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Abstract. In this paper, we study an age-structured SIS epidemic model with

periodicity and vertical transmission. We show that the spectral radius of the

Fréchet derivative of a nonlinear integral operator plays the role of a threshold
value for the global behavior of the model, that is, if the value is less than

unity, then the disease-free steady state of the model is globally asymptotically

stable, while if the value is greater than unity, then the model has a unique
globally asymptotically stable endemic (nontrivial) periodic solution. We also

show that the value can coincide with the well-know epidemiological threshold

value, the basic reproduction number R0.

1. Introduction. Seasonal fluctuations in the incidence of infectious diseases is
an important aspect of epidemics occurrence and an interesting subject in the field
of mathematical epidemiology. In this context, systems of nonlinear differential
equations with periodic coefficients are a natural mathematical tool for modeling
purposes and several authors have adopted this approach to explain the periodic
outbreak and the oscillations in the endemic presence of a disease in a population
[2, 3, 12, 13, 15, 16, 18, 19, 21].

The basic reproduction number R0, which is defined as the expected number of
secondary cases produced by a typical infected individual during its entire period
of infectiousness in a completely susceptible population [8], is known as a good
indicator of the future spread pattern of disease. That is, it can be expected that a
disease dies out if R0 < 1, while it remains endemic if R0 > 1. The mathematical
definition of R0 as the spectral radius of a linear integral operator called the next
generation operator was firstly given for autonomous cases [8], and has recently
been extended to periodic cases [2, 3, 19] and to more general nonautonomous cases
[12, 18]. Since R0 is defined for linearized systems around the disease-free steady
states, it plays the role of a threshold for the local behavior of the original systems.
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However, whether R0 plays the same role of the threshold and determines the global
behavior of these systems is generally an open question, and thus, we have to clarify
the relation between R0 and the global behavior of epidemic systems for each case.
In this paper, we investigate such relation for an age-structured SIS epidemic model
with periodicity and vertical transmission.

The global behavior of age-structured SIS epidemic models without periodicity
was successfully investigated in [4, 5, 6, 9], while the periodic case was investigated
in [15], where it has been proved that an endemic (nontrivial) periodic solution is
unique and even globally stable if it exists. However, no threshold-like condition
for the existence of such a solution was given. The purpose of this paper is to show
that the basic reproduction number R0, obtained for our periodic age-structured
SIS epidemic model, plays the role of such a threshold and, applying the previous
significant results in [15], we see that R0 is a threshold for the global behavior of
the model. To our knowledge, this is the first study of the relation between R0 and
the global behavior of an age-structured SIS epidemic model with periodicity and
vertical transmission (see [11] for the analysis of another age-structured epidemic
model with vertical transmission). In particular, this is in contrast to the instability
results obtained for age-structured SIR epidemic models (see, for instance, [1, 7, 17]).
Here we note that in this paper we use the SIS epidemic model as a case study.

The organization of this paper is as follows. In Section 2, we formulate the
model and normalize it. In Section 3, we show the well-posedness of our problem.
In Section 4, we show that if the spectral radius ρ (F) of a linear operator F is
greater than unity, then the normalized system has an endemic periodic solution.
Moreover, applying the results obtained in [15], we obtain uniqueness and global
stability results for the periodic solution . In Section 5, we show that if the spectral
radius ρ (F) is less than unity, then the disease-free of the normalized system is
globally asymptotically stable. In Section 6, we investigate the relation between
our threshold value ρ (F) and the basic reproduction number R0.

2. A basic model. Let p (a, t) be the age-density of the host population at time t
(a ∈ [0, a†] and t ≥ 0, where a† ∈ (0,+∞) is the maximum age for the population).
Let µ (a) be the age-specific mortality rate and β (a) be the age-specific birth rate.
Let us assume that the host population dynamics is described by the following von
Foerster equation with initial and boundary conditions:

∂p (a, t)

∂t
+
∂p (a, t)

∂a
+ µ (a) p (a, t) = 0,

p (a, 0) = p0 (a) , p (0, t) =

∫ a†

0

β (σ) p (σ, t) dσ,

(1)

where p0 (a) is the given initial age distribution. µ and β are assumed to be nonneg-
ative and measurable. In addition, β is assumed to be uniformly bounded above,
and the (demographic) basic reproduction number of the host population is assumed
to satisfy

R :=

∫ a†

0

β (a) e−
∫ a
0
µ(σ)dσda = 1.

Thus, the demographic steady state

p∗ (a) := b0e−
∫ a
0
µ(σ)dσ (2)
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of system (1) exists, where

b0 =

∫ a†

0

β (σ) p∗ (σ) dσ.

Since we can scale the size of b0 arbitrary, we set

b0 =
1∫ a†

0
e−

∫ a
0
µ(σ)dσda

, (3)

and obtain
∫ a†
0
p∗ (a) da = 1 from (2). Note that p∗ (a) is the solution of

dp∗ (a)

da
+ µ (a) p∗ (a) = 0,

p∗ (0) =

∫ a†

0

β (σ) p∗ (σ) dσ = b0.

(4)

In what follows, we assume that the density of the host population has reached the
steady state, that is, p (a, t) ≡ p∗ (a).

