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Disciplina de Informática Médica and LIM01-HCFMUSP
Rua Teodoro Sampaio, 115

CEP: 05405-000, São Paulo, SP, Brazil

Hyun Mo Yang

Universidade de Campinas, IMECC, DMA

Praça Sérgio Buarque de Holanda, 651
Campinas, SP, Brazil

Ezio Venturino

Università di Torino
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Abstract. Despite the availability of effective treatment, tuberculosis (TB)

remains a major global cause of mortality. Multidrug-resistant tuberculosis
(MDR-TB) is a form of TB that is resistant to at least two drugs used for the

treatment of TB, and originally is developed when a case of drug-susceptible TB

is improperly or incompletely treated. This work is concerned with a math-
ematical model to evaluate the effect of MDR-TB on TB epidemic and its

control. The model assessing the transmission dynamics of both drug-sensitive

and drug-resistant TB includes slow TB (cases that result from endogenous re-
activation of susceptible and resistant latent infections). We identify the steady
states of the model to analyse their stability. We establish threshold conditions

for possible scenarios: elimination of sensitive and resistant strains and coexis-
tence of both. We find that the effective reproductive number is composed of

two critical values, relative reproductive number for drug-sensitive and drug-
resistant strains. Our results imply that the potential for the spreading of the

drug-resistant strain should be evaluated within the context of several others
factors. We have also found that even the considerably less fit drug-resistant
strains can lead to a high MDR-TB incidence, because the treatment is less
effective against them.
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1. Introduction. Multidrug-resistant tuberculosis (MDR-TB) is not a new phe-
nomenon. Resistance to TB drug has been reported since the early days of the
introduction of chemotherapy and, in spite of its global magnitude and several
decades of study, the problem has not yet been adequately addressed. TB remains
a major global health problem and it is responsible for approximately two million
deaths each year.

MDR-TB is a specific and particularly a dangerous form of drug-resistant tu-
berculosis, which is defined as the form of disease caused by resistance of a strain
of Mycobacterium tuberculosis (MTB) to two or more of the antituberculosis drugs.
Clinically, the most important pattern of multidrug resistance is resistance to both
isoniazid and rifampin, the two most powerful antituberculosis drugs used in com-
bination chemotherapy. MDR-TB is generally treatable, however, the efficacy of
treatment of drug-resistant cases is reduced compared with that of drug-sensitive
cases.

Studies have found that drug-resistance transmission increases as the duration of
previous treatment increases [17]. In most instances, drug resistance develops be-
cause of inadequate or erratic therapy, although it has been shown that persons pre-
viously treated for drug-sensitive tuberculosis can be reinfected with drug-resistant
strains [12], [20], [30], [41].

In the real world treatment of patients with active-TB requires a multiple drug
regimen; treatment is highly effective (with a 95% healing rate) if the patient harbors
drug-sensitive strains and is compliant with the treatment regimen [7]. However,
treating MDR-TB is much harder than treating drug-sensitive tuberculosis, and
unlike drug-sensitive tuberculosis, the risk of dying from MDR-TB is higher. People
who have it need to take more antituberculosis drugs for longer time. Treatment
for up to two years or in some cases even longer periods may be required.

For many years, drug-resistant tuberculosis was believed to be less fit, i.e. less
transmissible, than drug-sensitive tuberculosis. In 1985, Snider and colleagues com-
pared the risk of infection among persons exposed to drug-resistant strains with the
risk among persons exposed to drug-susceptible strains [42]. They found no evi-
dence that drug-resistant strains were less fit than drug-sensitive strains. In fact,
contacts of previously untreated patients had a similar risk of infection, regardless
of whether the strains were drug-resistant or drug-sensitive.

The recent outbreaks of MDR-TB support the findings that drug-resistant strains
is no less transmissible than drug-sensitive strains and that, in fact, prolonged
periods of infectiousness may facilitate transmission. On the other hand, some
reports indicate that drug-resistant strains of MTB have a lower fitness than drug-
sensitive strains, whereas others show no difference in disease transmission [13].
Therefore, a related question is whether drug-resistant strains are as transmissible
as their drug-sensitive counterparts.

One theoretical approach widely used to measure the transmissibility of a pathog-
en is the number of secondary cases generated. In infectious disease epidemiology,
this measure reflects the reproductive fitness, and it is also known as the basic
reproductive number, R0. Hence, whether and how fast drug-resistant strains are
likely to spread depends on their reproductive fitness [9], [13].

In addition, an often more useful measure is that of relative reproductive fitness,
where the success of a particular pathogen variant is compared to the success of
another. For example, the fitness of a drug-resistant strain can be expressed relative
to the fitness of a drug-sensitive strain.
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A number of theoretical studies have been performed on the mathematical mod-
elling of coexistence of different pathogens (strains) in the same host [1], [3], [11],
[29], [33], [34], [35], [40]. One of the first mathematical model that included the
dynamics of both drug-sensitive and drug-resistant tuberculosis was published by
Blower et.al. [5]. More recently others have modeled the emergence of drug-resistant
tuberculosis and predict the future burden of MDR-TB [4], [13], [14], [15], [22], [28],
[31], [38].

Here we will model the treatment and the control of both drug-resistant and
drug-sensitive tuberculosis to describe the outbreaks of MDR-TB. Drug-resistant
and drug-sensitive tuberculosis are transmitted in the same way, and the model
includes slow TB, i.e., the TB -cases that result from endogenous reactivation of
latent infections. We identify the steady states of the model to analyse their stability
in terms of the reproductive number of the disease. Because of the heterogeneity in
the fitness of drug-resistant strains, and the unclarity whether TB drug-resistant
strains are less fit (less transmissible) or more fit (more transmissible) than drug-
sensitive strains, we will allow a wide range for the relative fitness of drug-resistant
strains in our estimates. In our model we find that the reproductive number is
composed of two critical values, relative reproductive number for sensitive (strains
sensitive to all drugs) and drug-resistant strains. Paradoxically, we have found that
even drug-resistant strains that are considerably less fit (and thus less transmissible)
than the drug-sensitive strains can lead to a high MDR incidence.

2. Model formulation. Our mathematical model monitors the temporal dynam-
ics of susceptible individuals (not infected but susceptible to infection), latent in-
dividuals (infected but unable to infect others) and the active-TB infections, given
by the infectious individuals (i.e., infected individuals that are able to infect oth-
ers). Since the model assesses the drug-resistant and drug-susceptible tuberculosis
transmission, two subclasses of latent and infectious TB individuals are required

to build it. Hence, the total population (Ñ), is divided into five classes, namely,

S̃, the susceptible individuals; L̃S , the drug-sensitive latent individuals; L̃R, the

drug-resistant latent individuals; T̃BS , the drug-sensitive with active-TB individ-

uals, and T̃BR, the drug-resistant with active-TB individuals. Here, to simplify
expressions, both active-TB and TB cases mean active TB infectious cases, and
the subscripts ‘S’ and ‘R’ stand for drug-sensitive and drug-resistant types.

