaves the reactor untreated.

• The optimal switching times for the off-on functions, at which point the flow
is turned on, are small relative to the treatment time. Furthermore, the
improvement in reactor efficiency, compared with the constant flow rate, is
modest.

• Other classes of admissible functions, such as measurable and bounded or
measurable and unbounded control functions, led to solutions that are inap-
plicable/infeasible from a practical point of view.

• Calculations with an approximated expression for the substrate flux into the
biofilm, used in order to reduce computational complexity, overestimated the
substrate removal in the reactor.

• The potential to improve reactor performance is due to an initial transient
period in which the bacterial populations adapt to the environmental condi-
tions in the reactor. Therefore, control potential depends on the initial state
of the system which is typically not known, even in controlled laboratory
experiments.

• In summary, we come to the conclusion, that the performance increase that
is gained by controlling the reactor flow rate is not a significant improvement
compared to the uncontrolled, constant flow rate. Moreover, it was shown
that the reactor performance is very robust with respect to small deviations
from the constant flow rate.

These results are based on a comprehensive numerical study for which several
hundreds of scalar optimization problems were solved, each of which required nu-
merous simulations of the underlying mathematical model. In these simulations, a
small laboratory reactor was mimicked and a generic set of reaction parameters was
used. It remains to be investigated whether these results carry over to other setups
as well, such as full scale treatment reactors.
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