As far as the epidemics is concerned, the host population is divided into the two
epidemiological subclasses of susceptibles s (a, t) and infectives i (a, t). That is, we
have

p∗ (a) = s (a, t) + i (a, t) . (5)

For each t ≥ 0, let γ (a, t) be the age-specific recovery rate, λ (a, t) be the force
of infection to susceptible individuals aged a and k (σ, a, t) be the transmission
coefficient between susceptible individuals aged a and infective individuals aged σ.
In order to model the vertical transmission process of the disease, we introduce
a coefficient q ∈ (0, 1) which is the proportion of newborn offspring of infective
parents who are themselves infective. Under this setting, the SIS epidemic model
we consider in this paper is formulated as follows:

∂s (a, t)

∂t
+
∂s (a, t)

∂a
+ µ (a) s (a, t) = −λ (a, t) s (a, t) + γ (a, t) i (a, t) ,

∂i (a, t)

∂t
+
∂i (a, t)

∂a
+ µ (a) i (a, t) = λ (a, t) s (a, t)− γ (a, t) i (a, t) ,

λ (a, t) =

∫ a†

0

k (σ, a, t) i (σ, t) dσ,

s (0, t) =

∫ a†

0

β (σ) {s (σ, t) + (1− q) i (σ, t)} dσ,

i (0, t) = q

∫ a†

0

β (σ) i (σ, t) dσ, s (a, 0) = s0 (a) , i (a, 0) = i0 (a) ,

(6)

where s0 (a) and i0 (a) are given initial distributions. γ and k are assumed to
be nonnegative, measurable and uniformly bounded above by positive constants
γ+ < +∞ and k+ < +∞, respectively. In addition, in order to model the seasonally
fluctuating process of the disease, γ and k are assumed to be time-periodic with
common period T > 0, that is,

γ (a, t) = γ (a, t+ T ) , k (σ, a, t) = k (σ, a, t+ T )

for all a, t and σ.
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From (5), we have s (a, t) = p∗ (a)− i (a, t). Hence, substituting this into (6), we
can obtain the following single equation for i (a, t):

∂i (a, t)

∂t
+
∂i (a, t)

∂a
+ µ (a) i (a, t) = λ (a, t) {p∗ (a)− i (a, t)} − γ (a, t) i (a, t) ,

λ (a, t) =

∫ a†

0

k (σ, a, t) i (σ, t) dσ,

i (0, t) = q

∫ a†

0

β (σ) i (σ, t) dσ, i (a, 0) = i0 (a) .

Using u (a, t) := i (a, t) /p∗ (a) and equation (4), the system is normalized as

∂u (a, t)

∂t
+
∂u (a, t)

∂a
= λ (a, t) {1− u (a, t)} − γ (a, t)u (a, t) ,

λ (a, t) =

∫ a†

0

κ (σ, a, t)u (σ, t) dσ,

u (0, t) = q

∫ a†

0

g (σ)u (σ, t) dσ, u (a, 0) = u0 (a) ,

(7)

where

κ (σ, a, t) := k (σ, a, t) p∗ (σ) , g (σ) :=
β (σ) p∗ (σ)∫ a†

0
β (σ) p∗ (σ) dσ

. (8)

and the solution must satisfy

0 ≤ u(a, t) ≤ 1 .

Note that, from the definition, κ is also T -periodic with respect to time t.
The global behavior of system (7) is the main problem we consider in the following

sections.

3. Abstract formulation. Let E := L1 (0, a†). System (7) can be formulated as
the abstract Cauchy problem

d

dt
u (t) = Au (t) + F (t, u (t)) , u (0) = u0 (9)

in E, where A is a linear operator on E defined as
(Aϕ) (a) := − d

da
ϕ (a) ,

D (A) :=

{
ϕ ∈ E : ϕ ∈W 1,1 (0, a†) , ϕ (0) = q

∫ a†

0

g (σ)ϕ (σ) dσ

} (10)

and {F (t, ·)}t∈R+
is a family of nonlinear operators on E

(F (t, ϕ)) (a) := λ [a, t|ϕ] {1− ϕ (a)} − γ (a, t)ϕ (a) , (11)

where

λ [a, t|ϕ] :=

∫ a†

0

κ (σ, a, t)ϕ (σ, t) dσ. (12)

It is easy to see that the convex feasible region

C := {ϕ ∈ E : 0 ≤ ϕ (a) ≤ 1 a.e.} (13)

is positively invariant under the strongly continuous semigroup
{

etA
}
t∈R+

defined

by (
etAϕ

)
(a) :=

{
ϕ (a− t) , a > t,

b (t− a) , t > a,
(14)
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where b is the solution of integral equation

b (t) =


q

∫ t

0

g (σ) b (t− σ) dσ + q

∫ a†

t

g (σ)ϕ (σ − t) dσ, t < a†,

q

∫ a†

0

g (σ) b (t− σ) dσ, t > a†.

(15)

That is, etA (C) ⊂ C. We assume that the domain of {F (t, ·)}t∈R+
is limited to

C ⊂ E. As in [4], we can prove the following Lemma:

Lemma 3.1. (i) F (t, ·) : C ⊂ E → E is Lipschitz continuous for any fixed
t ∈ R+.

(ii) There exists a positive constant α ∈ (0, 1) such that ϕ+ αF (t, ϕ) ∈ C for all
ϕ ∈ C and t ∈ R+.

The proof is omitted here (see the proof of Proposition 3.1 of [4]). Using α in
(ii) of Lemma 3.1, we rewrite problem (9) as

d

dt
u (t) =

(
A− 1

α

)
u (t) +

1

α
{u (t) + αF (t, u (t))} , u (0) = u0. (16)

The mild solution of (16) is given by the solution of the integral equation

u (t) = e−
1
α tetAu0 +

1

α

∫ t

0

e−
1
α (t−σ)e(t−σ)A {u (σ) + αF (σ, u (σ))} dσ. (17)

Consider the scheme
u0 (t) := u0,

un+1 (t) := e−
1
α tetAu0 +

1

α

∫ t

0

e−
1
α (t−σ)e(t−σ)A {un (σ) + αF (σ, un (σ))} dσ,

n = 0, 1, 2, . . .

(18)
for the standard iterative procedure. From Lemma 3.1, we see that un+1 ∈ C
if un ∈ C. Hence, according to the argument in [4], we can prove the following
proposition:

Proposition 1. For u0 ∈ C, problem (9) has a unique mild solution in C, which
defines a flow S (t)u0 satisfying S (t) (C) ⊂ C.