The compartmentalized diagram of the model is shown in Figure 1 and the
description of variables and parameters for the model is given Table 1.

We assume that MTB infection is transmitted by infectious individuals with

active-TB (T̃BS and T̃BR), and the infection propagates following the pseudo
mass-action incidence [27], [33]. The susceptible individuals (S) can be infected
with either a drug-sensitive or a drug-resistant strains. The rate of new drug-

sensitive and drug-resistant cases are β̃S T̃BSS̃ and β̃RT̃BRS̃, respectively. The

transmission coefficients, β̃S and β̃R specify the transmissibility of drug-sensitive
tuberculosis, and the transmissibility of drug-resistant tuberculosis, respectively.
The transmission of drug-resistant tuberculosis occurs via two independent but
interacting processes: (i) transmission of drug-resistant to susceptible individuals
(transmitted resistance) and (ii) conversion of sensitive cases to drug-resistant cases
during the treatment (acquired resistance).

As discussed previously, the dynamics of epidemic models can be understood
in terms of the basic reproductive number of infection, R0, which is the average
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Figure 1. Flux diagram of the model.

number of secondary cases caused by one infectious case in a completely susceptible
population. It is well-known that the condition R0 < 1 is necessary for disease erad-
ication [26]. Here, the relative reproductive fitness function will be approximated
by the basic reproductive number of infection (R0) in the absence of treatment or
the effective reproductive number (R) in the presence of treatment [9], [13].

To incorporate competition between drug-resistant and drug-sensitive organisms,
we model the drug-resistant strains differ in relative fitness compared to the drug-

sensitive strains. The degree to which β̃S is greater than β̃R determines how much
more transmissible the drug-sensitive strain is than the drug-resistant one. It is

assumed β̃R = ωβ̃S , 0 < ω < 1. However, because of the heterogeneity in the
fitness of drug-resistant strain suggested by empirical studies, [23], [44], and the
unclarity whether drug-resistant strains are less fit (less transmissible) or more fit
(more transmissible) than drug-sensitive strains, the model will also include the
possibility that drug-resistant tuberculosis could be more transmissible than drug-
sensitive tuberculosis, that is ω > 1.

Some models include a different transfer of some fraction of the susceptibles to
the infectious class. See Blower et al. (1995) [6] and Gomes et al. (2004) [24]
for examples. Since in our model the question of different rates of progression to
the disease is not a central one, we assume that both drug-sensitive and drug-
resistant individuals in the latent class will progress at the same rate λ to the
infectious class. Hence, the progression rates from latent TB to active-TB are

assumed to be proportional to the latent-TB cases, i.e., they are given by λL̃S
and λL̃R, such that TB cases (T̃BS or T̃BR) arising as a result of endogenous
reactivation (slow progression) of the primary complex with both the sensitive and
the resistant strains.
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Table 1. Description of variables and parameters for model (1)

Variables Description

S̃ susceptible individuals

L̃S drug-sensitive latent individuals who harbour a majority of the
sensitive strain with a small minority of resistant strain

L̃R drug-resistant latent individuals who harbour predominantely the
resistant strain with a reasonable subpopulation of sensitive strain

T̃BS drug-sensitive with active-TB individuals

T̃BR drug-resistant with active-TB individuals

Parameters Description

π susceptibles recruitment rate (births and immigration)
βS transmission coefficient of the drug-sensitive strain
βR transmission coefficient of the drug-resistant strain
µ natural mortality rate
α mortality rate due to TB
ω the degree of transmissibility of the strain
λ endogenous reactivation rate (slow progression)
p proportion of drug-resistant latent TB individuals that develop

drug-sensitive infectious TB
q probability that treatment failure occurs due to the development

of antibiotic resistance
kS relative treatment efficacy of drug-sensitive patients
kR relative treatment efficacy of drug-resistant patients
ξ treatment rate for the drug-sensitive patients
σ treatment rate for the drug-resistant patients

Investigations suggest that concurrent infection with multiple strains is possible
[10], [16], [18], [37], [39], [43]. In our model we then include a state of mixed latency
to reflect the fact that some latent individuals LR may progress to active-TB with
both drug-resistant and drug-sensitive strains. However, the relative risk of drug-
sensitive TB individuals emerging during this period of latency is still unclear yet.
In some laboratory experiments, resistant strains were less viable than sensitive
ones in vitro, and often (though not always) less virulent in guinea pigs [32]. Given
that some individuals may harbor infection with both drug-resistant and drug-
sensitive strains, the fitness of MTB strains and competition between them during
the epidemic are incorporated in the model. Thus, we define p, 0 ≤ p < 1, as
the proportion of drug-resistant latent TB individuals who develop drug-sensitive
infectious TB and (1− p) as the proportion of drug-resistant latent TB individuals
that develop drug-resistant infectious TB. Note that if p = 0, then all drug-resistant
latent TB individuals progress to active-TB with drug-resistant strains showing
that the fitness of drug-resistant strains is a key determinant of the future burden
of drug-resistant TB ; if p = 1, then all drug-resistant latent TB individuals progress
to active-TB with drug-sensitive strains, indicating that drug-resistant strains has
no fitness. But this is not the current case.

Although we assume that all the drug-sensitive TB individuals (T̃BS) are treated
with a multiple drug regimen (isoniazid and rifampin), treatment has opposite ef-
fects in the population-level: treatment cures drug-sensitive cases, but acquired
drug-resistants quickly emerge among patients who receive ineffective or inappro-
priate treatment regimes and are non compliant with a multiple drug treatment
regimens.
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In our model the effective treatment of drug-sensitive TB individuals (T̃BS)
occurs at rate ξ, and acquired drug resistance can arise directly, for whatever reason
(with probability q), during the treatment of a drug-sensitive case. Consequently, q,
0 ≤ q ≤ 1, is the probability that treatment failure occurs due to the development
of antibiotic resistance. Thus, the model includes the possibility that treatment of
a drug-sensitive case can result in one of three outcomes; (a) treatment can cure

the patients (cases are removed from the T̃BS class at a rate equal to (1− q)ξ, and

enter into the L̃S class), (b) treatment failure can occur and the patient acquires

drug-resistant TB (cases are removed from the T̃BS class at a rate equal to qξ,

and enter into the T̃BR class) or (c) treatment failure can occur, yet the patient

remains infected with drug-sensitive TB (treated cases remain in the T̃BS class).

