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Abstract. A recent paper [Y. Xiao and X. Zou, On latencies in malaria in-

fections and their impact on the disease dynamics, Math. Biosci. Eng., 10(2)
2013, 463-481.] presented a mathematical model to investigate the spread

of malaria. The model is obtained by modifying the classic Ross-Macdonald

model by incorporating latencies both for human beings and female mosquitoes.
It is realistic to consider the new model with latencies differing from individ-

uals to individuals. However, the analysis in that paper did not resolve the

global malaria disease dynamics when <0 > 1. The authors just showed global
stability of endemic equilibrium for two specific probability functions: expo-

nential functions and step functions. Here, we show that if there is no recovery,

the endemic equilibrium is globally stable for <0 > 1 without other additional
conditions. The approach used here, is to use a direct Lyapunov functional

and Lyapunov- LaSalle invariance principle.

1. Introduction. In this note, we consider a mathematical model for spread of
malaria:

S′1(t) = d1 − ae1mS1(t)I2(t)− d1S1(t),

I ′1(t) = −
∫ t

0

ae1mS1(ξ)I2(ξ)e−d1(t−ξ)DtP1(t− ξ)dξ − d1I1(t), (1)

S′2(t) = d2 − ae2S2(t)I1(t)− d2S2(t),

I ′2(t) = −
∫ t

0

ae2S2(ξ)I1(ξ)e−d2(t−ξ)DtP2(t− ξ)dξ − d2I2(t),

which is presented and studied in [17]. S1(t) and I1(t) represent the sub-population
of the susceptible and infectious classes of human hosts, respectively. S2(t) and
I2(t) are the respective sub-populations of the susceptible and infectious classes of
female mosquitoes. Denote the size of the population of human beings by N(t)
and that of the female mosquitoes by M(t). The natural birth rates d1 and d2 of
humans and female mosquitoes are assumed to equal the respective birth rates of
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human and mosquitoes so that the total human and female mosquito populations
remain constants (that is, N(t) = N and M(t) = M). Thus, m = M

N represents the
average mosquito number per person. The integrals are in the Riemann-Stieltjes

sense. DtPi(t−ξ) = dPi(t−ξ)
dt , i = 1, 2, whenever the derivative exists. The constant

a denote the mosquito biting rate and e1 be the probability that a biting by an
infectious mosquito to a susceptible person will cause infection to the person, and
e2 be the probability that a biting by a susceptible mosquito to an infectious human
individual will cause infection to the mosquito.

As pointed in [17], P1(t) denote the probability (without taking death into ac-
count) that a latent host individual still remains in the latent class t time units
after entering the latent class (i.e., being infected). And similarly, P2(t) be the
probability that a latent vector individual still remains in the latent class t time
after entering the latent class. It is biologically reasonable to assume that P1(t) and
P2(t) satisfy the following properties [16, 17]:

(H1) P : [0,∞)→ [0, 1] are non-increasing, piecewise continuous with possibly
finitely many jumps and satisfies P (0+) = 1; limt→∞ P (t) = 0 with

∫∞
0
P (t)dt is

positive and finite.
Note that (1) may not have an endemic equilibrium (EE) for finite time t. Ac-

cording to [11], if (1) has an EE, then the EE must satisfy the limiting system given
by

S′1(t) = d1 − ae1mS1(t)I2(t)− d1S1(t),

I ′1(t) = −
∫ ∞
0

ae1mS1(t− ξ)I2(t− ξ)e−d1ξDξP1(ξ)dξ − d1I1(t), (2)

S′2(t) = d2 − ae2S2(t)I1(t)− d2S2(t),

I ′2(t) = −
∫ ∞
0

ae2S2(t− ξ)I1(t− ξ)e−d2ξDξP2(ξ)dξ − d2I2(t).

Since the limiting system (2) contains an infinite delay, its associated initial condi-
tion needs to be restricted in an appropriate fading memory space [1, 4, 13].