4. Existence of an endemic periodic solution. In this section, we investigate
the existence of an endemic periodic solution u∗ to system (7). Such a solution
must satisfy

∂u∗ (a, t)

∂t
+
∂u∗ (a, t)

∂a
= λ∗ (a, t) {1− u∗ (a, t)} − γ (a, t)u∗ (a, t) ,

λ∗ (a, t) =

∫ a†

0

κ (σ, a, t)u∗ (σ, t) dσ,

u∗ (0, t) = q

∫ a†

0

g (σ)u∗ (σ, t) dσ, u∗ (a, t) = u∗ (a, t+ T ) .

(19)
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Integrating the first equation of (19) along the characteristic lines, we have

u∗ (a, t) =

∫ a

0

λ∗ (σ, t− a+ σ) e−
∫ a
σ
{λ∗(ρ,t−a+ρ)+γ(ρ,t−a+ρ)}dρdσ

+ e−
∫ a
0
{λ∗(ρ,t−a+ρ)+γ(ρ,t−a+ρ)}dρ u∗ (0, t− a)

=

∫ a

0

λ∗ (a− τ, t− τ) e−
∫ τ
0
{λ∗(a−η,t−η)+γ(a−η,t−η)}dηdτ

+ e−
∫ a
0
{λ∗(a−η,t−η)+γ(a−η,t−η)}dη u∗ (0, t− a) . (20)

Substituting (20) into the second and third equations of (19), we have

λ∗ (a, t) =∫ a†

0

κ (σ, a, t)

∫ σ

0

λ∗ (σ − τ, t− τ) e−
∫ τ
0
{λ∗(σ−η,t−η)+γ(σ−η,t−η)}dηdτdσ

+

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
{λ∗(σ−η,t−η)+γ(σ−η,t−η)}dη u∗ (0, t− σ) dσ (21)

and

u∗ (0, t) =

q

∫ a†

0

g (σ)

∫ σ

0

λ∗ (σ − τ, t− τ) e−
∫ τ
0
{λ∗(σ−η,t−η)+γ(σ−η,t−η)}dηdτdσ

+q

∫ a†

0

g (σ) e−
∫ σ
0
{λ∗(σ−η,t−η)+γ(σ−η,t−η)}dη u∗ (0, t− σ) dσ, (22)

respectively. Thus, if we find nontrivial, positive, T-periodic λ∗ and u∗ (0, ·), sat-
isfying (21) and (22), by (20) we also obtain a nontrivial positive T-periodic u∗,
because so are λ∗ and u∗ (0, ·). Such u∗ can be regarded as the desired endemic pe-
riodic solution of system (7) in a weak sense, namely in (7) the differential operator
∂t + ∂a is interpreted as the directional derivative D

(Dϕ) (a, t) := lim
h→0

ϕ (a+ h, t+ h)− ϕ (a, t)

h
.

Thus, in what follows, we look for nontrivial positive periodic λ∗ and u∗ (0, ·) sat-
isfying (21) and (22).

Let

• XT be the set of locally integrable T -periodic E-valued functions;
• XT,+ be the positive cone of XT ;
• YT be the set of locally integrable T -periodic real-valued functions;
• YT,+ be the positive cone of YT ;

• ỸT,+ := {ϕ ∈ YT,+ : 0 ≤ ϕ (t) ≤ 1 a.e.}.
The sets XT and YT are actually Banach spaces when respectively endowed with
the norms

||ϕ||XT :=

∫ T

0

||ϕ (t)||E dt =

∫ T

0

∫ a†

0

|ϕ (a, t)|dadt

and

||ϕ||YT :=

∫ T

0

|ϕ (t)|dt .

Let us define a nonlinear positive operator Φ : XT × YT → XT × YT as

Φ (ϕ1, ϕ2) := (Φ1 (ϕ1, ϕ2) ,Φ2 (ϕ1, ϕ2)) , (23)
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where

(Φ1 (ϕ1, ϕ2)) (a, t) =∫ a†

0

κ (σ, a, t)

∫ σ

0

ϕ1 (σ − τ, t− τ) e−
∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτdσ

+

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dη ϕ2 (t− σ) dσ (24)

and

(Φ2 (ϕ1, ϕ2)) (t) =

q

∫ a†

0

g (σ)

∫ σ

0

ϕ1 (σ − τ, t− τ) e−
∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτdσ

+q

∫ a†

0

g (σ) e−
∫ σ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dη ϕ2 (t− σ) dσ. (25)

Then, from (21) and (22), we see that a nontrivial positive fixed point (ϕ∗1, ϕ
∗
2) ∈

(XT,+ \ {0}) ×
(
ỸT,+ \ {0}

)
of the operator Φ corresponds to the desired λ∗ and

u∗ (0, ·). Therefore, in what follows, we look for such a fixed point (ϕ∗1, ϕ
∗
2) of Φ.

First, we investigate the mathematical properties of the operator Φ. We have
the following lemma:

Lemma 4.1. The operator Φ : XT × YT → XT × YT , defined in (23) has the
following properties

(i) XT,+ × ỸT,+ is positively invariant for Φ, that is,

Φ
(
XT,+ × ỸT,+

)
⊂ XT,+ × ỸT,+;

(ii) Φ is uniformly bounded on XT,+ × ỸT,+;

(iii) Φ is monotone nondecreasing on XT,+ × ỸT,+.

