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Abstract. In this article, we propose a general predator-prey system where

prey is subject to Allee effects and disease with the following unique features:
(i) Allee effects built in the reproduction process of prey where infected prey (I-

class) has no contribution; (ii) Consuming infected prey would contribute less

or negatively to the growth rate of predator (P-class) in comparison to the con-
sumption of susceptible prey (S-class). We provide basic dynamical properties

for this general model and perform the detailed analysis on a concrete model

(SIP-Allee Model) as well as its corresponding model in the absence of Allee
effects (SIP-no-Allee Model); we obtain the complete dynamics of both models:

(a) SIP-Allee Model may have only one attractor (extinction of all species), two

attractors (bi-stability either induced by small values of reproduction number
of both disease and predator or induced by competition exclusion), or three

attractors (tri-stability); (b) SIP-no-Allee Model may have either one attractor

(only S-class survives or the persistence of S and I-class or the persistence of S
and P-class) or two attractors (bi-stability with the persistence of S and I-class

or the persistence of S and P-class). One of the most interesting findings is
that neither models can support the coexistence of all three S, I, P-class. This

is caused by the assumption (ii), whose biological implications are that I and

P-class are at exploitative competition for S-class whereas I-class cannot be
superior and P-class cannot gain significantly from its consumption of I-class.

In addition, the comparison study between the dynamics of SIP-Allee Model

and SIP-no-Allee Model lead to the following conclusions: 1) In the presence
of Allee effects, species are prone to extinction and initial condition plays an
important role on the surviving of prey as well as its corresponding predator;

2) In the presence of Allee effects, disease may be able to save prey from the
predation-driven extinction and leads to the coexistence of S and I-class while

predator can not save the disease-driven extinction. All these findings may

have potential applications in conservation biology.
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1. Introduction. Allee effects, referred to a biological phenomenon characterized
by a positive correlation between the population of a species’ size or density and
its per capita growth rate at its low population sizes/densities [1, 50, 57], have
great impacts in species’ establishment, persistence, invasion [3, 9, 24, 45, 50, 63,
71, 78] and evolutionary traits [22]. Empirical evidence of Allee effect has been
reported in many natural populations including plants [25, 29], insects [53], marine
invertebrates [68], birds and mammals [21]. Various mechanisms at low population
sizes/densities, such as the need of a minimal group size necessary to successfully
raise offspring, produce seeds, forage, and/or sustain predator attacks, have been
proposed as potential sources of Allee effects [19, 42, 54, 61, 62, 66, 67]. Recently,
many researchers have studied the impact of Allee effects on population interactions
[e.g., see [44, 45, 46, 47, 52, 62, 77, 82] as well as the interplay of Allee effects
and disease on species’s establishment and persistence [37, 38, 48, 49, 73, 81]. All
these research suggest the profound effects of Allee effects in population dynamics,
especially when it couples with disease.

Eco-epidemiology is comparatively a new branch in mathematical biology which
simultaneously considers the ecological and epidemiological processes [5]. Hadeler
and Freedman [33] first introduced a eco-epidemiological model regarding predator-
prey interactions with both prey and predator subject to disease. Since the work
of Hadeler and Freedman (1989), the research on eco-epidemiology as well as its
biological importance has gained great attention [5, 7, 8, 13, 14, 15, 26, 32, 35, 39,
69, 70, 74, 75, 80]. Many species suffer from Allee effects, disease and predation.
For instance, the combined impact of disease and Allee effect has been observed in
the African wild dog Lycaon pictus [12, 20] and the island fox Urocyon littoralis
[4, 17]. Both the African wild dog and island fox should have their enemies in the
wild. Thus, understanding the combined impact of Allee effects and disease on
population dynamics of predator-prey interactions can help us have better insights
on species’ abundance as well as the outbreak of disease. Therefore, we can make
better policies to regulate the population and disease. Thus, for the first time,
we propose a general predator-prey model with Allee effects and disease in prey to
investigate how the interplay of Allee effects and disease in prey affect the population
dynamics of both prey and predator. More specifically, we would like to explore the
following ecological questions:

1. How do Allee effects affect the population dynamics of both prey and preda-
tor?

2. Which conditions allow healthy prey, infected prey and predator to coexist?
3. In the presence of Allee effects, can disease save the population from predation-

driven extinction?
4. In the presence of Allee effects, can predation save the population from disease-

driven extinction?

We will try to answer the questions above by 1) obtaining a complete global picture
of the population dynamics of the proposed susceptible prey-infected prey-predator
interaction model (SIP-Allee Model) as well as its corresponding model without
Allee effects (SIP-no-Allee Model); 2) comparing the dynamics of the model with
Allee effects to the one without Allee effects.

The rest of the paper is organized as follows: In Section 2, we provide the detailed
formulation of a general prey-predator system with prey subject to Allee effects
and disease; and we show the basic dynamical properties of such general model.
In Section 3, we obtain the complete dynamics of a concrete model when it is
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disease free and/or predation free (i.e., the submodels of SIP-Allee Model); and we
compare the dynamics to their corresponding models in the absence of Allee effects.
In Section 4, we provide detailed analysis and its related numerical simulations to
obtain the complete dynamical feature of this SIP-Allee model. Our results include
sufficient conditions on its global attractors as well as its corresponding basins of
attractions in different scenarios. In Section 5, we perform analysis of SIP-no-
Allee Model under the same assumptions. In addition, we provide the biological
implications on the impacts of Allee effects, disease and predation. In Section 6, we
conclude our findings and provide a potential future study. In the last section, we
provide detailed proofs of our analytic findings.

2. Development of the model. We start from the assumption that prey is facing
an infectious disease that can be captured by an SI (Susceptible-Infected) framework
where predator (P-class) feeds on both susceptible prey (S-class) and infected prey
(I-class). Let S be the normalized susceptible prey population; I, P denote the
infected prey population and the predator population, respectively, both of which
are relative to the susceptible prey population; and N = S + I denotes the total
population of prey.

In the absence of disease and predation, we assume that the population dynamic
of prey can be described by the following generic single species population model
with an Allee effect:

dS
dt = rS(S − θ)(1− S) (1)

where S denotes the normalized health prey population; the parameter r denotes
the maximum birth-rate of species, which can be scaled to be 1 by altering the time
scale; the parameter 0 < θ < 1 denotes the Allee threshold (normalized susceptible
population). The population of (1) converges to 0 if initial conditions are below θ
while it converges to 1 if initial conditions are above θ. We would like to point out
that S in this case is the total population of prey N , i.e., S = N and there is no
infectives.

We assume that a) disease does not have vertical transmission but it is untreat-
able and causes an additional death rate; b) I-class does not contribute to the
reproduction of newborns; and c) the net reproduction rate of newborns is modi-
fied by the disease (e.g, infectivies compete for resource but do not contribute to
reproduction). Then in the presence of disease (i.e., I > 0) and the absence of
predation (i.e., P = 0), the formulation of susceptible prey population dynamics
can be described by the following (2):

dS

dt
= rS(S − θ)(1− S − I)︸ ︷︷ ︸

the net reproduction modified by disease

− φ(N)
I

N
S︸ ︷︷ ︸

new infections

(2)

where φ(N) is the disease transmission function that can be either density-dependent
(i.e., φ(N) = βN which is also referred to the law of mass action) or frequency-
dependent (i.e., φ(N) = β). Thus, the formulation of infective population can be
described by the following (3),

dI
dt = φ(N) IN S − µI︸︷︷︸

the natural mortality plus an additional mortality due to disease

.
(3)
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In the presence of disease but in the absence of predation P = 0, a general SI model
subject to Allee effects in prey can be represented as follows:

dS
dt = rS(S − θ)(1− S − I)− φ(N) IN S

dI
dt = φ(N) IN S − µI

(4)

where the parameter µ denotes the death rate of I-class, which includes an additional
disease-induced death rate. The SI model (4) is a special case of an SI model studied
by Kang and Castillo-Chavez [49] where φ(N) = βN, ρ = 0, α1 = 0 and α2 = 1.
This modeling approach is similar to the work by [11, 18, 23, 37] regarding the effects
of Allee effects and disease (our detailed approach of the host population without
disease and predation is represented in Appendix). There are many literatures using
this phenomenological model (4) to study the disease dynamics as well as invasion
of pest (e.g., see [2, 27, 30, 36, 55, 58, 63]).

In the presence of predation, we assume that predator consumes S and I-class
at the rate of h(S,N) and h(I,N), respectively, where I-class has less or negative
contribution to the growth rate of predator in comparison to S-class. The functional
responses h(S,N), h(I,N) can take the form of Holling-Type I or II or III, i.e.,

Holling − Type I : h(S,N) = aS; h(I,N) = aI

Holling − Type II : h(S,N) = aS
k+S+I ; h(I,N) = aI

k+S+I

Holling − Type III : h(S,N) = aS2

k2+(S+I)2 ; h(I,N) = aI2

k2+(S+I)2

.

Therefore, a general predator-prey model where prey is subject to Allee effects and
disease, is given by the following set of nonlinear differential equations:

dS
dt = rS(S − θ) (1− S − I)− φ(N) IN S − h(S,N)P,

dI
dt = φ(N) IN S − h(I,N)P − µI,

dP
dt = P [ch(S,N) + γh(I,N)− d] .

(5)

where all parameters except γ are nonnegative. The parameter d represents the
natural death rate of predator; the parameter c ∈ (0, 1] is the conversion rate of
susceptible prey biomass into predator biomass; and γ indicates that the effects of
the consumption of infected prey on predator which could be positive or negative.
More specifically, we assume that −∞ < γ < c; γ < 0 indicates the consumption of
infected prey increases the death rate of the predator (see [16]), while γ > 0 indicates
the consumption of susceptible prey increases the growth rate of the predator. The
biological significance of all parameters in Model (5) is provided in Table 1.

In summary, the formulation of a general SIP model (5) subject to Allee effects
in prey is based on the following three assumptions: (a) Disease does not have
vertical transmission but it is untreatable and causes an additional death rate;
(b) Allee effects are built in the reproduction process of S-class which I-class does
not contribute to; (c) Predator consumes S and I-class at the rate of h(S,N) and
h(I,N), respectively, whose growth rate is benefit less or even getting harm from
I-class. Our modeling assumptions are supported by many ecological situations.
For example, in Salton Sea (California), predatory birds get additional mortality
though eating fish species that are infected by a vibrio class of bacteria and could
also be subject to Allee effects (see more discussions in [5, 16]). In nature, it is also
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possible that predator captures infected prey who is given up by predator due to its
unpleasant taste or malnutrition from infections. We would like to point out that
the assumption (c) is critical to the dynamical outcomes of (5) as we should see
from our analysis in the next few sections.

To continue our study, let us define the state space of (5) as X = {(S, I, P ) ∈ R3
+}

whose interior is defined as X̊ = {(S, I, P ) ∈ R3
+ : SIP > 0}. In the case that

φ(N) = β, we define the state space as X = {(S, I, P ) ∈ R3
+ : S + I > 0}. Notice

that h(x,N) is chosen from Holling Type I or II or III and φ(N) = βN or β, then
the basic dynamical property of (5) can be summarized as the following theorem:

Theorem 2.1 (Basic dynamical features). Assume that

c ∈ (0, 1], d > 0, θ ∈ (0, 1), −∞ < γ < c, µ > rθ.

Then System (5) is positively invariant and uniformly ultimately bounded in X with
the following property

lim sup
t→∞

S(t) + I(t) ≤ 1.

In addition, we have the following:

1. If φ(N)
N S ≤ µ, for all N > 0, then lim supt→∞ I(t) = 0.

2. If S(0) < θ, then limt→∞max{S(t), I(t), P (t)} = 0.

Notes. The assumption of µ > rθ follows from the fact that the natural mortal-
ity rate of the susceptible prey is rθ (see the derivation of this assumption in the
Appendix A). Theorem 2.1 indicates that our general prey-predator model with
Allee effects and disease in prey has a compact global attractor living in the set{

(S, I, P ) ∈ X : 0 ≤ S + I ≤ 1, 0 ≤ S + I + P ≤ max{0≤N≤1}

{
rS(S−θ)(1−N)+min{µ,d}

}
min{µ,d}

}
.