Let

Qi := −
∫ ∞
0

e−diξDξPi(ξ)dξ, i = 1, 2. (3)

It can be verified that Qi ∈ (0, 1) for all i = 1, 2. Define

Ji(t) := −
∫ ∞
t

e−diξDξPi(ξ)dξ, i = 1, 2,

then Ji(t) ≥ 0, ∀t > 0 and Ji(0) = Qi > 0.
Using Qi, i = 1, 2, the basic reproduction number for the model (1) can then be

defined as

<0 = m
ae1
d1
·Q1 ·

ae2
d2
·Q2, (4)

which accounts for the average number of secondary infections that a single infec-
tious human being (female mosquito), once introduced into fully susceptible pop-
ulations of mosquitoes and humans, is expected to cause to the humans (female
mosquitoes) during the infection period.

Model system (1) has a disease free equilibrium E0, given by E0 = (S0
1 , 0, S

0
2 , 0) =

(1, 0, 1, 0). When <0 > 1, in addition to the disease free equilibrium, (2) also admits
an endemic equilibrium E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 ), where S∗1 , I

∗
1 , S

∗
2 , I
∗
2 > 0 satisfy the
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following equilibrium equations

d1 = ae1mS
∗
1I
∗
2 + d1S

∗
1 ,

d1I
∗
1 = Q1ae1mS

∗
1I
∗
2 ,

d2 = ae2S
∗
2I
∗
1 + d2S

∗
2 ,

d2I
∗
2 = Q2ae2S

∗
2I
∗
1 . (5)

After simple calculation, we have

S∗1 =
d1d2 + ae2d1Q1

ae2(d1 + ae1mQ2)Q1
, I∗1 =

d1d2(<0 − 1)

ae2(d1 + ae1mQ2)
, (6)

S∗2 =
d1d2 + ae1md2Q2

ae1m(d2 + ae2Q1)Q2
, I∗2 =

d1d2(<0 − 1)

ae1m(d2 + ae2Q1)
. (7)

The authors in [17] gave a through analysis of model (1), but leaving out only
the elusive global stability of endemic equilibrium of (2). This provides us with
one motivation to conduct our work. The object of this note is to show that the
endemic equilibrium E∗ of (2) is always globally asymptotically stable whenever
it exists, which implies that possibility of Hopf bifurcations is therefore ruled out.
The approach here is to use a Lyapunov functional, which was adopted recently in
[6, 7, 8, 9, 12, 13, 15] to get the global properties of epidemiological models.

The paper is organized as follows. In section 2 we describe previous results by
Xiao and Zou from [17] providing the context where this paper is to be read. The
global stability of the corresponding equilibria for <0 > 1 is shown in section 3–the
key results of this paper.

2. Previous results. By a careful analysis of the characteristic equation, and
using the Fluctuation Lemma [5], the Lebesgue-Fatou Lemma [14] together with
the theory of asymptotically autonomous systems [2], the authors of [17] proved
that the disease free equilibrium is globally asymptotically stable provided that the
basic reproduction number <0 < 1. When <0 > 1 and there is no recovery for
human beings, the authors of [17] were able to show that the endemic equilibrium
E∗ is globally asymptotically stable when the two probability functions are either
exponential functions or step functions. In this note, we still assume that there is
no recovery, but we will show that E∗ is globally asymptotically stable for general
latency probability functions P1(t) and P2(t) satisfying (H1). To achieve this goal,
we first need some results from [17].

Define

Ω := {(S1, I1, S2, I2) ∈ R4 : S1 > 0, I1 ≥ 0, S1 + I1 ≤ 1

S1 > 0, I1 ≥ 0, S2 + I2 ≤ 1},

which is obviously positively invariant for (1).

Lemma 2.1. If (S1(0), I1(0), S2(0), I2(0)) ∈ Ω satisfies S1(0) + I1(0) = 1 and
S2(0) + I2(0) = 1, then system (1) has a unique solution (S1(t), I1(t), S2(t), I2(t))
satisfying the initial conditions, which remains in Ω for all t ≥ 0. Moreover, if
I1(0) + I2(0) > 0, then I1(t) > 0 and I2(t) > 0 for t > 0.