Proof. First we prove (i). Since the inclusion Φ1

(
XT,+ × ỸT,+

)
⊂ XT,+ is obvious

from (24), it suffices to show that Φ2

(
XT,+ × ỸT,+

)
⊂ ỸT,+. From (25), we have

Φ2 (ϕ1, ϕ2) = q

∫ a†

0

g (σ) dσ

−q
∫ a†

0

g (σ)

∫ σ

0

γ (σ − τ, t− τ) e−
∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτdσ

+q

∫ a†

0

g (σ) e−
∫ σ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dη {ϕ2 (t− σ)− 1} dσ, (26)

where we have used

−
∫ σ

0

ϕ1 (σ − τ, t− τ) e−
∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτ

=

∫ σ

0

γ (σ − τ, t− τ) e−
∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτ

+

∫ σ

0

d

d τ
e−

∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτ.

Since
∫ a†
0
g (σ) dσ = 1 and ϕ2 ≤ 1 a.e., we have Φ2 (ϕ1, ϕ2) ≤ q ≤ 1 a.e.. Since

Φ2 (ϕ1, ϕ2) ≥ 0 a.e. is obvious from (25), the claim is proved.
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Next we prove (ii). From the above proof, we have Φ2

(
XT,+ × ỸT,+

)
≤ 1,

hence, we only have to show that there exists a positive constant M > 0 such that

Φ1

(
XT,+ × ỸT,+

)
≤M . From (24), we have

Φ1 (ϕ1, ϕ2) =

∫ a†

0

κ (σ, a, t) dσ

−
∫ a†

0

κ (σ, a, t)

∫ σ

0

γ (σ − τ, t− τ) e−
∫ τ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dηdτdσ

+

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
{ϕ1(σ−η,t−η)+γ(σ−η,t−η)}dη {ϕ2 (t− σ)− 1} dσ. (27)

Hence, since ϕ2 ≤ 1 a.e. because ϕ2 ∈ ỸT,+, we have

Φ1

(
XT,+ × ỸT,+

)
≤
∫ a†

0

κ (σ, a, t) dσ ≤ k+
∫ a†

0

p∗ (σ) dσ =: M

and the claim is proved.
(iii) is obvious from (26) and (27) (note that each of their last terms is nonpositive

for ϕ2 ∈ ỸT,+).

As in the previous studies [4, 5, 9, 10], we can expect that the spectral radius
of the Fréchet derivative DΦ [0] of Φ at zero plays the role of a threshold for the
existence of the desired fixed point (ϕ∗1, ϕ

∗
2) of Φ. Thus, we consider the positive

linear operator

F (ϕ1, ϕ2) := (F1 (ϕ1, ϕ2) ,F2 (ϕ1, ϕ2)) (= DΦ [0] (ϕ1, ϕ2)) , (28)

on XT × YT , where

(F1 (ϕ1, ϕ2)) (a, t) =∫ a†

0

κ (σ, a, t)

∫ σ

0

ϕ1 (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ

+

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
γ(σ−η,t−η)dη ϕ2 (t− σ) dσ (29)

and

(F2 (ϕ1, ϕ2)) (t) =

q

∫ a†

0

g (σ)

∫ σ

0

ϕ1 (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ

+q

∫ a†

0

g (σ) e−
∫ σ
0
γ(σ−η,t−η)dη ϕ2 (t− σ) dσ, (30)

and show that the spectral radius ρ (F) of F plays the role of such a threshold.
In order to establish the main theorem of this section, we need some additional

assumptions on the parameters. First we assume

Assumption 1. k (σ, a, t) = 0, β (σ) = 0 and γ (σ, t) = 0 for all σ ∈ (−∞, 0) ∪
(a†,+∞).

Note that this assumption implies κ (σ, a, t) = 0 and g (σ) = 0 for all σ ∈
(−∞, 0) ∪ (a†,+∞).
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Next, setting
Ψ1,1 (x, z, a, t) := κ (z + x, a, t) e−

∫ z
0
γ(z+x−η,t−η)dη,

Ψ1,2 (z, a, t) := κ (z, a, t) e−
∫ z
0
γ(z−η,t−η)dη,

Ψ2,1 (x, z, t) := qg (z + x) e−
∫ z
0
γ(z+x−η,t−η)dη,

Ψ2,2 (z, t) := qg (z) e−
∫ z
0
γ(z−η,t−η)dη, x ≥ 0, z ≥ 0

(31)

and 

Ψ̂1,1 (x, s, a, t) :=

{ ∑+∞
n=0 Ψ1,1 (x, t− s+ nT, a, t) , t− s > 0,∑+∞
n=1 Ψ1,1 (x, t− s+ nT, a, t) , t− s < 0,

Ψ̂1,2 (s, a, t) :=

{ ∑+∞
n=0 Ψ1,2 (t− s+ nT, a, t) , t− s > 0,∑+∞
n=1 Ψ1,2 (t− s+ nT, a, t) , t− s < 0,

Ψ̂2,1 (x, s, t) :=

{ ∑+∞
n=0 Ψ2,1 (x, t− s+ nT, t) , t− s > 0,∑+∞
n=1 Ψ2,1 (x, t− s+ nT, t) , t− s < 0,

Ψ̂2,2 (s, t) :=

{ ∑+∞
n=0 Ψ2,2 (t− s+ nT, t) , t− s > 0,∑+∞
n=1 Ψ2,2 (t− s+ nT, t) , t− s < 0

(32)

(note that each of the series is well-defined by Assumption 1), we make the following
assumption:

Assumption 2. The following equations hold uniformly for x ∈ [0, T ] and s ∈
[0, a†]:

lim
h→0

∫ T

0

∫ a†

0

∣∣∣Ψ̂1,1 (x, s, a+ h, t+ h)− Ψ̂1,1 (x, s, a, t)
∣∣∣dadt = 0,

lim
h→0

∫ T

0

∫ a†

0

∣∣∣Ψ̂1,2 (s, a+ h, t+ h)− Ψ̂1,2 (s, a, t)
∣∣∣dadt = 0,

lim
h→0

∫ T

0

∣∣∣Ψ̂2,1 (x, s, t+ h)− Ψ̂2,1 (x, s, t)
∣∣∣dt = 0,

lim
h→0

∫ T

0

∣∣∣Ψ̂2,2 (s, t+ h)− Ψ̂2,2 (s, t)
∣∣∣ dt = 0.