It is also assumed that drug-resistant TB cases (T̃BR) can be treated at rate σ,
but treatment efficacy is reduced; the relative treatment efficacy of drug-resistant
cases (in comparison with treatment of drug-sensitive cases) is specified by the
parameter k (kS for drug-sensitive, and kR for drug-resistant cases). Thus, the
model includes the possibility that treatment of drug-resistant TB cases can result
in one of three outcomes: (a) treatment can cure the patients, and a few cases can be

removed from the T̃BR class at a rate equal to σkS , and enter into the L̃S class, (b)

treatment can cure the patient, and cases are removed from the T̃BR class, at a rate

equal to σkR, and enter into the L̃R class, or (c) treatment failure occurs (treated

cases remain in the T̃BR class). Therefore, drug-sensitive and drug-resistant TB
cases are untreatable (and/or untreated) if kS = kR = 0; drug-sensitive and drug-
resistant cases are treated, with equal effectiveness if kS = kR = 1; and drug-
sensitive and drug-resistant cases are only partially effectively treated if 0 < kS < 1
and 0 < kR < 1.

The parameters σ and ξ could be used to calculate both the fraction of infectious
cases that are effectively treated and the proportion of cases that receive effective
treatment per unit time. They specify the effective treatment rate, and are cal-
culated as the product of the actual treatment rate and the efficacy of treatment.
Hence in order to achieve a highly effective treatment rate it is necessary to have
both a high treatment rate and a high efficacy of treatment. The model incorpo-
rates recruitment (π) and natural death (µ), as well as disease-related death (α),
so the total population size may vary in time.

Based on the above assumptions and definitions, our model is governed by the
following system of equations:

dS̃
dt = π − β̃S T̃BSS̃ − β̃RT̃BRS̃ − µS̃

dL̃S
dt = β̃S T̃BSS̃ + (1− q)ξT̃BS + σkS T̃BR − (µ+ λ)L̃S

dT̃BS
dt = λL̃S + pλL̃R − (µ+ α+ ξ)T̃BS

dL̃R
dt = β̃RT̃BRS̃ + σkRT̃BR − (µ+ λ)L̃R

dT̃BR
dt = (1− p)λL̃R + qξT̃BS − [µ+ α+ σ(kR + kS)]T̃BR,

(1)
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By summing up the above equations, the variable total population size Ñ obeys
the following differential equation

dÑ
dt = π − µÑ − α

(
T̃BS + T̃BR

)
. (2)

When the treatment is effective in reducing disease progression, i.e., α = 0, the

population size Ñ evolves as an immigration model with natural mortality, i.e.

according to dÑ
dt = π − µÑ . This equation has a single equilibrium Ñ = N0 = π

µ ,

for any initial value of N0. Thus, in the long run the population size settles to this

constant value. It follows from (2) that limt→∞ Ñ(t) ≤ π/µ = N0.

Equation (2) for Ñ implies that solutions of (1) starting in the positive orthant
R5

+, either approach, enter, or remain in the subset R5
+ defined by

D = {
(
S̃, L̃S , T̃BS , L̃R, T̃BR

)
∈ R5

+ : S̃ + L̃S + T̃BS + L̃R + T̃BR ≤ N0}.

Thus it suffices to consider solutions in the region D. Solutions of the initial value
problem starting in D and defined by (1) exist and are unique on a maximal interval
[25]. Since solutions remain bounded in the positively invariant region D, the initial
value problem is then both mathematically and epidemiologically well-posed, [26].
Consequently, we have the following lemma.

Lemma 2.1. The biological feasible region D is positively invariant and attracts
all solutions in R5

+.

Hence, it is sufficient to consider the dynamics of the flow generated by model
(1) in D.

Before analysing the model (1) to explore the stability behavior of its equilibria,

we rescale the system by defining the new variables: S = S̃/N0; LS = L̃S/N0;

TBS = T̃BS/N0; LS = L̃S/N0, TBR = T̃BR/N0, N = Ñ/N0 and parameters

βS = N0β̃S and βR = N0β̃R. Using these changes of variables and parameters,
system (1) and (2) become:

dS
dt = µ− βSTBSS − βRTBRS − µS

dLS
dt = βSTBSS + (1− q)ξTBS + σkSTBR − (µ+ λ)LS

dTBS
dt = λLS + pλLR − (µ+ α+ ξ)TBS

dLR
dt = βRTBRS + σkRTBR − (µ+ λ)LR

dTBR
dt = (1− p)λLR + qξTBS − [µ+ α+ σ(kR + kS)]TBR,

(3)

and
dN
dt = µ(1−N)− α(TBS + TBR), (4)

so that the rescaled total population size is variable within the unit simplex 0 ≤
S + LS + TBS + LR + TBR = N ≤ 1.

3. Analysis of the model. In this section, the system (3) is qualitatively analysed
to investigate the existence and stability of its equilibria to establish the threshold
condition for disease control or eradication.
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3.1. Local stability of the disease-free equilibrium. In the absence of in-
fection, the system (3) has a unique disease-free equilibrium (DFE ), given by
P ∗0 = (S∗, 0, 0, 0, 0) = (1, 0, 0, 0, 0). Evaluating the system’s Jacobian at P ∗0 we
find

A0 =


a11 0 −βS 0 −βR
0 a22 βS + (1− q)ξ 0 σkS
0 λ a33 pλ 0
0 0 0 a44 βR + σkR
0 0 qξ (1− p)λ a55

 , (5)

where a11 = −µ, a22 = a44 = −(µ + λ), a33 = −(µ + α + ξ) and a55 = −[µ + α +
σ(kS + kR)].

One of the eigenvalues τk of the Jacobian matrix (5) is straightforward: τ1 = −µ.
The other four (after some tedious manipulations) are expressed as the roots of the
characteristic polynomial

P (τ) = τ4 + a∗1τ
3 + a∗2τ

2 + a∗3τ + a∗4 = 0, (6)

where

a∗1 = −(a22 + a33 + a44 + a55),

a∗2 = α1

(
1− pqξ(µ+λ)

α1(1−p) −R
S
)

+ α2(1−RR) + (a22 + a33)(a44 + a55),

a∗3 = α1

(
1− pqξ(µ+λ)

α1(1−p) −R
S
)

[−(a44 + a55)]+

α2(1−RR)[−(a22 + a33) + pqξ
(1−p) ]− α3

qξ
(µ+λ) ,

a∗4 = α1α2(1−RS)(1−RR)(1−RTot),

(7)

It is also straightforward to verify that the parameters α1, α2 and α3 given by

α1 = (µ+ λ)(µ+ α+ ξ) + p
(1−p) (µ+ λ)qξ − λ(1− q)ξ,

α2 = (µ+ λ)[µ+ α+ σ(kS + kR)]− σkR(1− p)λ,

α3 = (µ+ λ)qξ
{
λσkS + p

(1−p) (µ+ λ)[µ+ α+ σ(kS + kR)]
}
,

(8)

are all positive. Finally, the parameters βcS and βcR given by

βcS =
α1

λ
and βcR =

α2

(1− p)λ
, (9)

define, respectively, the sensitive and resistant effective reproductive numbers,

RS = βS
βcS

and RR = βR
βcR
, (10)

while
RTot = A

(1−RS)(1−RR) (11)

defines a effective reproductive number modified to allow for chemotherapy, with
A = α3

α1α2
< 1.