Theorem 2.2. If <0 < 1, then E0 is globally asymptotically stable in Ω; if <0 > 1,
then E0 becomes unstable.
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3. Main results. In what follows, we make use of the function

H(u) = u− 1− lnu, ∀u > 0. (8)

Obviously, H : R+ → R/R− attains its strict global minimum at u = 1 and
H(1) = 0. Here we prove the global asymptotic stability of the endemic equilibrium
by means of Lyapunov functional.

Theorem 3.1. If <0 > 1, then E∗ is globally asymptotically stable for system (2).

Proof. Consider a Lyapunov functional

L1 = Q2ae2S
∗
2I
∗
1

[
Q1S

∗
1H

(
S1(t)

S∗1

)
+ I∗1H

(
I1(t)

I∗1

)]
+Q1ae1mS

∗
1I
∗
2

[
Q2S

∗
2H

(
S2(t)

S∗2

)
+ I∗2H

(
I2(t)

I∗2

)]
+ L+ + L−,

where

L+ = ae1mS
∗
1I
∗
2Q2ae2S

∗
2I
∗
1

∫ ∞
0

J1(ξ)H

(
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

)
dξ,

and

L− = Q1ae1mS
∗
1I
∗
2ae2S

∗
2I
∗
1

∫ ∞
0

J2(ξ)H

(
S2(t− ξ)I1(t− ξ)

S∗2I
∗
1

)
dξ.

Differentiating L+ and L− along the solution of system (2) respectively, and using
integration by parts, we obtain

L′+ = ae1mS
∗
1I
∗
2Q2ae2S

∗
2I
∗
1

∫ ∞
0

J1(ξ)
∂

∂t
H

(
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

)
dξ

= − ae1mS∗1I∗2Q2ae2S
∗
2I
∗
1

∫ ∞
0

J1(ξ)
∂

∂ξ
H

(
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

)
dξ

= − ae1mS∗1I∗2Q2ae2S
∗
2I
∗
1J1(ξ)H

(
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

)∣∣∣∣∞
ξ=0

+ ae1mS
∗
1I
∗
2Q2ae2S

∗
2I
∗
1

∫ ∞
0

H

(
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

)
dJ1(ξ)

= Q1ae1mS
∗
1I
∗
2Q2ae2S

∗
2I
∗
1H

(
S1(t)I2(t)

S∗1I
∗
2

)
+ ae1mS

∗
1I
∗
2Q2ae2S

∗
2I
∗
1

∫ ∞
0

DξP1(ξ)e−d1ξH

(
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

)
dξ

= Q1ae1mQ2ae2S
∗
2I
∗
1

(
S1(t)I2(t)− S∗1I∗2 ln

S1(t)I2(t)

S∗1I
∗
2

)
+ ae1mQ2ae2S

∗
2I
∗
1×∫ ∞

0

DξP1(ξ)e−d1ξ
[
S1(t− ξ)I2(t− ξ)− S∗1I∗2 ln

S1(t− ξ)I2(t− ξ)
S∗1I

∗
2

]
dξ. (9)

And similarly, we have

L′− = Q1ae1mS
∗
1I
∗
2Q2ae2

(
S2(t)I1(t)− S∗2I∗1 ln

S2(t)I1(t)

S∗2I
∗
1

)
+Q1ae1mS

∗
1I
∗
2ae2×∫ ∞

0

DξP2(ξ)e−d2ξ
[
S2(t− ξ)I1(t− ξ)− S∗2I∗1 ln

S2(t− ξ)I1(t− ξ)
S∗2I

∗
1

]
dξ. (10)
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Set c1 = Q2ae2S
∗
2I
∗
1 and c2 = Q1ae1mS

∗
1I
∗
2 for simplicity in calculation. Thus the

derivative of L1 is given as

L′1 = c1

[
Q1

(
1− S∗1

S1(t)

)(
ae1mS

∗
1I
∗
2 + d1S

∗
1 − ae1mS1(t)I2(t)− d1S1(t)

)
+

(
1− I∗1

I1(t)

)(
−
∫ ∞
0

ae1mS1(t− ξ)I2(t− ξ)e−d1ξDξP1(ξ)dξ − d1I1(t)

)]
+ c2

[
Q2

(
1− S∗2

S2(t)

)(
ae2S

∗
2I
∗
1 + d2S

∗
2 − ae2S2(t)I1(t)− d2S2(t)

)
+

(
1− I∗2

I2(t)

)(
−
∫ ∞
0

ae2S2(t− ξ)I1(t− ξ)e−d2ξDξP2(ξ)dξ − d2I2(t)

)]
+ L′+ + L′−.