(33)

These assumptions are required for proving the compactness of operator F , in
view of the use of the Krein-Rutman theorem (see [14]). Thus, we proceed to prove
the following:

Lemma 4.2. F is compact.

Proof. Let

(F1,1ϕ) (a, t) :=

∫ a†

0

κ (σ, a, t)

∫ σ

0

ϕ (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ,

(F1,2ψ) (a, t) :=

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
γ(σ−η,t−η)dη ψ (t− σ) dσ,

(F2,1ϕ) (t) := q

∫ a†

0

g (σ)

∫ σ

0

ϕ (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ,

(F2,2ψ) (t) := q

∫ a†

0

g (σ) e−
∫ σ
0
γ(σ−η,t−η)dη ψ (t− σ) dσ, ϕ ∈ XT , ψ ∈ YT .

(34)
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These are linear operators defined on XT or on YT , precisely

F1,1 : XT → XT , F1,2 : YT → XT ,
F2,1 : XT → YT , F2,2 : YT → YT .

Then, from (28)-(30), we have

F (ϕ1, ϕ2) = (F1,1ϕ1 + F1,2ϕ2, F2,1ϕ1 + F2,2ϕ2) .

and, to complete the proof, it suffices to show the compactness of each Fi,j (i, j =
1, 2).

First we consider F1,1. From Assumption 1, we have

(F1,1ϕ) (a, t) =

∫ +∞

0

κ (σ, a, t)

∫ σ

0

ϕ (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ

=

∫ +∞

0

∫ +∞

τ

κ (σ, a, t) e−
∫ τ
0
γ(σ−η,t−η)dηϕ (σ − τ, t− τ) dσdτ

=

∫ +∞

0

∫ +∞

0

κ (τ + x, a, t) e−
∫ τ
0
γ(τ+x−η,t−η)dηϕ (x, t− τ) dxdτ

=

∫ t

−∞

∫ +∞

0

κ (t− s+ x, a, t) e−
∫ t−s
0

γ(t−s+x−η,t−η)dηϕ (x, s) dxds. (35)

Note that
∫ t
−∞ =

∫ t
0

+
∑+∞
n=0

∫ −nT
−(n+1)T

and∫ −nT
−(n+1)T

∫ +∞

0

κ (t− s+ x, a, t) e−
∫ t−s
0

γ(t−s+x−η,t−η)dηϕ (x, s) dxds

=

∫ T

0

∫ +∞

0

κ (t− s+ (n+ 1)T + x, a, t) e−
∫ t−s+(n+1)T
0 γ(t−s+(n+1)T+x−η,t−η)dη

ϕ (x, s− (n+ 1)T ) dxds

=

∫ T

0

∫ +∞

0

Ψ1,1 (x, t− s+ (n+ 1)T, a, t)ϕ (x, s) dxds. (36)

From (35)-(36) and Assumption 1, we have

(F1,1ϕ) (a, t) =

∫ T

0

∫ +∞

0

Ψ̂1,1 (x, s, a, t)ϕ (x, s) dxds

=

∫ T

0

∫ a†

0

Ψ̂1,1 (x, s, a, t)ϕ (x, s) dxds . (37)

Then, regarding F1,1 as an operator on L1 ([0, a†]× [0, T ]), from Assumption 2 and
the well-known compactness criteria in L1 (see, for instance, [20], p.275), we see
that F1,1 is compact. Of course F1,1 is compact also regarded as an operator in
XT .

Similarly, we have

(F1,2ψ) (a, t) =

∫ t

−∞
κ (t− s, a, t) e−

∫ t−s
0

γ(t−s−η,t−η)dηψ (s) ds,

(F2,1ϕ) (t) =

∫ t

−∞

∫ +∞

0

qg (t− s+ x) e−
∫ t−s
0

γ(t−s+x−η,t−η)dηϕ (x, s) dxds,

(F2,2ψ) (t) =

∫ t

−∞
qg (t− s) e−

∫ t−s
0

γ(t−s−η,t−η)dηψ (s) ds, ϕ ∈ XT , ψ ∈ YT
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and

(F1,2ψ) (a, t) =

∫ T

0

Ψ̂1,2 (x, a, t)ψ (x) dx, (38)

(F2,1ϕ) (t) =

∫ T

0

∫ a†

0

Ψ̂2,1 (x, s, t)ϕ (x, s) dxds,

(F2,2ψ) (t) =

∫ T

0

Ψ̂2,2 (s, t)ψ (s) ds.

Thus, as in the above case of F1,1, we see that F1,2, F2,1 and F2,2 are compact.

As we mentioned above, the Krein-Rutman theorem can be applied to F . In
fact, since F is compact, linear and positive, the Krein-Rutman theorem (see [14])
guarantees that if ρ (F) is strictly positive, then it is an eigenvalue associated with
a nonzero nonnegative eigenvector v = (v1, v2) ∈ XT,+ × YT,+. Using this fact, we
prove the following proposition, which is the main result of this section:

Proposition 2. If ρ (F) > 1, then there exists a nontrivial positive fixed point
ϕ∗ = (ϕ∗1, ϕ

∗
2) of Φ in (XT,+ \ {0})× (YT,+ \ {0}), that is, ϕ∗ = Φ (ϕ∗).

Proof. As we noticed before, there exists a non trivial v = (v1, v2) ∈ XT,+ × YT,+
such that we have

ρ (F)v = Fv.