Since the characteristic polynomial (6) has a complex coefficients (see the expres-
sions 7), the local stability of the disease-free equilibrium P ∗0 cannot be completely
resolved by the Routh-Hurwitz stability criterion. Nevertheless, these coefficients
give insight by providing conditions which allow us to determine combinations of
strain reproductive numbers (RS and RR).
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Table 2. Local stability of disease-free equilibrium

Fitness conditions Eventual epidemiological outcomes

RS < 1− A, RR < 1− A, RTot < 1 P∗
0 stable (eradication of TBS and TBR)

otherwise P∗
0 unstable (coexistence of TBS and TBR)

One rule of the Routh-Hurwitz criterion states that all coefficients of the char-
acteristic polynomial (6) must be positive, that is, a∗n > 0, with n = 1, 2, 3, 4.
From (7) it should be noted that a∗1 is always positive; and whenever RR > 1 and

RS > 1− pqξ(µ+λ)
α1(1−p) , then a∗3 is negative. Moreover, RR < 1 and RS < 1− pqξ(µ+λ)

α1(1−p) ,

indicate the possibility of both a∗2 > 0 and a∗3 > 0.
The next task is to establish that a∗4 is positive. We check this statement by

using the theory of M-matrices. For the complete proof, see the Appendix. Note
that, in particular, the Appendix can also be used to show that both a∗2 and a∗3 are
positive, i.e., whenever a∗4 is positive, then both a∗2 and a∗3 are positive.

In summary, by the theory of M-matrices, whenever a∗4 > 0 all the eigenvalues of
the Jacobian matrix (5) have negative real part. Hence, the disease-free equilibrium
P ∗0 is locally asymptotically stable if RS < 1−A, RR < 1−A and RTot < 1. If one
of these conditions does not hold the disease-free equilibrium P ∗0 becomes unstable.
Thus, we have established the following result.

Lemma 3.1. The disease-free equilibrium P ∗0 exists and is locally asymptotically
stable (LAS) whenever

RS < 1−A, RR < 1−A and RTot = A
(1−RS)(1−RR)

< 1,

with A = α3

α1α2
< 1. Otherwise, it is unstable.

From the three conditions of Lemma 3.1, it is clear that if RR = 0, then the
disease-free equilibrium P ∗0 is locally asymptotically stable if RS < 1−A or, equiv-
alently, if RTot < 1. If RS = 0, then the disease-free equilibrium P ∗0 is locally
asymptotically stable if RR < 1−A or, equivalently, if RTot < 1.

We have also noted that in the absence of treatment (i.e., ξ = σ = 0) the
reproduction number modified to allow for chemotherapy, RTot, goes to zero, while
RS > 0, RR > 0 and RS 6= RR. In this case, the effective reproductive number
is modeled by only two case reproductive numbers, the case reproduction number
of the drug-sensitive (RS) and of the drug-resistant (RR) strains, such that both
RS < 1 and RR < 1 must be satisfied to prevent an outbreak of, or to eradicate,
the disease.

The most important long-term dynamics of drug-sensitive (TBS) and drug-
resistant (TBR) tuberculosis can be expressed in terms of the baseline conditions
on the basic case reproduction number given in Table-2.

Thus, if the reproduction numbers of both sensitive (RS > 0) and resistant
cases (RR > 0) are less than 1 − A, and RTot < 1, then TB goes to extinction.
This, clearly, is the ultimate aim of the control. If one of them does not hold,
then the MDR-TB can emerge as a result of incomplete adherence to, or ineffective
treatment regimens, or inadequate drug supply, or non compliance or a combination
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of these factors. This implies that there exists a range of values for RS and RR as
well as RTot, for which both drug-sensitive and drug-resistant strains can invade a
disease-free population, and the trivial equilibrium point, P ∗0 , becomes unstable.

Hence, the baseline conditions given in Table-2 are left as an open question. We
will investigate them more later on. Next, we explore the existence and stability of
the positive endemic equilibria of the model (3).

3.2. Endemic equilibria. First, the model (3) monitors the populations, so that
the negative endemic equilibria are biologically meaningless. As a consequence,
the endemic equilibria of the model correspond to the case where the disease may
persist in the population, with TBS > 0 and TBR > 0.

However, since these equilibria (if they exist) cannot be clearly expressed in closed
form, we shall discuss their existence based on some specific conditions on the model
parameters. To do so, we note that the right hand side of the last equation of system
(3) at equilibrium gives:

LR = [µ+α+σ(kS+kR)]TBR − qξTBS
(1−p)λ . (12)

To ensure the existence of a feasible endemic equilibrium we need to require positive
coordinates, i.e., TBS > 0 and TBR > 0 with 0 ≤ p < 1 and 0 ≤ q ≤ 1.

Substituting (12) into the right hand side of the third equation of system (3) at
equilibrium we find

LS = [(µ+α+ξ)(1−p)+pqξ]TBS − p[µ+α+σ(kS+kR)] TBR
(1−p)λ . (13)

Therefore, from equations (12) and (13), LR > 0 and LS > 0 if and only if

Φ TBS < TBR <
{

Φ + (µ+α+ξ)(1−p)
p[µ+α+σ(kS+kR)]

}
TBS , (14)

where Φ = qξ
µ+α+σ(kS+kR) > 0.

In addition, the first equation of system (3) yields

S = (1−p)λ−[α4 TBR+α5 TBS ]
(1−p)λ , (15)

where α4 > 0 and α5 > 0 are, respectively, expressed by

α4 =
[

(µ+λ)(µ+α)
µ + σ (kS + kR)

]
(1− p),

α5 =
[

(µ+λ)(µ+α)
µ + (1− q)ξ

]
(1− p).

(16)

Hence, to ensure S > 0 we require

TBR < (1− p)λ+ α5 TBS . (17)

Furthermore, comparing equation (14) with equation (17) it is possible to show
that

Φ +
(µ+ α+ ξ)(1− p)

p [µ+ α+ σ(kS + kR)]
< α5

and, as a consequence, to ensure S > 0, LR > 0 and LS > 0 we only require that
equation (14) holds.