In the case that φ(N) = β or βN , then we can replace the condition φ(N)
N S ≤ µ

by β ≤ µ since the inequality β ≤ µ combined with the fact that S
N ≤ 1 and

lim supt→∞ S(t) ≤ 1 can imply φ(N)
N S ≤ µ. In addition, Theorem 2.1 implies that

initial population of susceptible prey plays an important role in the persistence of
S, or I or P due to Allee effects in prey. One direct application of Theorem 2.1 is
presented as the following corollary:

Corollary 1. [Range of susceptible and infective population] Assume that

c ∈ (0, 1], d > 0, θ ∈ (0, 1), −∞ < γ < c, µ > rθ.

Then a necessary condition for the endemicity of the disease of System (5) is as
follows:

lim inf
t→∞

S(t) > θ and lim sup
t→∞

I(t) < 1− θ.

Theorem 2.1 and its corollary 1 provide the basic dynamical features of the
general prey-predator model (5). In order to explore more complete dynamics of
(5), we will focus on the case when φ(N) = βN and h(x,N) = ax. Then, in
the presence of both disease and predator, depending on whether infectives have a
positive or negative impact on the growth rate of predator (i.e., the sign of γ being
positive or negative), the predator-prey model subject to Allee effects (e.g., induced
by mating limitations) and disease (5) can be written as the following if we scale
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away r (i.e., r = 1) :

dS
dt

= S(S − θ) (1− S − I)− βSI − aSP = S [(S − θ) (1− S − I)− βI − aP ]

= Sf1(S, I, P ),

dI
dt

= βSI − aIP − µI = I [βS − aP − µ] = If2(S, I, P ),

dP
dt

= a (cS + γI)P − dP = P [bS + αI − d] = Pf3(S, I, P )

(6)

where the parameter a indicates the attack rate of predator. For convenience, we
let b = ac ∈ (0, a] and α = aγ ∈ (−∞, ac]. Variables and parameters used in Model
(6) (SIP-model) are presented in Table 1.

Variables/Parameters Biological meaning
S Density of susceptible prey
I Density of infected prey
P Density of predator
θ Allee threshold
β Rate of infection
a Attack rate of predator
b The total effect to predator by consuming susceptible prey
µ Death rate of infected prey
c Conversion efficiency on susceptible prey
γ Conversion efficiency on infected prey
α The total effect to predator by consuming infected prey
d Natural death rate of predator

Table 1. Variables and parameters used Model (6)

Notes. The term S(S − θ)(1 − S − I) of dS
dt in (6) models the net reproduction

rate of newborns, a term that accounts for Allee effects due to mating limitations
as well as reductions in fitness due to the competition for resource from infectives.
Our model normalizes the susceptible population to be 1 in a disease-free environ-
ment; and defines the infected prey population as well as the predator population
relative to this normalization. Our modeling approach (see the Appendix A) and
assumptions (a), (b), (c) require that the parameters of (6) are subject to the
following condition:

H: 0 < θ < 1, µ > θ, 0 < b = ac ≤ a and −∞ < α < b.

The features outline above include factors not routinely considered in infectious-
disease models. Allee effects are found in the epidemiological literature (e.g., see
[35, 37, 73]) as well as in the predator-prey interaction models [9, 77]. The rest
of our article is focus on studying the dynamics of this simple SIP model (6) that
incorporates Allee effects in its reproduction process, disease-induced additional
death, and disease-induced effects on predation.

3. Dynamics of submodels. In order to understand the full dynamics of (6), we
should have a complete picture of the dynamics of the following two submodels:
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1. The predator-prey model in the absence of the disease in (6) is represented as

dS
dt = S [(S − θ) (1− S)− aP ] = Sf1(S, 0, P ),
dP
dt = P [bS − d] = Pf3(S, 0, P ).

(7)

The submodel (7) has been introduced by other researchers (e.g., [9, 76, 77]).
For convenience, we introduce a disease-free demographic reproduction num-
ber for predator

RP0 = b
d

(8)

which gives the expected number of offspring b of an average individual preda-
tor in its lifetime 1

d . The reproduction number RP0 is based upon the assump-
tions that the susceptible prey is at unit density (i.e. S = 1) and the disease
is absent (i.e. I = 0). The value of RP0 < 1 indicates that the predator cannot
invade while the value of RP0 > 1 indicates that the predator may invade.

2. The SI model in the absence of predation in (6) is represented as

dS
dt = S [(S − θ) (1− S − I)− βI] = Sf1(S, I, 0),
dI
dt = I [βS − µ] = If2(S, I, 0).

(9)

Kang and Castillo-Chavez [49] have studied a simple SI model with strong
Allee effects (where they consider a susceptible-infectious model with the pos-
sibility that susceptible and infected individuals reproduce with the S-class
being the best fit, and also infected individuals loose some ability to compete
for resources at the cost imposed by the disease. The submodel (9) is a special
case of the SI model studied by them where ρ = 0, α1 = 0 and α2 = 1. We
adopt the notations in [49] and introduce the basic reproductive ratio

RI0 = β
µ (10)

whose numerator denotes the number of secondary infections βS∗ = β per
unit of time (at the locally asymptotically stable equilibrium S∗ = 1) and
denominator denotes the inverse of the average infectious period µ. The value
of RI0 < 1 indicates that the infection cannot invade while RI0 > 1 indicates
that the disease can invade.

A direct application of Theorem 2.1 to the submodels (7) and (9) gives the following
corollary:

Corollary 2 (Positiveness and boundedness of submodels). Assume that both (7)
and (9) are subject to Condition H. Then both submodels are positively invariant
and uniformly ultimately bounded in R2

+. In addition, the submodel (9) has the
following property:

lim sup
t→∞

S(t) + I(t) ≤ 1.

In the next two subsections, we explore the detailed dynamics of both submodels
(7) and (9).

3.1. Equilibria and local stability. It is easy to check that both submodels (7)
and (9) have (0, 0), (θ, 0) and (1, 0) as their boundary equilibria. For convenience,
for Model (7), we denote

EP0 = (0, 0), EPθ = (θ, 0), EP1 = (1, 0) and EPi =
(

1
RP0
, 1
a

(
1
RP0
− θ
)(

1− 1
RP0

))
while for Model (9), we denote
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EI0 = (0, 0), EIθ = (θ, 0), EI1 = (1, 0) and EIi =

 1
RI0
,

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

−θ+β


where EPi , E

I
i are interior equilibria for the submodel (7) and (9), respectively, pro-

vided their existence. The local stability of equilibria of both submodels (7) and
(9) can be summarized in the following proposition:

Proposition 1. [Local stability of equilibria for submodels (7) and (9)] The local
stability of boundary equilibria of both submodels (7) and (9) is summarized in Table
2 while the local stability of interior equilibrium of both submodels (7) and (9) is
summarized in Table 3. Moreover, the equilibria EPi of the submodel (7) undergoes
a supercritical Hopf-bifurcation at RP0 = 2

θ+1 and the equilibria EIi of the submodel

(9) undergoes a supercritical Hopf-bifurcation at RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 .

Boundary Equilibria Stability Condition
EP0 and EI0 Always locally asymptotically stable

EPθ Saddle if RP0 < 1
θ ; Source if RP0 > 1

θ

EIθ Saddle if RI0 <
1
θ ; Source if RI0 >

1
θ

EP1 Locally asymptotically stable if RP0 < 1; Saddle if RP0 > 1
EI1 Locally asymptotically stable if RI0 < 1; Saddle if RI0 > 1

Table 2. The local stability of boundary equilibria for both sub-
models (7) and (9)

Interior Equilibrium Condition for existence Condition for local asymptotic stability
EPi 1 < RP0 < 1

θ 1 < RP0 < 2
θ+1

EIi 1 < RI0 <
1
θ 1 < RI0 <

β−θ+
√
β2−βθ+β

β+βθ−θ2 .

Table 3. The local stability of interior equilibrium for both sub-
models (7) and (9)

Notes. Local analysis results provided in Proposition 1 and Table 3 suggest that
the coexistence of prey and predation at the equilibrium EPi in the subsystem (7)
is determined by the Allee threshold θ since EPi is locally asymptotically stable
if

1 < RP0 <
2

θ + 1
since

2

θ + 1
<

1

θ
.

And the coexistence of health prey and infected prey at the equilibrium EIi in
the subsystem (9) is determined by both the Allee threshold θ and the disease
transmission rate β since EIi is locally asymptotically stable if

1 < RI0 <
β − θ +

√
β2 − βθ + β

β + βθ − θ2
since

β − θ +
√
β2 − βθ + β

β + βθ − θ2
<

1

θ
.
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3.2. Disease/predation-driven extinctions and global features of submod-
els. In this subsection, we focus on the disease/predation-driven extinctions as well
as the features of global dynamics of both submodels. First, we have the following
theorem regarding the extinction of one or both species:

Theorem 3.1. [Extinction] Assume that both submodels (7) and (9) subject to
Condition H. Then

1. If RP0 ≤ 1, then the population of predator in the submodel (7) goes extinction
for any initial condition taken in R2

+ [see Figure 1(a)]. Similarly, if RI0 ≤ 1,
then the population of infectives in the submodel (9) goes extinction for any
initial condition taken in R2

+ [see Figure 1(c)].

2. If RP0 ≥ 1
θ , then System (7) converges to (0, 0) for any initial condition taken

in the interior of R2
+, which is predation-driven extinction [see Figure 1(b)].

Similarly, if RI0 ≥ 1
θ , then System (9) converges to (0, 0) for any initial condi-

tion taken in the interior of R2
+, which is disease-driven extinction [see Figure

1(d)].
3. If S(0) < θ, then all species in both submodels (7) and (9) converge to (0, 0).

Notes. The second item in the statement of Theorem 3.1 is disease/predation-
driven extinctions due to Allee effects of the susceptible population. The predation-
driven extinction is also called “overexploitation” where both prey and predator go
extinct dramatically due to large predator invasion [76, 77], i.e., predator reproduces
fast enough to drive the prey population below its Allee threshold, thus lead to the
extinction of both species. The biological explanation of disease-driven extinction is
credited to the large disease transmission rate (i.e., the basic reproduction number
RI0 is large) while the reproduction of the susceptible population is not fast enough to
sustain its own population. Thus, the susceptible population drops below its Allee
threshold and decreases to zero, which eventually drives the infected population
extinct eventually. The third item in the statement of Theorem 3.1 does not always
hold if Condition H does not hold. For example, if we drop the assumption µ >
θ, then the condition S(0) < θ does not always lead to the extinction of both
susceptible and infective population in the submodel (9).

3.2.1. Global features of submodels (7) and (9). The dynamics of global features of
submodels (7) and (9) are similar. Fix β = 0.6, θ = 0.4, a = 1, b = 0.1, and vary
the basic reproduction numbers RP0 , R

I
0 for the submodel (7), the submodel (9),

respectively:

1. For the submodel (7):
(a) 0 < RP0 ≤ 1: This leads to the predation free dynamics with EP0 ∪EP1 as

attractors according to Theorem 3.1 [see Figure 1(a)].
(b) 1 < RP0 < 1.428571 = 2

1+θ : There is a transcriptical bifurcation at

RP0 = 1. When increasing the value of RP0 from 1, EP1 becomes unstable
and the unique and locally asymptotically stable interior equilibrium EPi
occurs is locally asymptotically stable [see Proposition 1 and Figure 2(b)].

(c) 1.428571 = 2
1+θ < RP0 < 1.437398001: There is a supercritical Hopf-

bifurcation at RP0 = 1.428571 = 2
1+θ which leads to the unique stable

limit cycle [see Proposition 1 and Figure 2(b)]. Wang et al. [77] has
provided the proof of the uniqueness of the limit cycle.
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Figure 1. Phase portraits of submodel (7) (first row) and (9)
(second row) when β = 0.6, θ = 0.4, a = 1 and b = 0.1. Notice that

RP0 = b
d and RI0 = β

µ .

(d) At RP0 = 1.437398001: There is a heteroclinic bifurcation at RP0 =
1.437398001 [see Figure 2(c)], i.e., there is a heteroclinic orbit connect-
ing EP1 to EPθ . The disappearance of the unique stable limit cycle is
associated with the occurrence of heteroclinic connections: Outside the
heteroclinic cycle the trajectory goes asymptotically to extinction equi-
librium EP0 , while for initial conditions inside the heteroclinic cycle the
trajectory converges towards the heteroclinic cycle. Sieber and Hilker
[64] and Wang et al. [77] have provided the proof of the existence of the
heteroclinic orbit.