Hence, from (37) and (38), we have

ρ (F) v1 = F1,1v1 + F1,2v2

=

∫ T

0

∫ a†

0

Ψ̂1,1 (x, s, a, t) v1 (x, s) dxds+

∫ T

0

Ψ̂1,2 (x, a, t) v2 (x) dx

≤ Ψ̂+
1,1 ||v1||XT + Ψ̂+

1,2 ||v2||YT , (39)

where Ψ̂+
1,1 := sup Ψ̂1,1 (x, s, a, t) < +∞ and Ψ̂+

1,2 := sup Ψ̂1,2 (x, a, t) < +∞ (note

that such suprema exist because of Assumption 1). Let

λ0 := (λ0,1, λ0,2) =
ρ (F) log ρ (F)(

Ψ̂+
1,1 ||v1||XT + Ψ̂+

1,2 ||v2||YT
)
ca†

(v1, v2) , (40)

where c > 1 is a sufficiently large constant such that λ0,2 ≤ 1 a.e.. Since ρ (F) > 1,

we have log ρ (F) > 0, hence λ0 = (λ0,1, λ0,2) ∈ XT,+ × ỸT,+. From (24), we have

Φ1λ0 = Φ1 (λ0,1, λ0,2) ≥∫ a†

0

κ (σ, a, t)

∫ σ

0

λ0,1 (σ − τ, t− τ) e−
∫ ca†
0 λ0,1(σ−η,t−η)dηe−

∫ τ
0
γ(σ−η,t−η)dηdτdσ

+

∫ a†

0

κ (σ, a, t) e−
∫ ca†
0 λ0,1(σ−η,t−η)dηe−

∫ σ
0
γ(σ−η,t−η)dη λ0,2 (t− σ) dσ.



940 TOSHIKAZU KUNIYA AND MIMMO IANNELLI

Hence, from (39) and (40),

Φ1λ0 ≥ 1

ρ (F)

{∫ a†

0

κ (σ, a, t)

∫ σ

0

λ0,1 (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ

+

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
γ(σ−η,t−η)dη λ0,2 (t− σ) dσ

}

=
1

ρ (F)
F1 (λ0,1, λ0,2) = λ0,1. (41)

Moreover, from (25),

Φ2λ0 = Φ2 (λ0,1, λ0,2) ≥

q

∫ a†

0

g (σ)

∫ σ

0

λ0,1 (σ − τ, t− τ) e−
∫ ca†
0 λ0,1(σ−η,t−η)dηe−

∫ τ
0
γ(σ−η,t−η)dηdτdσ

+q

∫ a†

0

g (σ) e−
∫ ca†
0 λ0,1(σ−η,t−η)dηe−

∫ σ
0
γ(σ−η,t−η)dη λ0,2 (t− σ) dσ.

Hence, again from (39) and (40), we have

Φ2λ0 ≥ 1

ρ (F)

{
q

∫ a†

0

g (σ)

∫ σ

0

λ0,1 (σ − τ, t− τ) e−
∫ τ
0
γ(σ−η,t−η)dηdτdσ

+q

∫ a†

0

g (σ) e−
∫ σ
0
γ(σ−η,t−η)dη λ0,2 (t− σ) dσ

}

=
1

ρ (F)
F2 (λ0,1, λ0,2) = λ0,2. (42)

From (41) and (42), we have Φλ0 ≥ λ0. Since the monotonicity of Φ on XT,+× ỸT,+
is guaranteed by Lemma 4.1, we can construct a monotone sequence

λn := Φ (λn−1) , n = 1, 2, . . .

satisfying λn ≥ λn−1 for all n. Since the positive invariance of XT,+ × ỸT,+ for Φ
and the uniform boundedness of Φ on the space is guaranteed by Lemma 4.1, it
follows from B. Levi’s theorem that λ∗ := limn→+∞ λ∗n ∈ XT,+ × ỸT,+ exists and
satisfies λ∗ = Φ (λ∗). Thus λ∗ is the fixed point ϕ∗ of Φ we look for.

The previous result can be implemented with the results obtained in [15]. In
fact, once existence of an endemic periodic solution u∗ of system (7) is proved, we
can resort to [15] to get uniqueness and global asymptotic stability. To this aim we
consider the following assumption

Assumption 3. (i) β (a) 6= 0 and a0 := max supp β < a†.
(ii) There exist a positive constant ε > 0 and nonnegative measurable functions

κ1 (a) and κ2 (a) such that

εκ1 (σ)κ2 (a) ≤ κ (σ, a, t) ≤ κ1 (σ)κ2 (a)

and κ1 (a) 6= 0 on (0, a†) and κ2 (a) 6= 0 on (0, a0).

Then, from Theorem 5.5 in [15], we have the following proposition.
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Proposition 3. Under the assumptions 1-3, system (7) has at most one endemic
(nontrivial) periodic solution u∗ in ΩT := {ϕ ∈ XT,+ : 0 ≤ ϕ ≤ 1 a.e.}. Further-
more, if the initial condition 0 ≤ u0 (a) ≤ 1 satisfies

supp u0 ∩ [0, a0) 6= ∅

or

supp u0 ∩ [0,max supp κ1) 6= ∅,

then u∗ is globally asymptotically stable.

5. Global stability of the disease-free steady state. The global stability of
the disease-free steady state u ≡ 0 of system (7), for ρ (F) < 1, can also be proved
by using Theorem 5.6 in [15]. The theorem is applied to system (7) as the following
lemma:

Lemma 5.1. If system (7) has no endemic (nontrivial) periodic solution u∗ in
ΩT , then the disease-free steady state u ≡ 0 of the system is globally asymptotically
stable.