Now, substituting (15), (13) and (12) into the right hand side of the second and
fourth equations of system (3) we obtain (at equilibrium),

[(1− p) (βSλ− α1)− βSα5 TBS ]TBS =
[
βSα4 TBS − (1−p)α3

(µ+λ)qξ

]
TBR , (18)
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and

[βRα5 TBR − (µ+ λ)qξ] TBS = {[βRλ(1− p)− α2]− βRα4 TBR}TBR ,
(19)

where α1, α2, α3, α4 and α5 are positive (see the expressions (8) and (16)).
Since TBS 6= 0 and TBR 6= 0, dividing the equation (19) by equation (18) we

get the following linear equation

TBR = a
b −

c
bTBS , (20)

where
a = α1α2(1−RS)(1−RR)(1−RTot),

b = −βRα1α4

(
1 + kb −RS

)
,

c = −βSα2α5

(1−p)
(
1 + kc −RR

)
,

(21)

with kb = α3

α1

1
Ψ > 0, kc = 1

α2
Ψ > 0 and Ψ = α4(µ+λ)qξ

α5
> 0.

Substituting (20) into equation (18), after some manipulations we obtain the
following quadratic polynomial

H(TBS) = a1TB
2
S + b1TBS + c1 = 0, (22)

where
a1 =

(
c
aα4 − b

aα5

)
βS ,

b1 = −
{
b
aα1(1− p)

(
1−RS

)
+ c

a
(1−p)α3

(µ+λ)qξ + βSα4

}
,

c1 = (1−p)α3

(µ+λ)qξ .

(23)

It is important to note that equation (22) can be analyzed for the possibility of
multiple endemic equilibria; however this analysis is not an easy task. By solving for
TBS from the quadratic equation (22), and substituting the values of TBS into the
linear equation (20), the solution TBR can be obtained. Thus, the positive endemic
equilibria of the system (3) are obtained by substituting both positive solutions
TBS and TBR into the expressions in (12), (13) and (15).

More specifically, the previous analysis suggests that the signs of both coefficients
(21) and (23) may also give the conditions for the existence of the endemic equilibria.
This is explored below.

3.3. Existence of endemic equilibria. From now on we must simultaneously
investigate equations (20) and (22). Before doing this, since c1 > 0, from the
coefficients (23) we remark that the number of possible positive real roots of the
quadratic polynomial (22) only depends on the sign of both a1 and b1. Thus,
according to Descartes’ rule of signs, if a1 < 0, a quadratic polynomial has two real
roots with opposite signs, independently of b1; if a1 > 0, the quadratic polynomial
has zero or a pair of positive real roots if b1 < 0 and b21 − 4a1c1 > 0, while no
positive root could exist if b1 > 0.

Furthermore, from coefficients (21) it appears necessary the assessment of the
possible scenarios for the change of the signs of a, b and c. They are then illustrated
below.

Case 1: a and b could have the same sign and c and b opposite signs.
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Figure 2. Sketch graphs of the linear equation (20) according to
the signs of a, b and c.

Case 2: a, b and c could have all the same sign.
Case 3: a and b could have opposite signs as well as c and b.
Case 4: a and b could have opposite signs while both c and b have the same

sign.

Figure 2 depicts the sketch graphs of the linear equation (20) for these four
possible scenarios.

Note that for Case 1, Case 2 and Case 3 the positive solution TBR can be
obtained whenever TBS > 0, 0 < TBS < a/c and TBS > a/c, respectively (see
Figure 2). In contrast, no positive solutions coexist for Case 4, since TBS > 0
implies to TBR < 0. Hence, by analysing the signs of a, b and c corresponding to
the three first cases, it is possible to determine the signs of a1 and b1.

At this point, it should be pointed out that since the signs of a, b and c also
depend on the thresholds RS , RR and RTot, see (21), the requirements for the
coexistence of TBS and TBR given in Table 2 are necessary, but do not suffice
for the existence of an endemic equilibrium. Hence, from (21), it is possible to
state that RS = 1 + kb, RR = 1 + kc and RTot = 1 are the additional threshold
requirements for the existence of a positive endemic equilibrium.

As a result of such an analysis, considering also the thresholds of Table 2, it
is possible to establish when both the quadratic polynomial (22) and the linear
equation (20) have positive real root(s) or not and, consequently, whether the system
(3) has zero, one or two positive endemic equilibria.

The arrangements for the possible intervals of RS , RR and RTot for which the
possibility of positive endemic equilibria exists, are described in Table 3; the range
for RS has been fixed, while varying the ranges of both RR and RTot. Note that
each arrangement in Table 3 corresponds to one specific case in Figure 2, which in
turn corresponds to a1 > 0 and a1 < 0 in the polynomial equation (22).

Apart from this, from both Figure 2 and the coefficients (23), it is possible to
check that when Case 1 holds, a1 < 0 follows. Hence, independently of the sign of b1,
the quadratic polynomial (22) and the linear equation (20) have a unique positive
real root, i.e., TBS > 0 and TBR > 0, respectively. As a consequence of our
previous analysis, the system (3) has then a unique positive endemic equilibrium.
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Figure 3. Sketch graphs of both linear (20) and quadratic (22)
equations for Case-2 and a1 > 0.

In contrast, in Case 2, we have either a1 > 0 or a1 < 0, so that the quadratic
polynomial (22) has respectively either two positive real roots or a unique positive
real root. As a consequence, the system (3) could have either two positive endemic
equilibria or a unique positive endemic equilibrium. In this case, one has 0 < TBS <
a/c and TBR > 0, see Figure 2.

Finally, in Case 3, a1 > 0 and the polynomial equation (22) has two positive
solutions. As a consequence, the system (3) could have either two positive endemic
equilibria or a unique positive endemic equilibrium. In this case, TBS > a/c and
TBR > 0, see Figure 2.

Thus, we must show whether for a1 > 0 in both Case 2 and Case 3, model
(3) admits also a unique positive endemic equilibrium. To this end, we still need
to analyse the sign of b1. Instead, we can assess the value that the quadratic
polynomial (22) assumes when TBS = a/c is a root of the linear equation (20).
More specifically, by evaluating H(TBS = a/c) for both a1 > 0 and a1 < 0, it is
possible to check whether or not, for TB1

S < a/c < TB2
S we have H(a/c) < 0, where

TB1
S and TB2

S denote the positive roots of the quadratic polynomial (22).
From equation (20), it follows then that at TBS = a/c, the quadratic polynomial

(22) is given by

H(a/c) = − bc
[
a
cα5βS + α1(1− p)(1−RS)

]
. (24)

Substituting the expressions from (21) into equation (24) leads to

H(a/c) = −kHRTot(1 + kb −RS)(1−RS)
[
1 + kc

RTot
−RR

]
, (25)

where kH =
α2

1 α4 βR (1−p)2

α2 α5 βS (1+kc−RR)2 > 0.