(e) 1.437398001 < RP0 < 1
θ = 2.5: The predation-driven extinction occurs:

the heteroclinic orbit is broken and all trajectories in the interior of R2
+
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converge to EP0 : For initial condition inside the curve bounded by the
stable manifold of EP1 , the orbit oscillates before finally converging slowly
to EP0 while all orbits above the unstable manifold of EP1 converge towards
EP0 [see Figure 2(d)].

(f) RP0 ≥ 1
θ = 2.5: The predation-driven extinction occurs and the system

has no interior equilibrium any more. All trajectories in the interior of
R2

+ converge to EP0 [see Figure 1(b)].
2. For the submodel (9):

(a) The submodel (9) exhibits exactly the same dynamics feature as the sub-
model (7) when we increase the value of RI0 from 0: A transcritical bi-

furcation occurs at RI0 = 1, For 1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 = 1.5420,

the unique interior equilibrium EIi is locally asymptotically stable [see

Figure 3(a)]. At RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 = 1.5420, a supercritical Hopf-

bifurcation occurs which leads to a unique stable limit cycle for 1.5420 <
RI0 < 1.569462683 [see Figure 3(b)]. The heteroclinic bifurcation occurs
at RI0 = 1.569462683 [see Figure 3(c)] and disease-driven extinction occurs
when RI0 > 1.569462683 [see Figure 3(d) and 1(d)].

The impact of Allee effects: Without Allee effects, the submodels (7) and (9)
can be represented as the following two models:

dS
dt = S [1− S − aP ] , dS

dt = S [1− S − I − βI]
dP
dt = P [bS − d] , dI

dt = I [βS − µ]
. (11)

The two models above have the same dynamics as the traditional Lotka-Volterra
Pedator-Prey model: If Rk0 ≤ 1, k = P, I, then both models of (11) has global
stability at (1, 0); while if Rk0 > 1, k = P, I, then both models of (11) has global
stability at its unique interior equilibrium. Compare this simple dynamics to the
dynamics of submodels (7) and (9), we can conclude that the effects of Allee effects:

1. Importance of initial conditions: Allee effects in the susceptible popula-
tion, requires its initial condition being above the Allee threshold to persist.

2. Destabilizer: The nonlinearity induced by Allee effects destablizes the sys-
tem which lead to fluctuated populations (e.g., stable limit cycle).

3. Disease/predation-driven extinction: This occurs when the basic repro-
duction number of disease or predation is large enough to drive the susceptible
population below its Allee threshold, thus all species go extinct.

4. Dynamics of the full S-I-P model. After obtaining a complete dynamics of
disease/predation free dynamics of the full SIP model (6) in the previous section,
we continue to study the dynamics of the full model. We start with the boundary
equilibria and their stability of (6). It is easy to check that System (6) has the
following boundary equilibria:

E0 = (0, 0, 0), Eθ = (θ, 0, 0), E1 = (1, 0, 0), EiP =
(

1
RP0
, 0, 1

a

(
1
RP0
− θ
)(

1− 1
RP0

))
and

EiI =

 1

RI0
,

(
1
RI0
− θ
)(

1− 1
RI0

)
1
RI0

+ β − θ
, 0

 .

The existence of EiP requires 1 < RP0 < 1
θ while the existence of EiI requires

1 < RI0 <
1
θ .
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(a) Stable interior equilibrium for the
submodel (7) when RP0 = 1.42222
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(b) Stable limit cycle for the submodel
(7) when RP0 = 1.431
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(d) Predation-driven extinction for the

submodel (7) when RP0 = 1.4373981

Figure 2. Phase portraits of submodels (7) (figures (a)-(d)) and
(9) (figures (e)-(h)) when β = 0.6, θ = 0.4, a = 1 and b = 0.1.

Notice that RP0 = b
d and RI0 = β

µ .

Proposition 2. [Boundary equilibrium and stability] Sufficient conditions for the
existence and the local stability of boundary equilibria for System (6) are summarized
in Table 4.

Notes. Notice that

2

1 + θ
<
β − θ +

√
β2 − βθ + β

β + βθ − θ2
<

1

θ
,

thus according to Proposition 2, both EiP and EiI can be locally asymptotically
stable if

1 < RP0 <
2

1 + θ
, 1 < RI0 <

β − θ +
√
β2 − βθ + β

β + βθ − θ2
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submodel (9) when RI0 = 1.52
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(b) A unique stable limit cycle for the

submodel (9) when RI0 = 1.548
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Figure 3. Phase portraits of submodels (7) (figures (a)-(d)) and
(9) (figures (e)-(h)) when β = 0.6, θ = 0.4, a = 1 and b = 0.1.

Notice that RP0 = b
d and RI0 = β

µ .

and
d

RI0

( 1

RI0

+β−θ)

d( 1

RI0

+β−θ)−α
(

1

RI0

−θ
)(

1− 1

RI0

) < 1
RP0

< 1
RI0

1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

 .

For convenience, let d = µ = 1, β = 1.5, θ = 0.2, then, according to Condition
H, we have

1 < RI0 = β
µ = 1.5 <

β−θ+
√
β2−βθ+β

β+βθ−θ2 ≈ 1.794, RP0 = b
d = b ≥ α, 2

1+θ = 5
3 ≈ 1.667,

and

d

RI0

( 1

RI0

+β−θ)

d( 1

RI0

+β−θ)−α
(

1

RI0

−θ
)(

1− 1

RI0

) = 1.967
2.95−0.233α ,
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Boundary Equilibria Stability Condition
E0 Always locally asymptotically stable
Eθ Source if RP0 > 1

θ and RI0 >
1
θ ; otherwise is saddle

E1 Locally asymptotically stable if RP0 < 1 and RI0 < 1

EiP Locally asymptotically stable if 1 < RP0 < 2
1+θ and

RI0
RP0

< 1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

EiI Locally asymptotically stable if 1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 and

RP0
RI0

< 1−
α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ)

Table 4. Sufficient conditions for the existence and local stability
of boundary equilibria for System (6)

1
RI0

1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

 =
2

(
1+

(
1

RP0

−0.2

)(
1− 1

RP0

))
3 .

Thus, according to Proposition 2, we have the following statement when d = µ =
1, β = 1.5, θ = 0.2:

1. Both EiP and EiI are locally asymptotically stable if the following inequalities
hold [see the blue region of Figure 4(a)]

1 < b = RP0 < 1.67, 3b2

2b2+2(1−0.2b)(b−1) < b < 2.95−0.233α
1.967 , −∞ < α ≤ b.

2. EiP is locally asymptotically stable and EiI is locally asymptotically stable in
the SI-plane but is unstable in R3

+ if the following inequalities hold [see the
green region of Figure 4(a)]

1 < b = RP0 < 1.67, b > max
{

2.95−0.233α
1.967 , 3b2

2b2+2(1−0.2b)(b−1)

}
, −∞ < α ≤ b.

3. EiI is locally asymptotically stable and EiP is locally asymptotically stable in
the SP -plane but is unstable in R3

+ if the following inequalities hold [see the
yellow region of Figure 4(a)]

1 < b = RP0 < 1.67, b < min
{

2.95−0.233α
1.967 , 3b2

2b2+2(1−0.2b)(b−1)

}
, −∞ < α ≤ b.

According to Proposition 2, sufficient conditions for EiP and EiI being locally
asymptotically stable in the SP -plane, SI-plane, respectively, but being unstable
in R3

+ are as follows:

1 < RP0 <
2

1 + θ
, 1 < RI0 <

β − θ +
√
β2 − βθ + β

β + βθ − θ2

and

1 < 1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

<
RI0
RP0

<
d( 1
RI0

+ β − θ)

d( 1
RI0

+ β − θ)− α
(

1
RI0
− θ
)(

1− 1
RI0

)
which is impossible when α ≤ 0 since

d( 1
RI0

+ β − θ)

d( 1
RI0

+ β − θ)− α
(

1
RI0
− θ
)(

1− 1
RI0

) ≤ 1 when α ≤ 0.

In addition, numerical simulations suggest that even if α ≥ 0, EiP and EiI cannot
be locally asymptotically stable in the SP -plane, SI-plane, respectively, but being
unstable in R3

+.
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Figure 4. Fix β = 1.5;µ = d = 1; θ = 0.2 and a = 3. The left
graph indicates the stability regions of the boundary equilibria EiP
and EiI : i) In the blue region, both boundary equilibria EiP and EiI
are locally asymptotically stable (tri-stability case, there is a unique
unstable interior equilibrium Ei2); ii) In the green region, EiP is lo-
cally asymptotically stable while EiI is unstable (there is no interior
equilibrium); iii) In the yellow region, EiI is locally asymptotically
stable while EiP is unstable (there is no interior equilibrium). The
blue region in the right graph is the region when System (6) has a
unique interior equilibrium which is a saddle. The white region in
the right graph indicates no interior equilibrium.
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4.1. Global features. In this subsection, we first explore sufficient conditions that
lead to the extinction of at least one species of S, I, P. Our study gives the following
theorem:

Theorem 4.1. [Basic global features]Assume that System (6) is subject to Condi-
tion H. Then

1. If RI0 ≤ 1, then limt→∞ I(t) = 0. If, in addition, RP0 ≤ 1, then

lim
t→∞

max{I(t), P (t)} = 0.

While if RI0 ≤ 1 and RP0 > 1
θ , then limt→∞ (S(t), I(t), P (t)) = E0.

2. If α < 0 and RP0 ≤ 1, then limt→∞ P (t) = 0. If, in addition, RI0 ≤ 1, then

lim
t→∞

max{I(t), P (t)} = 0.

If α < 0, RP0 ≤ 1 and RI0 > 1
θ , then for any initial condition taken in the

interior of R3
+, we have

lim
t→∞

(S(t), I(t), P (t)) = E0.

While if α > 0 and RP0 + α(1−θ)
d ≤ 1, then limt→∞ P (t) = 0. If, in addition,

RI0 ≤ 1, then

lim
t→∞

max{I(t), P (t)} = 0.

If α > 0, RP0 + α(1−θ)
d ≤ 1 and RI0 >

1
θ , then for any initial condition taken in

the interior of R3
+, we have

lim
t→∞

(S(t), I(t), P (t)) = E0.

3. All trajectories of System (6) converge to E0 if S(0) < θ.

Notes. A direct implication of Theorem 4.1 is that the coexistence of S, I, P
population in System 6 requires RI0 > 1 and

RP0 > 1 when α < 0; RP0 > 1− α(1− θ)
d

when α > 0.

One interesting question is that if α > 0 but 1 − α(1−θ)
d < RP0 ≤ 1, then what

happens to the dynamics of System 6, e.g., can predator be able to persist under
certain conditions? This has been partially answered by Theorem 4.2: System 6 has
no interior equilibrium as long as RP0 ≤ 1. In fact, predator is not able to survive
in this case.

4.2. The interior equilibrium. If System (6) has a locally stable interior equilib-
rium, then we can say that S, I, P-class can coexist under certain conditions. Thus,
in this subsection, we explore sufficient conditions for the existence of the interior
equilibrium and its stability for System (6). For convenience, let

B = −(β − θ) +
d
α − 1
b
α − 1

, C =
µ− θ − d(β−θ)

α
b
α − 1

and Eik = (S∗k , I
∗
k , P

∗
k ) , k = 1, 2

where
S∗1 = B−

√
B2−4C
2 , S∗2 = B+

√
B2−4C
2 , P ∗k = β

a

(
S∗k − 1

RI0

)
, I∗k = b

α

(
1
RP0
− S∗k

)
, k = 1, 2.

If β > µ, i.e., RI0 > 1, then we have follows
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B2 − 4C =
(
d−α
b−α − (β − θ)

)2

− 4α(µ−θ)−4d(β−θ)
b−α

= (β − θ)2 + (d−α)2

(b−α)2 + 4d(β−θ)−4α(µ−θ)−2(d−α)(β−θ)
b−α{<(β−θ)2+

(d−α)2

(b−α)2
+

4d(β−θ)−4α(β−θ)−2(d−α)(β−θ)
b−α =( d−αb−α−(β−θ))

2 if α<0

>(β−θ)2+
(d−α)2

(b−α)2
+

4d(β−θ)−4α(β−θ)−2(d−α)(β−θ)
b−α =( d−αb−α−(β−θ))

2 if α>0

.