In order to use this lemma, we claim that system (7) has no endemic periodic
solution u∗ ∈ ΩT \ {0} if ρ (F) < 1. In fact, if such a periodic solution u∗ exists,
then the nonlinear operator Φ defined above by (23) has a nontrivial fixed point
ϕ∗ = Φ (ϕ∗) in (XT,+ \ {0}) × (YT,+ \ {0}). However, since ϕ∗ = Φ (ϕ∗) ≤ Fϕ∗,
we have that ρ (F) ≥ 1 as a contradiction. In conclusion, we obtain the following
proposition:

Proposition 4. If ρ (F) < 1, then system (7) has no endemic (nontrivial) periodic
solution u∗ in ΩT , and the disease-free steady state u ≡ 0 of the system is globally
asymptotically stable.

6. The basic reproduction number R0. Finally we investigate the relation be-
tween our threshold value ρ (F) and the basic reproduction number R0 [8] which is
a well-known epidemiological threshold value.

According to its epidemiological definition,R0 is the average number of secondary
cases produced by a typical infected individual, introduced into a completely suscep-
tible population, during its entire period of infectiousness. From the mathematical
viewpoint R0 is the spectral radius of an integral operator called the next gener-
ation operator and, recently, its definition has been extended to the case of time
periodic environments [2, 3, 12, 18, 19].

Linearizing system (6) around the disease-free steady state (p∗ (a) , 0), we have

∂ĩ (a, t)

∂t
+
∂ĩ (a, t)

∂a
+ µ (a) ĩ (a, t) = λ̃ (a, t)− γ (a, t) ĩ (a, t) ,

λ̃ (a, t) = p∗ (a)

∫ a†

0

k (σ, a, t) ĩ (σ, t) dσ,

ĩ (0, t) = q

∫ a†

0

β (σ) ĩ (σ, t) dσ,

(43)
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where ĩ denotes the perturbation from the disease-free steady state i ≡ 0. Integrat-
ing the first equation of (43) along the characteristic lines, we have

ĩ (a, t) =

∫ a

0

λ̃ (σ, t− a+ σ) e−
∫ a
σ
{µ(ρ)+γ(ρ,t−a+ρ)}dρdσ

+ e−
∫ a
0
{µ(ρ)+γ(ρ,t−a+ρ)}dρ ĩ (0, t− a)

=

∫ a

0

λ̃ (a− τ, t− τ) e−
∫ τ
0
{µ(a−η)+γ(a−η,t−η)}dηdτ

+ e−
∫ a
0
{µ(a−η)+γ(a−η,t−η)}dη ĩ (0, t− a) . (44)

Substituting (44) into the second equation of (43), and using Assumption 1, we
have

λ̃ (a, t) =

p∗ (a)

∫ a†

0

k (σ, a, t)

∫ σ

0

λ̃ (σ − τ, t− τ) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dηdτdσ

+p∗ (a)

∫ a†

0

k (σ, a, t) e−
∫ σ
0
{µ(σ−η)+γ(σ−η,t−η)}dη ĩ (0, t− σ) dσ

= p∗ (a)

∫ +∞

0

∫ +∞

τ

k (σ, a, t) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dηλ̃ (σ − τ, t− τ) dσdτ

+p∗ (a)

∫ +∞

0

k (σ, a, t) e−
∫ σ
0
{µ(σ−η)+γ(σ−η,t−η)}dη ĩ (0, t− σ) dσ . (45)

Similarly, substituting (44) into the third equation of (43), we have

ĩ (0, t) = q

∫ +∞

0

∫ +∞

τ

β (σ) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dηλ̃ (σ − τ, t− τ) dσdτ

+q

∫ +∞

0

β (σ) e−
∫ σ
0
{µ(σ−η)+γ(σ−η,t−η)}dη ĩ (0, t− σ) dσ. (46)

Let us define the linear operator A (t, τ) from L1 (0,+∞)× R into itself as

(A (t, τ)ϕ) (a) :=

(
(A1,1 (t, τ)ϕ1) (a) + (A1,2 (t, τ)ϕ2) (a)

A2,1 (t, τ)ϕ1 +A2,2 (t, τ)ϕ2

)
, ϕ =

(
ϕ1 (a)
ϕ2

)
,

(47)
where

(A1,1 (t, τ)ϕ1) (a) := p∗ (a)

∫ +∞

τ

k (σ, a, t) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dηϕ1 (σ − τ) dσ,

(A1,2 (t, τ)ϕ2) (a) := p∗ (a) k (τ, a, t) e−
∫ τ
0
{µ(τ−η)+γ(τ−η,t−η)}dη ϕ2,

A2,1 (t, τ)ϕ1 := q

∫ +∞

τ

β (σ) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dηϕ1 (σ − τ) dσ,

A2,2 (t, τ)ϕ2 := qβ (τ) e−
∫ τ
0
{µ(τ−η)+γ(τ−η,t−η)}dηϕ2, ϕ1 ∈ L1 (0,+∞) , ϕ2 ∈ R.

Then, following the arguments in [2, 3, 12, 18, 19], we see that the basic reproduction
number R0 is obtained as the spectral radius of the next generation operator

(Kϕ) (t) :=

∫ +∞

0

A (t, τ)ϕ (t− τ) dτ, ϕ ∈ VT , (48)
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where VT denotes the space of T -periodic vector-valued functions ϕ = (ϕ1, ϕ2) such
that ϕ1 (t) ∈ L1 (0,+∞) and ϕ2 (t) ∈ R for each t. Concerning the relation between
this R0 = ρ (K) and the threshold value ρ (F), we have the following proposition.

Proposition 5. Let F and K be defined by (28) and (48), respectively. Then,
ρ (F) = ρ (K) = R0.