Combining the above equations (9) and (10), we get

L′1 = c1

[
2c2 +Q1d1S

∗
1

(
2− S1(t)

S∗1
− S∗1
S1(t)

)
− c2

S∗1
S1(t)

+Q1ae1mS
∗
1I2(t)

+
I∗1
I1(t)

∫ ∞
0

ae1mS1(t− ξ)I2(t− ξ)DξP1(ξ)e−d1ξdξ − d1I1(t)

]
+ c2

[
2c1 +Q2d2S

∗
2

(
2− S2(t)

S∗2
− S∗2
S2(t)

)
− c1

S∗2
S2(t)

+Q2ae2S
∗
2I1(t)

+
I∗2
I2(t)

∫ ∞
0

ae2S2(t− ξ)I1(t− ξ)DξP2(ξ)e−d2ξdξ − d2I2(t)

]
− c1c2 ln

S1(t)I2(t)

S∗1I
∗
2

− c1c2
Q1

∫ ∞
0

DξP1(ξ)e−d1ξ ln
S1(t− ξ)I2(t− ξ)

S∗1I
∗
2

dξ

− c1c2 ln
S2(t)I1(t)

S∗2I
∗
1

− c1c2
Q2

∫ ∞
0

DξP2(ξ)e−d2ξ ln
S2(t− ξ)I1(t− ξ)

S∗2I
∗
1

dξ

= c1Q1d1S
∗
1

(
2− S1(t)

S∗1
− S∗1
S1(t)

)
+ c2Q2d2S

∗
2

(
2− S2(t)

S∗2
− S∗2
S2(t)

)
+

(
Q1Q2a

2e1e2mS
∗
1I2(t)S∗2I

∗
1 −Q1ae1mS

∗
1I
∗
2d2I2(t)

)
+

(
Q1Q2a

2e1e2mS
∗
1I
∗
2S
∗
2I1(t)−Q2ae2S

∗
2I
∗
1d1I1(t)

)
+ c1c2

[
−H

(
S∗1
S1(t)

)
+

1

Q1

∫ ∞
0

DξP1(ξ)e−d1ξH

(
I∗1S1(t− ξ)I2(t− ξ)

I1(t)S∗1I
∗
2

)
dξ

−H
(

S∗2
S2(t)

)
+

1

Q2

∫ ∞
0

DξP2(ξ)e−d2ξH

(
I∗2S2(t− ξ)I1(t− ξ)

I2(t)S∗2I
∗
1

)
dξ

]
.

Recall that equilibrium of (2) satisfy equilibrium equations (5) and it follows from
the properties of H(u) in (8) that positive-define functional L1(t) has non-positive
derivative L′1(t). Let M be the largest invariant subset of (2) contained in the set
of

{(S1(t), I1(t), S2(t), I2(t))|L′1 = 0}.
In what follows we determine M . In order to have L′1 equal to zero it is necessary
to have S1(t) = S∗1 = S1(t − ξ), S2(t) = S∗2 = S2(t − ξ), I1(t) = I∗1 = I1(t − ξ)
and I2(t) = I∗2 = I2(t − ξ). Thus, at each point in M , we have S1(t) = S∗1 and
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S2(t) = S∗2 and therefore S′1(t) = 0 and S′2(t) = 0 in M , from the first and third
equations of (2), it has

S′1(t) = d1 − ae1mS∗1I2(t)− d1S∗1 ,
S′2(t) = d2 − ae2S∗2I1(t)− d2S∗2 ,

for all t, which implies that I1(t) = I∗1 and I2(t) = I∗2 for all t. Hence, M = {E∗}.
By LaSalle invariance principle [3, 10], every positive solution of (2) tends to the
endemic equilibrium E∗, proving that E∗ is globally asymptotically stable. The
proof is completed.
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