Therefore, we can conclude that when RI0 > 1, we have

S∗2 <
d− α
b− α

if α < 0 S∗2 >
d− α
b− α

if α > 0. (12)

In the case that µ = β (i.e., RI0 = 1), we have S∗2 = d−α
b−α and S∗1 < 0. Now we have

the following theorem regarding the number of interior equilibrium and its local
stability:

Theorem 4.2. [Interior equilibrium]Assume that Condition H holds for System
(6).

1. System (6) has no interior equilibrium if one of the following conditions is
satisfied:
(a)

{
RI0 ≤ 1

}
or
{
RP0 ≤ 1, α < b

}
or

(b)
{
α > 0, RP0 ≥ 1

θ

}
or
{
α > 0, RP0 > RI0

}
or

(c)

{
α < 0, RP0 = d

b <
d−α
b−α < max

{
θ, 1

RI0

}}
or

(d)

{
α > d

µ−θ
β−θ

}
or

{
µ < θ +

(b−α)
(
(θ−β+ d−α

b−α )
2
+

4d(β−θ)
b−α

)
4α

}
.

In the case that α > 0, RP0 > 1
θ and RI0 >

1
θ , every trajectory of System (6)

with an initial condition taking in the interior of R3
+ converges to E0, i.e.,

lim
t→∞

(S(t), I(t), P (t)) = E0.

2. System (6) has at most one interior equilibrium Ei2 = (S∗2 , I
∗
2 , P

∗
2 ). The exis-

tence of Ei2 requires

α <
d(β − θ)
µ− θ

=
d
µ−θ
β−θ

provided that

max{θ, 1

RI0
} < S∗2 < min{1, 1

RP0
} when α > 0, or ,

1 > S∗2 > max
{
θ,

1

RI0
,

1

RP0

}
when α < 0.

In addition, the real parts of all eigenvalues of the Jacobian Matrix evaluated
at Ei2 can never be all negative.

Notes. Theorem 4.2 suggests that System (6) has at most one interior equilibrium
which is always unstable (see Figure 4(b) as an example), and there is no coexistence
of S, I, P. Even though we are not able to prove this analytically, we do have
performed extensively simulations to confirm this. The biological reason for this is
that we assume disease of prey has negative impact on predator. We also notice
that the existence of the unique interior equilibrium indicates the tri-stability of the
system, i.e., any trajectory starting from the interior of R3

+ either converges to E0
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or SP -plane or SI-plane. For example, let β = 1.5;µ = d = 1; θ = 0.2; a = 2;α =
0.5; b = 1.35, then we can obtain follows regarding System (6):

1. The locally asymptotically stable boundary equilibria:

E0 = (0, 0, 0), EiI = (0.66667, 0.079096, 0) and EiP = (0.74074, 0, 0.070096).

2. The unique interior equilibrium Ei2 = (0.7329, 0.0211, 0.0497) where the ei-
genvalues of JEi2 are

λ1 = −0.1146 + 0.3713i, λ2 = −0.1146− 0.3713i and λ3 = 0.018896 > 0.

3. System (6) has only three attractors E0, E
i
I and EiP where their basins of

attractions are presented in Figure 5(b): The white regions are the basins of
attraction of E0; the blue regions are the basins of attraction of EiI ; and the
green regions are the basins of attraction of EiP .

In addition, the second part of Theorem 4.2 implies that the full SIP system has
only one attractor E0 when its subsystem (7) has predation-driven extinction and
its subsystem (9) has disease-driven extinction in the case that α > 0, i.e., Rk0 >
1
θ , k = P, I.

Based on our analysis and numerical simulations, the predator-prey system (6)
with prey subject to Allee effects and disease can have one (i.e., extinction of all
species), two (i.e., competition exclusion or bi-stability) or three (i.e., tri-stability)
attractors but can never have the coexistence of S, I, P-populations. We summarize
the global dynamical features of System (6) as follows (also see Table 5):

1. The importance of initial conditions: From Theorem 4.1, we know that
if S(0) < θ, then the trajectory converges to E0, i.e., the extinction of S, I, P
occurs. In addition, when System (6) exhibits bi-stability or tri-stability (see
below), different initial conditions may lead to different attractors.

2. The extinction state E0 is always an attractor due to Allee effects in prey
according to Proposition 2. In addition, Theorem 4.1 and Theorem 4.2 implies
that E0 is a global attractor if (RI0 ≤ 1, RP0 > 1/θ) or (α < 0, RP0 ≤ 1, RI0 >

1/θ) or (α > 0, RP0 + α(1−θ)
d ≤ 1, RI0 > 1/θ) or (α > 0, RP0 > 1/θ,RI0 > 1/θ).

3. The bi-stability occurs in the absence of an interior equilibrium in the fol-
lowing two cases:
(a) Only susceptible prey is able to survive: According to Theorem 4.1,

this occurs when both the reproduction number of disease and predator
are small, i.e., both RI0 ≤ 1 and RP0 ≤ 1.

(b) Competition exclusion: In this case System (6) has two attractors:
one is E0 and the other one is either in SP -plane or in SI-plane which
can be a locally asymptotically stable boundary equilibrium EiI (or EiP if
in SP -plane) or the unique stable limit cycle around EiI (or around EiP
if in SP -plane). See Figure 5(a) as an example.

4. The tri-stability in the presence of the unique interior equilibrium: Theorem
4.2 indicates that System (6) can have at most one interior equilibrium which
is always unstable; thus (6) has no coexistence of S, I, P-populations. In this
case, (6) has three attractors: one is E0, the second one is a locally asymptot-
ically stable boundary equilibrium EiI or the unique stable limit cycle around
EiI that locates in SI-plane and the third one is a locally asymptotically sta-
ble boundary equilibrium EiP or the unique stable limit cycle around EiP that
locates in SP -plane (see Figure 5(b) as an example).
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Figure 5. The left graph is presenting the basins of attractions
of E0 (white regions) and EiI (blue regions) when β = 1.5; θ =
0.2; d = µ = 1;α = −100; b = 5.5 < a = 6 (RP0 > 1

θ , R
I
0 = 1.5)

and S(0) ∈ [0.70, 0.75], I(0) = [0.001, 0.05], P (0) = [0.002, 0.05];
The right graph is presenting the basins of attractions of E0

(white regions),EiP (green regions) and EiI (blue regions) when
β = 1.5; θ = 0.2; d = µ = 1; a = 2;α = 0.5; b = 1.35 (RP0 =
1.35, RI0 = 1.5) and S(0) ∈ [0.70, 0.75], I(0) = [0.001, 0.1], P (0) =
[0.002, 0.1].
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5. The effects of disease & predation-driven extinction: Theorem 4.1 and
Theorem 4.2 indicate that all populations go extinction if (RI0 ≤ 1, RP0 > 1/θ)

or (α < 0, RP0 ≤ 1, RI0 > 1/θ) or (α > 0, RP0 + α(1−θ)
d ≤ 1, RI0 > 1/θ) or

α > 0, RP0 > 1/θ,RI0 > 1/θ). In addition, there is no interior equilibrium if
(α > 0, RP0 > 1/θ) or (α < 0, d−αb−α < max{θ, 1

RI0
}). The interesting question is

that what population dynamics of System (6) in the following two cases:
(a) α < 0,RP

0 > 1
θ and 1 < RI

0 <
1
θ : In this case, competition exclusion oc-

curs, i.e., only S and I-class are able to coexist while P-class goes extinc-
tion. In fact, EiI can be locally asymptotically stable if α < 0 and |α|
large enough such that the following condition satisfied (from Proposition
2)

1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 and 1
θ < RP0 < RI0

1−
α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ)

 .

For example, let β = 1.5;µ = d = 1; θ = 0.2;α = −100; b = 5.5 < a = 6,
then we can obtain follows regarding System (6):
(i) The locally asymptotically stable nontrivial boundary equilibria: EiI

= (0.66667, 0.079096, 0)
(ii) The unique interior equilibrium Ei2 = (0.7231, 0.0298, 0.014104) where

the eigenvalues of JEi2 are

λ1 = −0.38780 + 0.66810i, λ2 = −0.38780− 0.66810i, and λ3 = 0.57608.

(iii) System (6) has only two attractors E0 and EiI where their basins
of attractions are presented in Figure 5(a): The white regions are
the basins of attraction of E0 and the blue regions are the basins of
attraction of EiI .

(b) 1 < RP
0 < 1

θ < RI
0: According to Proposition 2, EiP cannot be locally

asymptotically stable since it requires

RI0 < RP0

1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

 .

Let F (RP0 ) = RP0

1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

 , 1 < RP0 < 1
θ , then we have

max1≤RP0 ≤
1
θ
{F (RP0 )} = F ( 1

θ ) = 1
θ since F ′(RP0 ) =

1+(RP0 )2(µ−θ)
µ(RP0 )2

> 0.

However, we have 1
θ < RI0, thus it is impossible that RI0 < F (RP0 ) holds.

Numerical simulations suggest that System (6) has global stability at E0

and there is a orbit connecting EiP to E0.
6. The parameter a does not affect the existence and local stability of EiP , E

i
I

and the unique interior equilibrium Ei2.

5. The impact of Allee effects, disease and predation. First, we would like
to explore the impact of Allee effects by comparing the dynamics of (6) to the
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Attractor(s) Sufficient Condition Biological Implications
E0 From Theorem 4.1: 1. RI0 ≤ 1, RP0 >

1
θ ; 2. α < 0, RP0 ≤ 1, RI0 > 1

θ ; 3.

0 < α < b,RP0 + α(1−θ)
d ≤ 1, RI0 >

1
θ ;

From Theorem 4.2: 4. α > 0, RP0 >
1
θ , R

I
0 >

1
θ ; From Simulations: 5. 1 <

RP0 < 1
θ < RI0.

No interior equilibrium & No EiP , E
i
I ;

Predation/Disease-Driven extinction
combined with the low reproduction
value leads to the extinction of all
species.

E0 ∪ E1 From Theorem 4.1: RP0 ≤ 1 and RI0 ≤ 1 No interior equilibrium & No EiP , E
i
I ;

Low reproduction values of disease and
predation makes susceptible prey be the
only possible survivor.

E0 ∪ EiP From Proposition 2 and Theorem 4.1
combined with simulations (e.g., Figure

4): 1 < RP0 < 2
1+θ ,

RI0
RP0

< 1 +(
1

RP0

−θ
)(

1− 1

RP0

)
µ

1. Competition exclusion: No in-
terior equilibrium; EiI exists; Predator
wins and disease free; 2. Predation
can not save prey from disease-
induced extinction: No interior equi-
librium; Predator is the inferior com-
petitor

E0 ∪ EiI From Proposition 2 and Theo-
rem 4.1-4.2 combined with sim-
ulations (e.g., Figure 4-5(a)):

1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 ,
RP0
RI0

<

1−
α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ) and { 1. RP0 ≤ 1;

or 2. RP0 > 1
θ}

1. Competition exclusion: No in-
terior equilibrium; EiP exists; Predator
wins and disease free; 2. Disease can
save prey from predation-induced
extinction: the unique interior equi-
librium exists, no EiP , disease is the su-
perior competitor.