Proof. The next generation operator K can be regarded as a linear operator on
XT,+ × YT,+ such that

(K (ϕ1, ϕ2)) (a, t) :=

(
(K1,1ϕ1) (a, t) + (K1,2ϕ2) (a, t)

(K2,1ϕ1) (t) + (K2,2ϕ2) (t)

)
, (49)

where

(K1,1ϕ1) (a, t) := p∗ (a)

∫ +∞

0

∫ +∞

τ

k (σ, a, t) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dη

ϕ1 (σ − τ, t− τ) dσdτ,

(K1,2ϕ2) (a, t) := p∗ (a)

∫ +∞

0

k (σ, a, t) e−
∫ σ
0
{µ(σ−η)+γ(σ−η,t−η)}dηϕ2(t− σ)dσ,

(K2,1ϕ1) (t) := q

∫ +∞

0

∫ +∞

τ

β (σ) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dηϕ1 (σ − τ, t− τ) dσdτ,

(K2,2ϕ2) (t) := q

∫ +∞

0

β (σ) e−
∫ σ
0
{µ(σ−η)+γ(σ−η,t−η)}dηϕ2 (t− σ) dσ,

ϕ1 ∈ XT,+, ϕ2 ∈ YT,+.

Let us define an operator L on XT,+ × YT,+ by

(L (ϕ1, ϕ2)) (a, t) =

(
p∗ (a)ϕ1 (a, t)

b0ϕ2 (t)

)
, (50)

where p∗ (a) and b0 are the demographic parameters defined by (2) and (3), respec-
tively. We claim that KL = LF . In fact, we have

(KL (ϕ1, ϕ2)) (a, t) :=

(
(K1,1p

∗ϕ1) (a, t) + (K1,2 b0ϕ2) (a, t)
(K2,1p

∗ϕ1) (t) + (K2,2 b0ϕ2) (t)

)
, (51)

and

(K1,1p
∗ϕ1) (a, t) = p∗ (a)

∫ +∞

0

∫ +∞

τ

k (σ, a, t) e−
∫ τ
0
{µ(σ−η)+γ(σ−η,t−η)}dη

p∗ (σ − τ)ϕ1 (σ − τ, t− τ) dσdτ

= p∗ (a)

∫ a†

0

∫ σ

0

κ (σ, a, t) e−
∫ τ
0
γ(σ−η,t−η)dηϕ1 (σ − τ, t− τ) dτdσ

= (p∗F1,1ϕ1) (a, t) ,

(K1,2b0ϕ2) (a, t) = p∗ (a)

∫ +∞

0

k (σ, a, t) b0e−
∫ σ
0
µ(σ−η)dηe−

∫ σ
0
γ(σ−η,t−η)dη

ϕ2 (t− σ) dσ

= p∗ (a)

∫ a†

0

κ (σ, a, t) e−
∫ σ
0
γ(σ−η,t−η)dηϕ2 (t− σ) dσ

= (p∗F1,2ϕ2) (a, t) ,
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(K2,1p
∗ϕ1) (t) = q

∫ +∞

0

∫ +∞

τ

β (σ) b0e−
∫ σ
0
µ(ρ)dρe−

∫ τ
0
γ(σ−η,t−η)dη

ϕ1 (σ − τ, t− τ) dσdτ

= b0q

∫ a†

0

∫ σ

0

g (σ) e−
∫ τ
0
γ(σ−η,t−η)dηϕ1 (σ − τ, t− τ) dτdσ

= (b0F2,1ϕ1) (t)

and

(K2,2b0ϕ2) (t) = q

∫ +∞

0

β (σ) p∗ (σ) e−
∫ σ
0
γ(σ−η,t−η)dηϕ2 (t− σ) dσ

= b0q

∫ a†

0

g (σ) e−
∫ σ
0
γ(σ−η,t−η)dηϕ2 (t− σ) dσ

= (b0F2,2ϕ2) (t) .

Thus, we have

KL (ϕ1, ϕ2) =

(
p∗ (F1,1ϕ1 + F1,2ϕ2)
b0 (F2,1ϕ1 + F2,2ϕ2)

)
= LF (ϕ1, ϕ2) ,

hence L−1KL = F . Since ρ
(
L−1KL

)
= ρ (K) = R0, we arrive at the conclusion.

In conclusion, from Propositions 2-5, we obtain the following main theorem of
this paper.

Theorem 6.1. Let K be the next generation operator defined by (48). Then

(i) If R0 = ρ (K) < 1, then system (7) has no endemic (nontrivial) periodic
solution in ΩT , and the disease-free steady state u ≡ 0 of the system is globally
asymptotically stable.

(ii) If R0 = ρ (K) > 1, then system (7) has a unique endemic (nontrivial) periodic
solution u∗ ∈ ΩT \ {0}. Furthermore, it is globally asymptotically stable if the
initial condition 0 ≤ u0 (a) ≤ 1 satisfies supp u0 ∩ [0, a0) 6= ∅ or supp u0 ∩
[0,max supp κ1) 6= ∅.

7. Discussion. We have formulated an age-structured SIS epidemic model (6) with
periodicity and vertical transmission. The system was normalized to system (7), and
the existence of an endemic (nontrivial) periodic solution u∗ of (7) was investigated.
We have shown that the spectral radius ρ (F) of the Fréchet derivative F of a
nonlinear operator Φ at 0 plays the role of a threshold for the existence of such
u∗, that is, if ρ (F) > 1, then u∗ is obtained as a nontrivial fixed point of Φ. The
uniqueness and global stability results obtained in [15] were directly applied to our
case, and thus, we have shown that ρ (F) is a threshold for the global behavior
of system (7). Furthermore, we have shown that if ρ (F) < 1, then the disease-
free steady state u ≡ 0 of system (7) is globally asymptotically stable. The relation
between ρ (F) and the basic reproduction numberR0 was also investigated. We have
shown that the two threshold values coincide. Consequently, this study is regarded
as the first one showing that R0 plays the role of a threshold for the global behavior
of an age-structured SIS epidemic model with periodicity and vertical transmission.
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version of this paper.
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