Finally, by using (21) and (16) in (23), one can rewrite a1, as

a1 =
ka1

(1+kb)

(RS−1)(RR−1)(1−RTot)

[
RR −RS (1+kc)

(1+kb)

]
, (26)

with kb > 0 and kc > 0 defined in expressions (21) and ka1
= α4α5

λ(1−p) > 0.

Note that if the expression (23) does not provide the required necessary infor-
mation about the sign of a1, we can then use (26) to determine it.

Figure 3 and Figure 4 can be taken as examples to illustrate Table 3.
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Table 3. Outcomes for the existence of the endemic equilibria. The effective
reproductive number of drug-sensitive and drug-resistant tuberculosis, RS and

RR, respectively; and RTot = A
(1−RS)(1−RR)

. Case is defined in page (981)

according to the linear equation (20). NRR = Number of possible positive

real roots for the equation (22). NEE = number of possible positive endemic

equilibrium for the system (3).

RS RR RTot Case NRR NEE

(I) 0 < RS < 1− A 0 < RR < 1− A RTot < 1 Case 4. 1 (a1 < 0) P∗
0 stable

0 < RR < 1 RTot > 1 Case 2. 1 (a1 < 0, 1
H(a/c) < 0)

1 < RR < 1 + kc RTot < 0 Case 2. 1 (a1 < 0, 1
H(a/c) < 0)

RR > 1 + kc RTot < 0 Case 1. 1 (a1 < 0) 1

(II) 1− A < RS < 1 0 < RR < 1− A RTot > 1 Case 2. 0, 2 (a1 > 0, 1
H(a/c) < 0)

1− A < RR < 1 RTot > 1 Case 2. 1 (a1 < 0, 1
H(a/c) < 0)

1 < RR < 1 + kc RTot < 0 Case 2. 1 (a1 < 0, 1
H(a/c) < 0)

RR > 1 + kc RTot < 0 Case 1. 1 (a1 < 0) 1

(III) 1 < RS < 1 + kb 0 < RR < 1 RTot < 0 Case 2. 0, 2 (a1 > 0, 1
H(a/c) < 0)

1 < RR < 1 + kc RTot > 1 Case 2. 0, 2 (a1 > 0, 1
H(a/c) < 0)

1 < RR < 1 + kc RTot > 1 Case 2. 1 (a1 < 0, 1
H(a/c) < 0)

RR > 1 + kc RTot > 1 Case 1. 1 (a1 < 0) 1

(IV ) RS > 1 + kb 0 < RR < 1 RTot < 0 Case 3. 0, 2 (a1 > 0, 1
H(a/c) < 0)

1 < RR < 1 + kc RTot > 1 Case 3. 0, 2 (a1 > 0, 1
H(a/c) < 0)

1 < RR < 1 + kc RTot < 1 Case 1. 1 (a1 < 0) 1

RR > 1 + kc RTot < 1 Case 2. 1 (a1 < 0, 1
H(a/c) < 0)

RR > 1 + kc RTot < 1 Case 2. 0, 2 (a1 > 0, 1
H(a/c) < 0)

Figure 3 shows the sketch graphs of both linear (20) and quadratic (22) equations
for Case 2 and a1 > 0. Both TB1

S and TB2
S are positive, with TB1

S < a/c < TB2
S .

However, since H(a/c) < 0, one has TB1
R > 0 and TB2

R < 0. Hence, for Case 2 and
a1 > 0, the system (3) has a unique positive endemic equilibrium.



THEORETICAL ASSESSMENT OF THE RELATIVE 985

Figure 4. Number of populations for proportion of (a) TB drug-sensitive

individuals (TBS) according to the equation (22) and (b) TB drug-resistant
individuals (TBR) according to the equation (20) for the outcome (II) of Table

3. When 1 − A < RS < 1, RR < 1 − A, RTot > 1 and a1 > 0: (a) two

positive real roots for TBS ; (b) one positive solution for TBR (solid line).
When 1 − A < RS < 1, 1 − A < RR < 1, RTot > 1 and a1 < 0: (a)

one positive real root for TBS ; (b) two positive solution for TBR (dash line).
When 1 − A < RS < 1, RR > 1, RTot < 0 and a1 < 0: (a) one positive real

root for TBS ; (b) two positive solution for TBR (solid line).

Figure 4, corroborates the outcome (II) of Table 3. The value of βS is fixed, such
that 1−A < RS < 1, while varying the range for RR. (a) contains the sketch for the
positive real roots (TBS) of the equation (22); in (b) there is the sketch the positive
solution (TBR) of the equation (20). Independently of sign of a1, H(a/c) < 0; the
system (3) always has a unique positive endemic equilibrium in both Case 1 or Case
2.

Thus, by the same logic as outlined in the outcome (II) of Table 3, it follows that
when a1 > 0 the quadratic equation in (22) has two positive real roots, TB1

S > 0
and TB2

S > 0, which correspond to a unique positive solution, TB1
R > 0, in the

linear equation (20), since H(TBS = a/c) < 0. As a consequence, for a1 > 0, the
system (3) has always a unique positive endemic equilibrium.

Finally, the absence of multiple endemic equilibria then suggests that both the
disease-free equilibrium and the endemic equilibrium are globally asymptotically
stable. Hence, the following conjecture is then suggested.

Conjecture 1. The system (3) has a disease-free globally asymptotically stable
equilibrium when

RS < 1− α3

α1α2
, RR < 1− α3

α1α2
and RTot = α3

α1α2(1−RS)(1−RR)
< 1

and has a unique globally asymptotically stable endemic equilibrium otherwise.

4. Numerical investigations. In this section we illustrate some of the theoretical
results obtained in this paper. We examine the model by integrating the system (3)
by the fourth order Runge-Kutta method, and some results of the simulations will
be displayed graphically.
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Table 4. Baseline values for the model 3

Parameter Value

βS variable (years−1)

βR variable (years−1)

µ 0.0154 (years−1)

α 0.33 (years−1)

λ 0.025 (years−1)

ξ 1 (years−1)

σ 1/2 (years−1)

p 0.05

q 0.40

kS 0.87

kR 0.53

The baseline parameters values are taken as follows. The inflow of at-risk suscep-
tible adults is chosen to be 0.0143 ≤ µ ≤ 0.0154 per year [46], the TB-induced death
0.22 ≤ α ≤ 0.39, [8], [13], and the endogenous reactivation rate (slow progression)
0.0005 ≤ λ ≤ 0.05, [6], [13]. Drug-resistant strains gain an advantage over drug-
sensitive strains because treatments are less effective against drug-resistant strains.
The effective treatment rate of drug-sensitive cases is lower than the effective treat-
ment rate of drug-sensitive cases. Thus, we take ξ = 1.0, σ = 0.5; kS = 87%,
kR = 53%, [45], and q = 40%, [19]. However, due to lack of data, some parameters
are assumed within realistic ranges (for illustrative purpose only) based on current
understanding of the qualitative and the essential biological and epidemiological
features of TB. Unless otherwise stated, the baseline parameters are summarized in
Table 4.