E0 ∪ EiI ∪ EPi From Proposition 2 and simulations
(e.g., Figure 4-5(b)): 1 < RP0 <

2
1+θ ,

RI0
RP0

< 1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ and

1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 ,
RP0
RI0

< 1 −

α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ)

Tri-stability: Unique unstable in-
terior equilibrium; Has both EiI and
EiI ; Different initial conditions lead to
predator wins or disease wins

Table 5. From the analysis of the stability of equilibria and nu-
merical simulations, sufficient condition for the global attractors
for System (6) as well as its corresponding biological implications

following model without Allee effects in prey:

dS
dt

= S (1− S − I)− βSI − aSP = S [1− S − (1 + β)I − aP ] = Sg1(S, I, P ),

dI
dt

= βSI − aIP − µI = I [βS − aP − µ] = If2(S, I, P ),

dP
dt

= a (cS + γI)P − dP = P [bS + αI − d] = Pf3(S, I, P )

(13)

where the biological meaning of all parameters are listed in Table 1. The SIP-
model without Allee effects (13) has the following boundary equilibria: Ena0 =
(0, 0, 0), Ena1 = (1, 0, 0) and

(EiP )na =
(

1
RP0
, 0,

RP0 −1

aRP0

)
=
(
d
b , 0,

b−d
ab

)
,

(EiI)
na =

(
1
RI0
,

RI0−1

(1+β)RI0
, 0
)

=
(
µ
β ,

β−µ
β(1+β) , 0

) (14)
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as well as the unique interior equilibrium

(Ei)
na =

(
bRI0(1+β)−αRP0 (RI0+β)

RP0 R
I
0(1+β)(b−α)

,
b[RP0 (β+RI0)−RI0(1+β)]

RP0 R
I
0(1+β)(b−α)

,
β[b(1+β)(RI0−R

P
0 )−αRP0 (RI0−1)]

aRP0 R
I
0(1+β)(b−α)

)
=

(
d(1+β)−α(1+µ)

(1+β)(b−α)
, b(1+µ)−d(1+β)

(1+β)(b−α)
, (1+β)(dβ−bµ)−α(β−µ)

a(1+β)(b−α)

)
= (S∗, I∗, P ∗).

(15)

Therefore, (EiP )na exists if and only if RP0 > 1 while (EiI)
na exists if and only if

RI0 > 1. In addition, we can conclude that (Ei)
na exists if and only if the following

inequalities hold

d(1+β)−α(1+µ)
(1+β)(b−α)

> 0 ⇔ d(1 + β)− α(1 + µ) > 0

⇔ 1+β
1+µ

> α
d
,

b(1+µ)−d(1+β)
(1+β)(b−α)

> 0 ⇔ b(1 + µ)− d(1 + β) > 0

⇔ 1+β
1+µ

< b
d
⇔ dβ − bµ < b− d,

(1+β)(dβ−bµ)−α(β−µ)
a(1+β)(b−α)

> 0 ⇔ (1 + β)(dβ − bµ)− α(β − µ) > 0

⇔ dβ − bµ > α(β−µ)
1+β

.

(16)

since we assume that b > α holds for (13) (e.g., predator hunts less infective prey
than healthy prey and may even be harmed by infective prey due to the disease).
Now we summarize main global dynamics of Model (13) as the following theorem:

Theorem 5.1. [Dynamics of SIP-model without Allee effects]Assume that a > b >
α. Then the following statements hold:

1. Model (13) is positively invariant in X and bounded by

[0, 1]× [0, 1]× [0,
b

amin{1, d}
]

with the following property

lim sup
t→∞

S(t) + I(t) ≤ 1.

2. If RI0 ≤ 1, then the infective population of Model (13) goes extinct. In addi-
tion, if RP0 ≤ 1, then Model (13) has global stability at Ena1 ; while if RP0 > 1
instead, then Model (13) has global stability at (EiP )na. Similarly, the prey
population of Model (13) goes extinct if

(RP0 ≤ 1, α ≤ 0) or (RP0 ≤ 1− α

d
, α > 0).

In addition, Model (13) has global stability at (EiI)
na if

(α > 0, RP0 ≤ 1− α

d
, RI0 > 1) or (α ≤ 0, RP0 ≤ 1, RI0 > 1).

3. The existence of the unique interior equilibrium (Ei)
na requires RI0 > 1, RP0 >

1 and both nontrivial boundary equilibria (EiP )na and (EiI)
na are locally asymp-

totically stable. In addition, the interior equilibrium (Ei)
na is always unstable.

4. If (EiP )na is unstable, then (EiI)
na exists and is stable; while if (EiI)

na is
unstable, then (EiP )na exists and is stable.
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Notes. Theorem 5.1 suggests that it may be impossible for System (13) to have
the coexistence of S, I, P-population under the assumption that b > µ since the
permanence of (13) may occur only if

α > b > 0 and RI0 > RP0 .

In addition, Theorem 5.1 and numerical simulations suggests that the dynamics of
System (13) with b > α can be classified into the following three cases:

1. Only S-population persists: This occurs only if both RP0 ≤ 1 and RI0 ≤ 1.
2. Competition exclusion: either S and P persist or S and I persist. This

occurs if

RP0 > 1, RI0 > 1, and dµ
(
RI0 −RP0

)
> b− d > 0⇒ S and P persist

or

RP0 > 1, RI0 > 1, and dµ
(
RI0 −RP0

)
<
α(β − µ)

1 + β
⇒ S and I persist.

3. Bi-stability: This occurs when both (EiI)
na and (EiP )na are locally asymp-

totically stable, i.e.,

RP0 > 1, RI0 > 1, and
α(β − µ)

1 + β
< dµ

(
RI0 −RP0

)
< b− d.

Depending on initial conditions, the trajectories may converge to (EiI)
na or

(EiP )na.

By comparing the population dynamics of System (6) (with Allee effects in prey)
to the population dynamics of (13) (no Allee effects in prey), we are able to obtain
the following conclusion:

1. The impacts of Allee effects in the full SIP model: Not surprisingly,
Allee effects make the system prone to extinction and initial conditions playing
an extreme important role in the surviving of S health prey, or the surviving
of I, P when System (6) has tri-stability. In addition, System (6) has more
complicated disease-free or predator-free dynamics (e.g., limit cycle, hetero-
clinic orbit, disease/predation-driven extinction) than (13) does due to the
nonlinearity introduced by Allee effects.

2. The impacts of disease and predation: Notice that both System (6)
(with Allee effects in prey) and System (13) (no Allee effects in prey) can not
have the coexistence of S, I, P-population. This interesting phenomenon is
due to the assumption b > α, i.e., predator cannot distinguish the infected
and healthy prey but the consumption of the infected prey has less or even
harm the growth of predator. The proofs of our analytical results imply that
the coexistence of all S, I, P-population is possible only if b < α, i.e., predator
can have more benefits in the capture and consumption of the infected prey
than the healthy prey. In fact, if b > α, then under certain values of parame-
ters, both System (6) and (13) can exhibit the locally asymptotically interior
equilibrium or stable interior limit cycle (see the coexistence condition and its
related numerical simulations in [35, 65]).

3. The impacts of Allee effects, disease and predation: In the presence of
Allee effects and predation-driven extinction (i.e., RP0 > 1

θ ) in the subsystem
(7) of System (6), disease may be able to save the predation-driven extinction
and have the coexistence of both S and I. However, predation can not save
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the disease-driven extinction (i.e., RI0 >
1
θ ). This suggests that disease may

be the superior competitor and predator is the inferior competitor.

6. Discussion. Mathematical modeling has been a great tool for understanding
species’ interactions as well as the disease dynamics, which allow us to obtain useful
biological insights and enable us to make correct policies to maintain the diversity
in nature. Many mathematical models have been used to understand the impacts
of Allee effects on species’ abundance and persistence [9, 24, 50, 52, 71] especially
in the presence of disease [37, 38, 48, 73, 81]. Recently, there is significant research
on eco-epidemiological models [5, 13, 15, 26, 35, 37, 69] that incorporate both the
interactions of species and disease since the first work introduced by Hadeler and
Freedman [33]. For example, recently Bairagi et al. [5] studied the role of infection
on the stability of predator-prey systems with different response functions. In this
article, we propose a general predator-prey model with prey subject to Allee effects
and disease. There are three unique features of our assumptions: (a) Disease has
no vertical transmission but it is untreatable and causes additional mortality in in-
fected prey; (b) Allee effects built in the reproduction of health prey while infected
prey has no reproduction; (c) Predator captures health and infected prey at the
same rate but the consumption of infected prey has less benefits or even causes
harm to predator. These assumptions contribute great impacts on the dynamical
outcomes of the proposed model. To explore how interplay among Allee effects,
disease and predation affect species’ abundance and persistence, we focus on a con-
crete system with additional two assumptions: (d) disease transmission follows the
law of mass action; (e) prey and predator have Holling-Type 1 functional responses.
In a nutshell, we summarize our main findings as well as their related biological
implications as follows:

1. Based on assumptions (a), (b), (c), we propose a general model described
by nonlinear equations (5). Model (5) is general enough to cover all common
scenarios: i) prey and predator can have Holling-Type I or II or III; ii) the
disease transmission can be density-dependent or frequency-dependent, whose
basic dynamical properties have been given in Theorem 2.1. Theorem 2.1
and its corollary 1 indicate that Allee effects in prey make initial conditions
being extremely important for the persistence of prey as well predator, which
partially answers the first question listed in the introduction regarding the
impact of Allee effects.

2. Proposition 1 and Theorem 3.1 combined with numerical simulations [see Fig-
ures 1, 2, 3] provide us a full picture on the dynamics of the concrete model
(6) when it’s disease-free or predation-free: these subsystems have very com-
plicated features due to the nonlinearity introduced by Allee effects. By com-
paring to their corresponding models without Allee effects, we can conclude
that Allee effects can destablize systems and make the system prone to extinc-
tion through disease or predation-driven extinction or small initial conditions.
These results not only provide us an access to investigate the full system but
also partially answer the first question listed in the introduction.

3. Proposition 2 and Theorem 4.1 combined with numerical simulations [see Fig-
ure 4] indicates that the full system can have the extinction of all species
(caused by the combinations of the low reproduction number, disease and
predation-driven extinctions), bistability (caused by the low reproduction
numbers of both disease and predator, competition exclusions, disease-driven
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extinction, or predation-driven extinction) and tri-stability. One of our most
interesting findings is that disease may be able to save prey from predation-
driven extinction and leads to the coexistence of S and I-class while predation
cannot save the disease-driven extinction. These answer the last two questions
listed in the introduction regarding how the interplay among Allee effects, dis-
ease and predation may promote species’ persistence. In addition, Theorem
4.2 and numerical simulation [see Figure 5] suggests that there is no coex-
istence of health prey, infected prey and predator. This answers the second
question listed in the introduction regarding the possibility of coexistence.

4. Theorem 5.1 gives us the global picture of the dynamics of the SIP model with-
out Allee effects. The comparison study between the concrete SIP model with
its corresponding model without Allee effects implies that no coexistence
of S, I, P-population is not caused by Allee effects but it is caused by our
assumption (c): predation on infected prey has less or negative contribution
to the growth rate of predator, i.e., b > α > −∞. The biological explanation
for this is that I and P-class are at exploitative competition for S-class whereas
I-class cannot be superior and P-class cannot gain significantly from its con-
sumption of I-class. Further more, our analysis and simulations show that the
coexistence of S, I, P-class occurs only if b < α and the interior attractors can
be very complicated, e.g., limit cycles. This result complement the previous
study on SIP systems without Allee effects but with assumption that preda-
tor may gain more benefits from hunting weak/sick prey, which may promote
prey surviving and avoid the disease-driven extinctions [see more discussions
in [35]].

6.1. Potential future work. Transmission of disease is influenced by aggregation
patterns in the host population as well as its social organization. Two different
types of incidence rate (new infections per unit time) are usually distinguished [6,
34, 56, 59]: density-dependent transmission (also called mass action transmission)
is the case when contact rate between susceptible and infective individuals increases
linearly with population size; while frequency-dependent transmission (also called
standard incidence or proportionate mixing) is the case when number of contacts is
independent of population size. We focused on a concrete example when disease has
density-dependent transmission in this article. It will be interesting to explore how
frequency-dependent incidence rate may generate different dynamics in the presence
of Allee effects and predation in the future.

Holling-Type I functional response in predator-prey interaction occurs when
predator’s handling time can be ignored, which has the form h(N) = aN with
a being the attack rate of predator and N being the prey density. This functional
responses implies that there is no upper limit to the prey consumption rate and sati-
ation of the predator. While Holling-Type II or III functional response has predator
satiation at the high density of prey [40]: Holling-Type II represents an asymptotic
curve that decelerates constantly as prey number increases, e.g., h(N) = aN

k+N with
k being the half-saturation constant, while Holling-Type III functional response
is sigmoidal, rising slowly when prey are rare, accelerating when more abundant

and last reaching a saturated upper limit, e.g., h(N) = aN2

k2+N2 , which is suitable
to describe predation when switching prey and learning ability are more common
to predator [60]. The predation satiation property of both Holling-Type II or III
functional responses can be mechanisms of generating Allee effects in prey [28]. It
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will be interesting to explore how double Allee effects may arise from predation
satiation and Allee effects built in the reproduction of prey, and thus, may produce
different dynamical outcomes.

7. Proofs.

Proof of Theorem 2.1.

Proof. For any S ≥ 0, I ≥ 0, P ≥ 0, we have

dS

dt

∣∣∣∣
S=0

= 0,
dI

dt

∣∣∣∣
I=0

= 0 and
dP

dt

∣∣∣∣
P=0

= 0

which implies that S = 0, I = 0 and P = 0 are invariant manifolds, respectively.
Due to the continuity of the system, we can easily conclude that System (5) is
positively invariant in R3

+.
Choose any point (S, I, P ) ∈ X such that S > 1, then due to the positive

invariant property of (5), we have

dS

dt

∣∣∣
S>1

= rS(S − θ) (1− S − I)− φ(N)
I

N
S − h(S,N)P < 0.

In addition, since we have dS
dt

∣∣∣
S=1,I=0,P=0

= 0 and dS
dt

∣∣∣
S=1,I+P>0

< 0, thus we can

conclude that
lim sup
t→∞

S(t) ≤ 1.

Now we define the following two functions as N(t) = S + I and Z(t) = S + I + P ,
then we have

dN(t)

dt
= rS(S − θ) (1−N)− µI − P [h(S,N) + h(I,N)] ≤ rS(S − θ) (1−N)− µI (17)

dZ(t)

dt
= rS(S−θ) (1−N)−µI−dP−P [h(S,N) + h(I,N)− ch(S,N)− γh(I,N)] . (18)

Since µ > rθ > rθ2

4 and lim supt→∞ S(t) ≤ 1, then for any ε > 0, there is a T large
enough such that for any t > T , we have

dN(t)

dt
≤ rS(S − θ + µ/r)− [rS(S − θ) + µ]N

≤ r(1 + ε)(1 + ε− θ + µ/r)−
[
−rθ

2

4
+ µ

]
N.

By applying the theory of differential inequality [10] (or Gronwalls inequality) and
letting ε→ 0, we obtain

lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ r − rθ + µ

µ− rθ2

4

.

This implies that both N(t) and I(t) are uniformly ultimately bounded. Similarly,
since c ∈ (0, 1] and −∞ < γ < c, then we have for any ε > 0, there is a T large
enough such that for any t > T ,

dZ(t)
dt = rS(S − θ) (1−N)− µI − dP − P [h(S,N) + h(I,N)− ch(S,N)− γh(I,N)]

≤ rS(S − θ) (1−N)− µI − dP = Lε −min{µ, d}Z

where
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Lε = max{0≤S≤1+ε,0≤N≤ r−rθ+µ
µ− rθ2

4

+ε}
{
rS(S − θ) (1−N) + min{µ, d}S

}
.

This implies that lim supt→∞ Z(t) = lim supt→∞ S(t)+I(t)+P (t) ≤ L
min{µ,d} where

Lε = max
{0≤S≤1,0≤N≤ r−rθ+µ

µ− rθ2
4

}

{
rS(S − θ) (1−N) + min{µ, d}

}
.

Thus P (t) is also uniformly ultimately bounded. Therefore, System (5) is positively
invariant and uniformly ultimately bounded in X.

The fact that

dS
dt

= rS(S − θ) (1− S − I)− φ(N) I
N
S − h(S,N)P ≤ rS (1− S − I) (S − θ)− φ(N) I

N
S

dI
dt

= φ(N) I
N
S − h(I,N)P − µI ≤ φ(N) I

N
S − µI ≤ I

(
φ(N)
N

S − µ
)

implies that the dynamics of the SI model (4) can govern the dynamics of S, I-class

in Model (5). If φ(N)
N S ≤ µ, then the SI model (4) has no interior equilibrium since

lim supt→∞ S(t) ≤ 1. Then according to Poincaré-Bendixson Theorem [31], any
trajectory of (4) converges to either a locally asymptotically stable equilibrium or a
limit cycle. However, no interior equilibrium and no equilibrium on I-axis indicates
that any trajectory converges to a boundary equilibrium located on S-axis. Thus,
we have

lim sup
t→∞

I(t) = 0 if
φ(N)

N
S ≤ µ.

Assume that the initial susceptible prey population is less than θ and the initial
infective population is large enough, the susceptible prey population can increase
at the beginning due to the possibility of

dS

dt

∣∣∣
t=0

= rS(0)

[
(S(0)− θ) (1− S(0)− I(0))− φ(N(0))

N(0)
I(0)

]
> 0.

However, the susceptible prey population can never increase to θ since

dS

dt

∣∣∣
S=θ

= rS

[
(S − θ) (1− S − I)− φ(N)

N
I

] ∣∣∣
S=θ

= −φ(N)

N
SI
∣∣∣
S=θ

< 0.

This implies that

S(t) < θ whenever S(0) < θ, for all t > 0.

Since φ(N)
N S ≤ µ implies that lim supt→∞ I(t) = 0, thus the limiting dynamics is

dS

dt
= rS(S − θ) (1− S) with S(t) < θ.

This indicates the susceptible prey population will eventually converge to 0. There-
fore, we have

lim
t→∞

max{S(t), I(t), P (t)} = 0.
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Now assume that φ(N)
N S > µ, for all N > 0. Since µ > rθ and lim supt→∞ S(t) ≤ θ,

then we have

dS
dt ≤ S

[
r(S − θ) (1− S − I)− φ(N)

N I
]

< rS [(S − θ) (1− S)− (S − θ + µ/r)I]

≤ rS [(S − θ) (1− S)− (−θ + µ/r)I] < rS(S − θ) (1− S)

.

This implies that limt→∞ S(t) = 0. Therefore, we have

lim
t→∞

max{S(t), I(t), P (t)} = 0 whenever S(0) < θ.

In the case that S(0) = θ, then we have S(t) < θ if I(0) + P (0) > 0 or S(t) =
θ if I(0) + P (0) = 0.

Without loss of generality, let us assume S(0) + I(0) > 1 and I(0) > 0. Then
according to the argument above, we have

lim
t→∞

max{S(t), I(t), P (t)} = 0⇒ lim sup
t→∞

S(t) + I(t) ≤ 1

whenever there exists a T such that S(T ) ≤ θ.
Now assume that S(t) > θ, for all t ≥ 0, then whenever N(0)¿1, we have

dN(t)

dt
= rS(S − θ) (1−N)− µI − P [h(S,N) + h(I,N)] ≤ rS(S − θ) (1−N)− µI < 0.

Therefore, we have

lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ 1.

�

Proof of Proposition 1.

Proof. The Jacobian matrix of the submodel (7) at its equilibrium (S∗, P ∗) is pre-
sented as follows

JP |(S∗,P∗) =
[

(S∗ − θ)(1− S∗)− aP ∗ + S∗(1− 2S∗ + θ) −aS∗
bP ∗ bS∗ − d

]
(19)

while the Jacobian matrix of the submodel (9) at its equilibrium (S∗, I∗) is presented
as follows

JI |(S∗,I∗) =
[

(S∗ − θ)(1− S∗ − I∗)− βI∗ + S∗(1− 2S∗ − I∗ + θ) S∗(−S∗ + θ − β)
βI∗ βS∗ − µ

]
.

(20)

After substituting (S∗, P ∗) = EPu , u = 0, θ, 1, i into (19), we obtain the eigenvalues
for each equilibrium:

1. EP0 = (0, 0) is always locally asymptotically stable since both eigenvalues
associated with (19) at EP0 are negative, i.e.

λ1 = −θ and λ2 = −d.

2. EPθ = (θ, 0) is a saddle if RP0 < 1
θ and is a source if RP0 > 1

θ since both

eigenvalues associated with (19) at EPθ can be represented as follows:

λ1 = θ (1− θ) (> 0)

λ2 = dθ
(
RP0 − 1

θ

) {<0 if RP0 <
1
θ

>0 if RP0 >
1
θ .
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3. EP1 = (1, 0) is locally asymptotically stable if RP0 < 1 and is a saddle if
RP0 > 1 since both eigenvalues associated with (19) at EP1 can be represented
as follows:

λ1 = (θ − 1) (< 0)

λ2 = d
(
RP0 − 1

) {<0 if RP0 <1

>0 if RP0 >1.

4. The unique interior equilibrium EPi = (S∗, P ∗) =
(

1
RP0

, 1
a

(
1
RP0
− θ
)(

1− 1
RP0

))
exists only if 1 < RP0 < 1

θ . The Jacobian matrix evaluated at EPi is given by

JP
∣∣∣
EPi

=

[
A −B
C 0

]
=

 1
RP0

(
1 + θ − 2

RP0

)
− a
RP0

b
a

(
1
RP0
− θ
)(

1− 1
RP0

)
0


whose characteristic equation is given by

λ2 −Aλ+BC = 0

where BC > 0 and

A > 0 if RP0 >
2

1 + θ
while A < 0 if RP0 <

2

1 + θ
.

This indicates that the eigenvalues of JP
∣∣∣
EPi

are

λ1 =
A−
√
A2 − 4BC

2
and λ2 =

A+
√
A2 − 4BC

2
when A2 > 4BC

or

λ1 =
A− i

√
4BC −A2

2
and λ2 =

A+ i
√

4BC −A2

2
when A2 < 4BC.

Therefore, EPi exists and is locally asymptotically stable if

1 < RP0 < min{1

θ
,

2

1 + θ
} =

2

1 + θ
.

Notice that A = 0 when RP0 = 2
1+θ , and

dA

d (RP0 )
=

(θ + 1)RP0 − 2
(
θRP0 +RP0 − 2

)
(RP0 )

3 with
dA

d (RP0 )

∣∣∣
RP0 = 2

1+θ

=
(θ + 1)3

4
> 0,

thus according to Theorem 3.1.3 in [79], we know that the submodel (7) un-
dergoes a Hopf-bifurcation at RP0 = 2

θ+1 . Then apply Theorem 3.1 from [77],
we can conclude that the Hopf-bifurcation is supercritical.

Similarly, after substituting (S∗, I∗) = EIu, u = 0, θ, 1, i into (20), we obtain the
eigenvalues for each equilibrium:

1. EI0 = (0, 0) is always locally asymptotically stable since both eigenvalues
associated with (20) at EI0 are negative, i.e.

λ1 = −θ and λ2 = −µ.

2. EIθ = (θ, 0) is a saddle if RI0 < 1
θ and is a source if RI0 > 1

θ since both

eigenvalues associated with (20) at EIθ can be represented as follows:

λ1 = θ (1− θ) (> 0)

λ2 = µθ
(
RI0 − 1

θ

) {<0 if RI0<
1
θ

>0 if RI0>
1
θ .
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3. EI1 = (1, 0) is locally asymptotically stable if RI0 < 1 and is a saddle if RI0 > 1
since both eigenvalues associated with (20) at EI1 can be represented as follows:

λ1 = (θ − 1) (< 0)

λ2 = µ
(
RI0 − 1

) {<0 if RI0<1

>0 if RI0>1.

4. The unique interior equilibrium EIi = (S∗, I∗) =

 1
RI0
,

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ

 ex-

ists only if 1 < RI0 <
1
θ since from Condition H, we have

1

RI0
+ β − θ =

µ

β
+ β − θ > θ2

4β
+ β − θ =

θ2 + 4β2 − 4θβ

4β
=

(θ − 2β)2

4β
≥ 0.

The Jacobian matrix evaluated at EIi is given by

JI
∣∣∣
EIi

=

[
A −B
C 0

]
=


1
RI0

1− 2
RI0
−

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ + θ

 − 1
RI0

( 1
RI0

+ β − θ)

β

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ 0


whose characteristic equation is given by

λ2 −Aλ+BC = 0

where BC > 0 and

A = 1
RI0

1− 2
RI0
−

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ + θ

 =
(β+βθ−θ2)(RI0)2−2RI0(β−θ)−1

(RI0)2(1+RI0(β−θ))
,

= 1

(RI0)
2
(1+RI0(β−θ))

(
RI0 −

(β−θ)+
√
β2−βθ+β

β+βθ−θ2

)(
RI0 −

(β−θ)−
√
β2−βθ+β

β+βθ−θ2

)
.