At this point, it is imperative to mention that there are several parameters that
could be considered while studying the existence of the positive endemic equilibria.
However, we are only interested in the combined effects of some arrangements in-
volving the effective reproductive numbers (RS , RR and RTot), which represent the
key factors for our analysis. This is the reason for which we explore only the varia-
tion of both transmission coefficients as stated in the model formulation, βR = ωβS ,
ω > 0. We assume that both transmission coefficients, βS and βR, vary because
they strongly influence the reproductive number. As the parameter ω increases,
three possibilities arise: (1) transmissibility is smaller for the resistant strain, i.e.,
RS > RR; (2) for both sensitive and resistant strains transmissibilities are the same,
i.e., RS = RR; (3) the resistant strain has a larger transmissibility, i.e., RS < RR.

Thus, the following outcomes are possible. Sensitive strains can persist in the
long run if RS > 1− A and RS > RR. As long as TB persists, there will be some
drug resistance, because resistance arises by mutation at some constant frequency
and will be transmitted at least occasionally. However, if RR << 1 − A, resistant
cases will always be relatively few. The greater danger arises when RR > 1−A when
the resistant cases persists. In the worst scenario, RR >> 1−A and RR >> RS , and
resistant cases through cross immunity outcompete sensitive cases and completely
replace them. These are, however, the eventual outcomes, which will take decades
to reach. Furthermore, to make a more careful assessment of the control impact,
we recall that these baseline conditions and our criteria for containment may be
insufficient to prevent outbreaks. If the incidence of MDR-TB is likely to decline,
we need to know how long it will take to achieve a significant reduction, by analysing
the endemic equilibria of system (3).
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(a)

Figure 5. Profile of populations for proportion of drug-sensitive (TBS , thin

line) and drug-resistant (TBR, thick line) of infectious individuals according
to outcome (III) of the Table 3. (a) The disease-free equilibrium is stable when

RS < 1, RR < 1 and RTot < 1 (RS > RR). The endemic equilibrium is stable
for (b) 1 < RS < 1+kb, RR < 1 and RTot < 0 (RS > RR); (c) 1 < RS < 1+kb,

1 < RR < 1 + kc and RTot < 1 (RS < RR); (d) 1 < RS < 1 + kb, RR > 1 + kc
and RTot < 1 (RS < RR). All other parameter values are listed in Table 4.

Figure 5 shows the the populations profiles for the proportion of active-TB in-
dividuals according to case (III) of the Table-3. The model undergoes competitive
pressure, and has a co-existence equilibrium whenever the eradications conditions
given by Lemma 3.1 do not hold. In (a) it should be noted that for some values of
βS and βR, the treatment rate and the relative treatment efficacy are high enough
to ensure the eradication of the disease, i.e., RS < 1−A, RR < 1−A and RTot < 1.
However, increasing the value of both parameters βS and ω, the treatment rate and
relative treatment efficacy will not prevent eradication; both drug-sensitive and
drug-resistant strains of tuberculosis emerge; there is a reduction in the proportion
of drug-sensitive individuals while the proportion of drug-resistant individuals rises.
Furthermore, although the strain with the higher reproduction number dominates
the other, the two strains always co-exist (i.e., the strain with the highest repro-
duction number does not drive out the other strain to extinction) as depicted in
Figure 5 (b), (c) and (d). In (b) the drug-resistant tuberculosis is less fit than the
drug-sensitive tuberculosis, i.e., RS > RR; in the presence of treatment, an even-
tual equilibrium outcome is the control of the drug-resistant tuberculosis. However,
certain combinations of the treatment rate and the treatment efficacy by differently
affecting the drug-sensitive and drug-resistant strains will ensure that drug resis-
tance gains the competitive advantage (more fit), i.e., that RS < RR (see (c) and
(d)). Outcome (III) in Table 3 occurs as the parameter βR increases, switching from
Case 2 to Case 1. In other words, as the parameter βR increases, the dynamics of
trajectories of system (3) changes from low TBR > 0 when 0 < TBS < a/c to high
TBR > 0 when TBS > 0.

The dynamics of system (3) for the outcomes (I), (II) and (III) of Table 3 under-
goes the same pressure of the outcome, switching from Case 2 to Case 1. It follows
that when RR < 1 + kc, 0 < TBS < a/c, while TBS > a/c whenever RR > 1 + kc.
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Figure 6. Profile of populations for proportion of drug-sensitive (TBS , thin

line) and drug-resistant (TBR, thick line) of infectious individuals according
to outcome (IV) of the Table-3. The endemic equilibrium is stable for (a)

RS > 1 + Kb, 0 < RR < 1 and RTot < 0 (RS > RR). (b) RS > 1 + Kb,

1 < RR < 1+kc and RTot > 1 (RS > RR). (c) RS > 1+Kb, 1 < RR < 1+kc
and RTot < 1 (RS < RR). (d) RS > 1 + Kb, RR > 1 + kc and RTot < 1

(RS < RR). All other parameter values are listed in Table 4.

In contrast, outcome (IV) undergoes a different pressure, switching from Case 3
to Case 2, but going through Case 1. Thus, TBS > a/c when RR < 1 + kc, and
0 < TBS < a/c whenever RR > 1 + kc.

Figure 6 depicts an example of the populations profiles for the proportion of
active-TB individuals according to outcome (IV) of the Table 3. Similarly as for
Figure 5 when the parameter βR increases, the persistence of both drug-sensitive and
drug-resistant tuberculosis (i.e., coexistence) occurs, the dynamics of trajectories of
system (3) changes from low TBR > 0 when TBS > a/c (Case 1 and Case 3) to
higher TBR > 0 when 0 < TBS < a/c (Case 2). The drug resistance emerging
during treatment significantly decreases the incidence of drug sensitive cases for
large value of both βS and βR, i.e, RS > 1 + kb and RR > 1 + kc.

For the model with treatment, the above figures also show that TB can be
eliminated from the community if the associated thresholds RS , RR and Rtot can be
brought to a values less than R0 = 1, i.e. the classical epidemiological requirement
of R0 < 1 is no longer sufficient, although necessary, to effectively control the spread
of TB in a community.