Thus, we have

A > 0 if RI0 >
β − θ +

√
β2 − βθ + β

β + βθ − θ2

while A < 0 if RI0 <
β − θ +

√
β2 − βθ + β

β + βθ − θ2
.

This indicates that the eigenvalues of JI
∣∣∣
EIi

are

λ1 =
A−
√
A2 − 4BC

2
and λ2 =

A+
√
A2 − 4BC

2
when A2 > 4BC

or

λ1 =
A− i

√
4BC −A2

2
and λ2 =

A+ i
√

4BC −A2

2
when A2 < 4BC.

Therefore, EIi exists and is locally asymptotically stable if

1 < RI0 < min{1

θ
,
β − θ +

√
β2 − βθ + β

β + βθ − θ2
} =

β − θ +
√
β2 − βθ + β

β + βθ − θ2
.
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Notice that A = 0 when RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 and

dA

d
(
RI0
) ∣∣∣
RI0=

β−θ+
√
β2−βθ+β

β+βθ−θ2

=
2
√
β(β − θ) + β

(β + θ (β − θ))
(
RI0
)2 (

1 +RI0 (β − θ)
)2 > 0.

Thus according to Theorem 3.1.3 in [79] and Theorem 3.1 in [77] again, we can
conclude that the submodel (9) undergoes a supercritical Hopf-bifurcation at

RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 .

�

Proof of Theorem 3.1.

Proof. The detailed proof for the submodel (7) is similar to the proof for the sub-
model (9), thus we only focus on the submodel (9).

According to Proposition 1, if RI0 ≤ 1 or RI0 ≥ 1
θ , then the submodel (9) only

has three boundary equilibria EIu, u = 0, θ, 1 where EIθ is a saddle and EI1 is locally
asymptotically stable when RI0 < 1 while EIθ is a source and EI1 is a saddle when
RI0 > 1. For RI0 = 1, EI1 is nonhyperbolic with one zero eigenvalue and the other
negative while EIθ remains saddle. For RI0 = 1

θ , EIθ is nonhyperbolic with one zero

eigenvalue and the other positive while EI1 remains saddle.
According to Theorem 2.1, the submodel (9) has a compact global attractor.

Thus, from an application of the Poincaré-Bendixson theorem [31] we conclude
that the trajectory starting at any initial condition living in the interior of R2

+

converges to one of three boundary equilibria EIu, u = 0, θ, 1 when (9) has no interior
equilibrium. This implies that lim supt→∞ I(t) = 0 when RI0 ≤ 1 or RI0 ≥ 1

θ . Since

EI0 is the only locally asymptotically stable boundary equilibrium when RI0 ≥ 1
θ ,

therefore, System (9) converges to (0, 0) for any initial condition taken in the interior
of R2

+.
The third part of Theorem 3.1 can be a direct application of results from Theorem

2.1. Therefore, the statement holds. �

Proof of Proposition 2.

Proof. The local stability of equilibrium can be determined by the eigenvalues λi, i =
1, 2, 3 of the Jacobian matrix of System (6) evaluated at the equilibrium. By simple
calculations, we have follows:

1. The equilibrium E0 = (0, 0, 0) is always locally asymptotically stable since its
eigenvalues are

λ1 = −θ (< 0) , λ2 = −µ (< 0) , λ3 = −d (< 0)

2. The equilibrium Eθ = (θ, 0, 0) is always unstable since its eigenvalues are

λ1 = θ (1− θ) (> 0) , λ2 = µθ
(
R1

0 − 1
θ

)
{<0 if RI0<

1
θ

>0 if RI0>
1
θ

, λ3 = dθ
(
RP0 − 1

θ

)
{<0 if RP0 <

1
θ

>0 if RP0 >
1
θ

3. The equilibrium E1 = (1, 0, 0) is locally asymptotically stable if RI0 < 1 and
RP0 < 1 since its eigenvalues are

λ1 = (θ − 1) (< 0) , λ2 = µ
(
RI0 − 1

)
{<0 if RI0<1

>0 if RI0>1
, λ3 = d

(
RP0 − 1

)
{<0 if RP0 <1

>0 if RP0 >1

where the sign of λi indicates its eigenvector pointing toward (< 0) or away from (>
0) the equilibrium in S-axis (i = 1), I-axis (i = 2) and P -axis (i = 3), respectively.
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According to Proposition 1, the equilibrium EiP =
(

1
RP0

, 0, 1
a

(
1
RP0
− θ
)(

1− 1
RP0

))
is locally asymptotically stable if it is locally asymptotically stable in the submodel
(7) and

dI
Idt

∣∣∣
EiP

= β
RP0
−
(

1
RP0
− θ
)(

1− 1
RP0

)
− µ < 0⇔ RI0

RP0
< 1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

which indicates that disease is not able to invade at EiP .

Similarly, the equilibrium EiI =

 1
RI0
,

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ , 0

 is locally asymptoti-

cally stable if it is locally asymptotically stable in the submodel (9) and

dP
Pdt

∣∣∣
EiI

= bS + αI − d = b
RI0

+
α

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ − d < 0⇔ RP0
RI0

< 1−
α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ)

which indicates that predator is not able to invade at EiI .
Therefore, we can conclude that EiP is locally asymptotically stable if

1 < RP0 <
2

1 + θ
and

RI0
RP0

< 1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

and EiI is locally asymptotically stable if

1 < RI0 <
β − θ +

√
β2 − βθ + β

β + βθ − θ2
and

RP0
RI0

< 1−
α
(

1
RI0
− θ
)(

1− 1
RI0

)
d( 1
RI0

+ β − θ)
.

�

Proof of Theorem 4.1.

Proof. If RI0 ≤ 1, then β = φ(N)
N ≤ µ. According to Theorem 2.1, we have

limt→∞ I(t) = 0, i.e., the limiting dynamics of System (6) is the submodel (7)
which has only boundary equilibrium (0, 0), (θ, 0) and (1, 0) when RP0 ≤ 1. Then
Poincaré-Bendixson Theorem [31, 72] to (7), we can conclude that limt→∞ P (t) = 0.
Therefore, we have

lim
t→∞

max{I(t), P (t)} = 0 if RI0 ≤ 1 &RP0 ≤ 1.

While if, in addition, we have RP0 > 1
θ instead, then from Theorem 3.1 we can

conclude that the omega limit set of SP -plane is E0∪Eθ∪E1. Since RI0 ≤ 1 indicates
that, for any ε > 0, all trajectories enter into the compact set [0, B]× [0, ε]× [0, B]
when time large enough, therefore, the condition RI0 ≤ 1 and RP0 > 1

θ indicates that,
for any ε > 0, all trajectories enter into the compact set M = [0, 1] × [0, ε] × [0, ε]
when time large enough. Choose ε small enough, then the omega limit set of the
interior of M is E0 since E0 is locally asymptotically stable and Eθ, E1 is unstable
according to Proposition 1. Therefore, the condition RI0 ≤ 1 and RP0 > 1

θ indicates
that limt→∞ (S(t), I(t), P (t)) = E0.

If α > 0, then from the proof of Theorem 3.1 and Corollary 1, we can conclude
that lim supt→∞ I(t) < 1− θ. This indicates that for any ε > 0, there exists a time
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T such that

dP

Pdt
< b(1+ε)+α(1−θ+ε)−d = d

(
RP0 +

α(1− θ)
d

+
ε(b+ α)

d
− 1

)
for all t > T

which implies that limt→∞ P (t) = 0 if RP0 + α(1−θ)
d < 1. If RP0 + α(1−θ)

d = 1, then we
can apply Poincaré-Bendixson Theorem [31, 72] to (9) to obtain that limt→∞ P (t) =
0. The rest of the second item of Theorem 4.1 can be shown by applying the similar
arguments of the proof for the first item in Theorem 4.1.

The third item of Theorem 4.1 can be shown by a direct application of Theorem
2.1, i.e., all trajectories converge to E0 whenever S(0) < θ. �

Proof of Theorem 4.2.

Proof. Direct applications of Theorem 4.1 imply that System (6) has no interior
equilibrium if

RI
0 < 1 or (α < 0,RP

0 < 1) or (α > 0,RP
0 +

α(1− θ)
d

< 1).

Thus, we omit the detailed proof for these cases.
If (S∗, I∗, P ∗) is an interior equilibrium for System (6), then S∗ is a positive root

of the quadratic equation

(S − θ)
(

1− S − b
α

(
1
RP0
− S

))
− β bα

(
1
RP0
− S

)
− β

(
S − 1

RI0

)
= 0

⇔ S2 −BS + C = 0

(21)

provided that

B = −(β − θ) +
d
α − 1
b
α − 1

, C =
µ− θ − d(β−θ)

α
b
α − 1

and

P ∗ =
β

a

(
S∗ − 1

RI0

)
> 0, I∗ =

b

α

(
1

RP0
− S∗

)
> 0. (22)

The equation (22) implies that a necessary condition for the existence of the
interior equilibrium (S∗, I∗, P ∗) is as follows:

1

RI0
< S∗ <

1

RP0
if α > 0; while S∗ > max

{ 1

RI0
,

1

RP0

}
if α < 0.

In the case that RI0 = µ
β = 1, we have S∗ = d−α

b−α , thus the interior equilibrium

(S∗, I∗, P ∗) exists if

1 < S∗ <
1

RP0
if α > 0; while S∗ > max

{
1,

1

RP0

}
if α < 0.

This is a contradiction to lim supt→∞ S(t) ≤ 1 according to Theorem 2.1. This
implies that there is no interior equilibrium if RI0 = 1. Notice that Theorem 4.1
indicates that one necessary condition for System (6) having an interior equilibrium
is that RI0 ≥ 1 otherwise limt→∞ I(t) = 0, thus, there is no interior equilibrium if

RI
0 ≤ 1.

Recall that Theorem 2.1 and Theorem 4.1 indicate that θ < S∗ < 1. Therefore,
the existence of an interior equilibrium (S∗, I∗, P ∗) requires RI0 > 1 (i.e., µ < β)
and
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max{θ, 1

RI0
} < S∗ < min{1, 1

RP0
} if α > 0;

while 1 > S∗ > max
{
θ,

1

RI0
,

1

RP0

}
if α < 0.

This implies that there is no interior equilibrium (S∗, I∗, P ∗) if

max{θ, 1

RI0
} > min{1, 1

RP0
} when α > 0

or

max
{
θ,

1

RI0
,

1

RP0

}
≥ 1 when α < 0.

Therefore, there is no interior equilibrium if

(RI
0 ≤ RP

0 , α > 0) or (RP
0 ≥

1

θ
, α > 0) or (RP

0 ≤ 1, α < 0).

Since we assume that System (6) satisfies Condition H, thus we have

0 < θ < 1, µ > θ, 0 < b ≤ a and −∞ < α < b.

The requirement RI0 > 1 implies that θ < µ < β. The equation (21) has only one

positive root S∗2 = B+
√
B2−4C
2 if

C =
µ− θ − d(β−θ)

α
b
α − 1

=
α(µ− θ)− d(β − θ)

b− α
< 0⇔ 0 < α <

d(β − θ)
µ− θ

=
d
µ−θ
β−θ

.

Therefore, System (6) has a unique interior equilibrium Ei2 = (S∗2 , I
∗
2 , P

∗
2 ) where

S∗2 = B+
√
B2−4C
2 if

α <
d
µ−θ
β−θ

, max{θ, 1

RI
0

} < S∗2 < min{1, 1

RP
0

} when α > 0,

or,

1 > S∗2 > max
{
θ,

1

RI
0

,
1

RP
0

}
when α < 0.

In the case that α < 0, it is easy to check that C < 0 since θ < µ < β implies that
α < d

µ−θ
β−θ

holds whenever α < 0. Thus, it is impossible that (21) has two positive

roots when α < 0. If (21) has two positive roots

S∗1 =
B −

√
B2 − 4C

2
< S∗2 =

B +
√
B2 − 4C

2
,

then it requires that α > 0 and

B > 0⇔ −(β − θ) + d−α
b−α > 0⇔ 0 < β − θ < d−α

b−α s.t. α < min{b, d},
C > 0⇔ α(µ−θ)−d(β−θ)

b−α > 0⇔ 0 < β − θ < α(µ−θ)
d ,

B2 > 4C ⇔ (β − θ)2 +
(
d−α
b−α

)2

+ 2(β−θ)(d+α)−4α(µ−θ)
b−α > 0.

Thus, B > 0 and C > 0 require that

0 < β − θ < d− α
b− α

s.t. 0 < α < min{b, d} and 0 < β − θ < α(µ− θ)
d

< µ− θ

which is a contradiction since 0 < µ− θ < β − θ and b > α. Therefore, System (6)
has at most one interior equilibrium Ei2 and System (6) has no interior equilibrium
if C > 0 or B2 < 4C which implies follows:
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1. C > 0⇔ α > d
µ−θ
β−θ

.

2. B2 − 4C < 0⇔ µ < θ +
(b−α)

(
(θ−β+ d−α

b−α )
2
+

4d(β−θ)
b−α

)
4α

The argument above implies that System (6) has at most one interior equilibrium

Ei2 with S∗2 = B+
√
B2−4C
2 . From (12), we have

S∗2 >
d− α
b− α

if α > 0; S∗2 <
d− α
b− α

if α < 0

which implies that

S∗2 >
d− α
b− α

≥ 1 when b > α > 0, d ≥ b(i.e., RP0 ≤ 1).

This is a contradiction to the fact that lim supt→∞ S(t) ≤ 1. Therefore, System (6)
has no interior equilibrium if RP0 ≤ 1, α > 0. Combining the discussions above, we
can conclude that System (6) has no interior equilibrium if

RP
0 ≤ 1, α < b.

The existence of Ei2 requires

max{θ, 1

RI0
} < S∗2 < min{1, 1

RP0
} if α > 0

while

1 > S∗2 > max
{
θ,

1

RI0
,

1

RP0

}
if α < 0.

This implies that System (6) has no interior equilibrium if

S∗2 <
d− α
b− α

< max
{
θ,

1

RI
0

,
1

RP
0

}
= max

{
θ,

1

RI
0

}
when RP

0 > 1, α < 0

since
1

RP0
=
d

b
<
d− α
b− α

when RP0 > 1, α < 0.

The above argument also implies that System (6) has no interior equilibrium if

α > 0, RP0 >
1

θ
and RI0 >

1

θ

which implies that, according to Proposition 1, the only possible boundary equilibria
for System (6) are E0, Eθ and E1 where only E0 is locally asymptotically stable;
Eθ is a source and E1 is a saddle with one stable manifold on S-axis. This implies
that all trajectories of System (6) that are not living on the stable manifold of E1

converge to E0.
The local stability of the interior equilibrium

Ei2 =

(
S∗2 ,

b

α

(
1

RP0
− S∗2

)
,
β

a

(
S∗2 −

1

RI0

))
can be determined by the eigenvalues of the Jacobian Matrix of (6) evaluated at
this equilibrium, i.e., JEi2 :

JEi2
=


S∗2
(
1 + θ − d

α
+ ( b

α
− 2)S∗2

)
S∗2 (θ − β − S∗2 ) −aS∗2

β(d−bS∗2 )

α
0 −a(d−bS∗2 )

α

b(βS∗2−µ)

a

α(βS∗2−µ)

a
0

 (23)
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where its characteristic equation reads as follows:

−λ3 +
S∗2 [α(1+θ)−d+(b−2α)S∗2 ]

α λ2 − βS∗2 (S∗2−θ+β)(d−bS∗2 )+αd(βS∗2−µ)
α λ

+
S∗2 (d−bS∗2 )(βS∗2−µ)[α−d+(β−θ+2S∗2 )(b−α)]

α = (λ1 − λ)(λ2 − λ)(λ3 − λ) = 0.

(24)

with λi, i = 1, 2, 3 being roots of (24). If all real part of λi, i = 1, 2, 3 are negative,
then we have∑3

i=1 λi =
S∗2 [α(1+θ)−d+(b−2α)S∗2 ]

α
< 0

⇔ S∗2

{ < d−α(1+θ)
b−2α

if 0 < α < min{b/2, d/(1 + θ)}
> α(1+θ)−d

2α−b if α > max{b/2, d/(1 + θ)}
> d−α(1+θ)

b−2α
if α < 0∑3

i,j=1,i 6=j λiλj =
βS∗2 (S∗2−θ+β)(d−bS∗2 )+αd(βS∗2−µ)

α

= βS∗2 (S
∗
2 − θ + β)

(d−bS∗2 )

α
+ d(βS∗2 − µ) > 0

∏3
i=1 λi =

d−bS∗2
α

S∗2 (βS
∗
2 − µ) [α− d+ (β − θ + 2S∗2 )(b− α)] < 0

⇔ S∗2 <
d−α
b−α−(β−θ)

2
= B/2

Notice that the existence of Ei2 requires C < 0 (since it is impossible for (21)
having two positive roots), thus, we have

S∗2 =
B +

√
B2 − 4C

2
> B/2

which is a contradiction to the fact that all real part of λi, i = 1, 2, 3 being negative
requires S∗2 < B/2. Therefore, the real parts of eigenvalues of JEi2 can never be all
negative. �

Proof of Theorem 5.1.

Proof. It is easy to check that (13) is positively invariant in R3
+ since S = 0, P =

0, I = 0 are invariant manifolds, respectively. For any initial conditions taken in
R3

+, we have

dS

dt
≤ S(1− S)⇒ lim sup

t→∞
S(t) ≤ 1.

Thus, for any ε > 0, then there exists some time T large enough such that

dS

dt
+
dI

dt
≤ (1 + ε)(1− S − I) for all t > T ⇒ lim sup

t→∞
S(t) + I(t) ≤ 1.

Now define V = b(S+I)
a + P , then we have

dV
dt ≤

bS(1−S−I)
a − bIP − bµ

a I + αPI − dP ≤ b/a− b/a(S + I)− dP

⇒ lim supt→∞ V (t) ≤ b
amin{1,d} .

This indicates that lim supt→∞ V (t) ≤ b
amin{1,d} . Thus, the first statement of The-

orem 5.1 holds.
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From the positive invariant property of (13), we have follows

dS
dt = S (1− S − I)− βSI − aSP ≤ S [1− S − (1 + β)I] ,
dI
dt = βSI − aIP − µI ≤ [βS − µ] .

Thus the infective population of (13) is always less or equal to (if P = 0) the
infective population of the following dynamics:

dS
dt = S [1− S − (1 + β)I]
dI
dt = [βS − µ]

which is the well-known Lotka-Volterra prey predator system that has limt→∞ I(t) =
0 if RI0 ≤ 1 (see the detailed proof in [51]). Therefore, the infective population of
(13) goes extinct if RI0 ≤ 1. This implies that the limiting system of (13) is the
well-known Lotka-Volterra prey predator system again:

dS
dt = S [1− S − aP ]
dP
dt = P [bS − d]

which has global stability at (1, 0) when RP0 ≤ 1 and has global stability at(
1
RP0
,
RP0 −1

aRP0

)
when RP0 > 1 by using the local stability of boundary equilibria,

Poincaré-Bendixson Theorem and Dulac’s criterion [31]. The detailed proof can be
found in [51]. Similarly, we can prove the dynamical properties of (13) when

(RP0 ≤ 1, α ≤ 0) or (RP0 ≤ 1− α

d
, α > 0).

Thus, the second part of of Theorem 5.1 holds.
The argument above indicates that one necessary condition for (13) having an

interior equilibrium (Ei)
na = (S∗, I∗, P ∗) (see the detailed expression of (Ei)

na in
(15)) is that RI0 > 1, i.e., β > µ. Thus from (16), we can conclude that (Ei)

na

exists if and only if

dβ − bµ > α (β − µ)

1 + β
and max{1, α

d
} < 1 + β

1 + µ
<
b

d
since β > µ, b > α.

Now if RP0 ≤ 1, i.e., d ≤ b, then we have 1 < 1+β
1+µ < b

d ≤ 1 which is impossible.

Thus, the existence of (Ei)
na requires

RI0 > 1 and RP0 > 1

which indicates the existence of (EiI)
na and (EiP )na.

Notice that (EiI)
na is globally stable in the SI-plane (i.e., P = 0) and (EiP )na

is globally stable in the SP -plane (i.e., I = 0), therefore, the locally stability of
(EiI)

na and (EiP )na is determined by the signs of dP
dt

∣∣
(EiI)na

, dIdt
∣∣
(EiP )na

, respectively,

i.e.,

dP

dt

∣∣∣
(EiI)na

= −aP
∗(1 + β)(b− α)

β
,

dI

dt

∣∣∣
(EiP )na

= −I
∗(1 + β)(b− α)

b
. (25)

This implies that if we have (Ei)
na = (S∗, I∗, P ∗) ∈ intR3

+, then dP
dt

∣∣
(EiI)na

< 0

and dI
dt

∣∣
(EiP )na

< 0, thus, both (EiI)
na and (EiP )na are locally asymptotically stable

whenever (EiP )na exists. Therefore, the existence of (Ei)
na requires RI0 > 1, RP0 > 1

and both (EiI)
na and (EiP )na being locally asymptotically stable. If one of (EiI)

na

and (EiP )na is unstable, then there is no interior equilibrium, thus, (13) can never
be permanent due to Schauder fixed point theorem [see Theorem 6.3 by [41]] when
b > α.



914 Y. KANG, S. K. SASMAL, A. R. BHOWMICK AND J. CHATTOPADHYAY

Let J(Ei)na be the Jacobian matrix of System (13) evaluated at

(Ei)
na = (S∗, I∗, P ∗).

Then by simple calculations, we can obtain that

det(J(Ei)na) = aS∗I∗P ∗ (1 + β) (b− α) > 0.

Therefore, (Ei)
na is always unstable whenever it exists.

Assume that (EiP )na is unstable, then from (15), (16) and (25), we have the
following inequalities hold

b > d and dβ − bµ = dµ
(
RI0 −RP0

)
≥ b− d > 0.

Therefore, we have RI0 > RP0 > 1, i.e., β > µ, thus (EiI)
na exists. Then (EiI)

na has
to be stable, otherwise, (13) is permanent which is impossible. Therefore, if (EiP )na

is unstable, then (EiI)
na exists and is stable.

Assume that (EiI)
na is unstable, then from (15), (16) and (25), we have the

following inequalities hold

β > µ and dβ − bµ = dµ
(
RI0 −RP0

)
≤ α(β − µ)

1 + β
.

If d ≥ b, i.e., RP0 ≤ 1, then we have

α < b ≤ d⇒ dβ − bµ ≥ b(β − µ) >
α(β − µ)

1 + β

which is impossible. Thus, we have RP0 > 1 which implies that (EiP )na exists and
is stable. �
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where S denotes the normalized susceptible prey population; the parameter r de-
notes the maximum birth-rate of species, which can be scaled to be 1 by altering
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prey I-class, thus in the presence of disease, I-class has a constant mortality µd+ rθ
which is a sum of the natural mortality and the additional mortality due to disease.

We assume that a) disease does not have vertical transmission but it is untreat-
able and causes an additional death rate; b) I-class does not contribute to the
reproduction of newborns; and c) the net reproduction rate of newborns is modified
by the disease (e.g, infectives compete for resource but do not contribute to repro-
duction). In the presence of disease (i.e., I > 0) and the absence of predation (i.e.,
P = 0), the formulation of susceptible prey population dynamics can be described
by the following (27):

dS

dt
= rS(S − θ)(1− S − I)︸ ︷︷ ︸

the net reproduction modified by disease due to the competition for resource

− φ(N)
I

N
S︸ ︷︷ ︸

new infections

(27)

where φ(N) is the disease transmission function that can be either density-depende-
nt (i.e., φ(N) = βN which is also referred to the law of mass action) or frequency-
dependent (i.e., φ(N) = β). Thus, the formulation of infective population can be
described by the following (28),

dI
dt

= φ(N)
I

N
S︸ ︷︷ ︸

Infected population per unit time

− rθI︸︷︷︸
natural mortality

− µdI︸︷︷︸
additional mortality due to disease

= φ(N) I
N
S − (rθ + µd) I

= φ(N) I
N
S − µI︸︷︷︸

the natural mortality plus an additional mortality due to disease

.

(28)

where the parameter µ > rθ denotes the death rate of I-class, which includes an
additional disease-induced death rate. This modeling approach is similar to the
work by [11, 18, 23, 37] as well as many others [2, 27, 30, 36, 55, 58, 63] regarding
the effects of Allee effects and disease.
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