5. Conclusion. Our analysis provides new insights for the interpretation of epi-
demiological estimates of fitness of MDR-TB strains. Our results imply that the
potential for the spreading of the drug-resistant strain cannot be evaluated simply
by measuring its relative fitness value, but should be evaluated within the context of
several others factors, including the treatment, healing rates, treatment efficacy and
relative fitness. Further, in order to predict the emergence of drug-resistant strains
and hence to establish control strategies, it is necessary to understand the complex
nonlinear transmission dynamics of both the drug-sensitive and the drug-resistant
strains. Our main qualitative results allow to establish threshold conditions for
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possible scenarios: elimination of sensitive and resistant strains and coexistence of
both.

Evolution to the coexistence state is the result of inadequate treatment. When
treatment is not able to eliminate the drug-sensitive strains, it is even possible
that drug-resistant strains displace the drug-sensitive, as a result of the competi-
tive advantage, with larger fitness. The drug-sensitive strains are reduced below a
threshold where they are unable to compete. Paradoxically, as in [4], we have also
found that even the drug-resistant strains that are considerably less fit than the
drug-sensitive strains can lead to a high MDR incidence. Drug-resistant pathogens
gain an advantage over drug-sensitive pathogens because treatment is less effective
against drug-resistant strains, and this selective advantage is modeled by assuming
that the effective treatment rate of drug-resistant cases is lower than the effective
treatment rate of drug-sensitive cases (the degree of difference in the efficacy of
treatment is specified by the parameter k, the relative treatment efficacy, where kS
stands for drug-sensitive, and kR for drug-resistant cases. The disease eradication
requirements (see Table 2) depend on the value of the probability of drug resistance
emerging during treatment (q). This result implies that if the effective treatment
rate (ξ) and the relative treatment efficacy (KS and KR) are high enough to ensure
the eradication requirements, extremely high rates of emergence of acquired drug
resistance will not prevent eradication. However, if treatment rates are below the
critical eradications, a high rate of emergence of drug-sensitive results in a higher
prevalence of drug resistance.

Finally, we remark that our model has several simplifying assumptions. The
principal one is that it does not consider certain features of the TB infection, in
particular the complexities of the immune system response against TB. In this
sense, the model is not so specific for TB, and could be applied to any pathogen
that presents resistance to drugs. In spite of that, the results are congruent with the
ones obtained from the epidemiological point of view. The more remarkable result
is that less-fit drug-resistant can emerge even under treatments that successfully
reduce sensitive strains.

Appendix. In this Appendix we shall prove, by the use of M-matrices, that the
disease-free equilibrium solution for system (3) is locally asymptotically stable for
RS < 1− α3

α1α2
, RR < 1− α3

α1α2
and RTot = α3

α1α2(1−RS)(1−RR)
< 1, where α3

α1α2
< 1.

The stability properties of our matrix A0 (5) are determined by using the well-
known results on M -matrices. Our references on this topic are given by [2], [21],
[36].
Definition. We say that the n ×n matrix A= [aij ] is a non-singular M-matrix if
aij ≤ 0, i 6= j, and there exists a matrix B ≥ 0 and a real number s > 0 such that
A= s I−B and s > ρ(B), the latter being the spectral radius of B.

The following equivalences are well-known.

Proposition A.1: A is a non-singular M -matrix if and only if the real part of
each of its eigenvalues is greater than zero.

Proposition A.2: A is a non-singular M -matrix if and only if all its diagonal
entries are positive, and there exists a positive diagonal matrix D, such that
AD is strictly diagonal dominant, that is,

aij di > Σ |aij | dj , i = 1, ..., n.
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Looking at our matrix A0 (5) we observe that its diagonal entries are negative.
We consider the matrix −A0, so its diagonal elements are positive. According to
Proposition A.2, −A0 is a non-singular M -matrix if and only if there exist numbers
d1, d2, d3 and d4 larger than zero such that the following inequalities are satisfied

(µ+ λ) d1 > [βS + (1− q)ξ] d2 + σkS d4

(µ+ α+ ξ) d2 > λd1 + pλd3

(µ+ λ) d3 > [βR + σkR] d4

(µ+ α+ σ (kS + kR)) d4 > qξd2 + (1− p)λ d3.

(27)

Let 

d4 = 1,

d1 = [βS+ (1−q)ξ]d2 +σkS + ε
(µ+λ) ,

d3 =
Π
µ βR+σkR+ε

(µ+λ) ,

d2 = pλβR+pλσkR+λσkS+[λ+pλ+(µ+λ)]ε
(µ+α+ξ)(µ+λ)−[λβS+λ(1−q)ξ] ,

(28)

where ε > 0.
Obviously, the first three inequalities given by (27) hold and, to ensure d2 > 0,

we require

RS < 1− (µ+λ)pqξ
(1−p)α1

. (29)

Substituting the equations (28) into the last equation of system (27) we have

qξd2 + (1− p)λ d3 = (µ+λ)qξ[ pλβR+pλσkR+λσkS ]+(1−p)[λβR+σkR]k2+ε k1

k2(µ+λ) ,

where
k1 = (1− p)λα1

(
1−RS

)
+ qξ (µ+ λ) (2λ+ µ) ,

k2 = (µ+ α+ ξ) (µ+ λ)− [λβS + λ(1− q)ξ] .
(30)

When the equation (29) holds, that is, if RS < 1, then we have k1 > 0. Therefore,
the last inequality of the system (27) yields

ε <
1

k1
a4, (31)

and, to ensure ε > 0, we require a4 > 0.
Note that a4, defined by (7), is positive for (a) RR < 1, RS < 1 and RTot < 1 or

(b) RR > 1, RS > 1 and RTot < 1. Since the latter condition does not satisfy (29),

a4 > 0 if only if RR < 1, RS < 1− (µ+λ)pqξ
(1−p)α1

and RTot < 1.

Furthermore, letting RS = 0, then RTot < 1 for 0 < RR < 1 − α3

α1α2
. Similarly,

taking RR = 0, then RTot < 1 for

RS < 1− α3

α1α2
, (32)

where α3

α1α2
< 1.

From equations (29) and (32), it is straightforward to verify that

(µ+λ)pqξ
(1−p)α1

< α3

α1α2
.

Therefore, we can take 0 < ε < 1
k1
a4 so that the last inequality of the system

(27) is satisfied, and the system (28) has positive solution when RS < 1 − α3

α1α2
,

RR < 1− α3

α1α2
, and RTot < 1.
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This implies that −A0 is a non-singular M -matrix for RS < 1 − α3

α1α2
, RR <

1 − α3

α1α2
and RTot = α3

α1α2(1−RS)(1−RR)
< 1. From Proposition A.1 it follows that

the eigenvalues of the Jacobian matrix (5) of system (3) evaluated at the DFE have
negative real part.
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