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Abstract. A simple producer-grazer model based on adaptive evolution and
ecological stoichiometry is proposed and well explored to examine the patterns

and consequences of adaptive changes for the evolutionary trait (i.e., body size),

and also to investigate the effect of nutrient enrichment on the coevolutin of the
producer and the grazer. The analytical and numerical results indicate that this

simple model predicts a wide range of evolutionary dynamics and that the total

nutrient concentration in the ecosystem plays a pivotal role in determining the
outcome of producer-grazer coevolution. Nutrient enrichment may yield evo-

lutionary branching, trait cycles or sensitive dependence on the initial values,

depending on how much nutrient is present in the ecosystem. In the absence of
grazing, the lower nutrient density facilitates the continuously stable strategy

while the higher nutrient density induces evolutionary branching. When the

grazer is present, with the increasing of nutrient level, the evolutionary dy-
namics is very complicated. The evolutionary dynamics sequentially undergo

continuously stable strategy, evolutionary branching, evolutionary cycle, and

sensitive dependence on the initial values. Nutrient enrichment asserts not only
stabilizing but also destabilizing impact on the evolutionary dynamics. The

evolutionary dynamics potentially show the paradox of nutrient enrichment.
This study well documents the interplay and co-effect of the ecological and

evolutionary processes.

1. Introduction. Evolution is the change in genetic composition of a population
over successive generations, which results in the change of corresponding geno-
type frequencies within populations or species during the interaction of individuals
with one another and with the environment [19]. Although population dynamics
and evolutionary dynamics are often treated as separate fields that require differ-
ent approaches and methodologies, genetic variation among individuals can have
strong effects on the observed community-level dynamics. Many studies have docu-
mented that the rapid evolutionary change affects the interspecific interactions and
genotypic structure and then alters ecological functions [19, 45]. Evolutionary and
ecological dynamics are likely to be co-dependent when changes in genotype fre-
quency result in a change in the phenotypic traits, which crucially affect interaction
strength among populations.
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Although the impact of ecological changes on evolutionary responses has long
been acknowledged, the converse has been predominantly neglected, particularly
empirically [15]. Population growth is a consequence of multiple processes, which
strengthen arguments advocating integrated approaches to assess how populations
respond to the environments. Both the evolution and the population biology must
be integrated together in natural communities [18, 19, 24, 47]. One of the cen-
tral issues of evolutionary dynamics is to characterize the evolutionary process at
community levels such as continuously stable strategy, evolutionary branching, evo-
lutionary cycle et al.

In term of methodology, there are several different approaches to modeling evo-
lutionary changes in dynamical models of ecological communities. One is the locus-
based population genetic models [36], which directly incorporate basic population
genetics into population dynamics. As an alternative, quantitative trait (QT) mod-
els [18] describe the evolutionary change of a phenotypic trait under selection and
affecting the population dynamics. Adaptive dynamics (AD) is another approach
to studying the evolutionary phenotypic changes in evolving populations when fit-
ness is density or frequency dependent [21], which assumes that evolutionary and
ecological dynamics occur on different time-scales and separate the two dynamical
processes analytically, draws on the feedback between ecological and evolutionary
processes, and has been proved to be a useful framework to model the evolution of
quantitative traits. AD models have been and continue to be a useful method of
attacking a number of interesting and important issues in evolution and related sub-
jects such as long-term phenotypic evolution under complex ecological scenarios in
the terms of maintenance of genetic variation, coevolution or sympatric speciation
[20, 44].

Nutrient limitation determines the primary production and species composition
of many aquatic and terrestrial ecosystems. Nutrient enrichment becomes par-
ticularly relevant as human activities profoundly enrich the biosphere with three
elements that are most critical to all life- C, N, and P (via rising CO2, anthro-
pogenic N fixation, and mining of phosphates for fertilizers). Nutrient enrichment
from human activities represents one of the greatest threats to global ecosystems
with significant consequences for ecosystem structure and function [8], but its ef-
fects on ecosystem productivity can differ greatly. In aquatic ecosystems, the nutri-
ents are of paramount importance for primary production and the important role
played by nutrients in lake problems is generally accepted today [3]. Mounting ev-
idences indicate that nutrients assert profound impacts not only on the ecological
dynamics by bottom up control [1, 4, 8, 12] but also on the evolution dynamics
[19, 22, 23, 30, 28, 32].

In mathematical modeling, one typical and reasonable approach to incorporating
the nutrient (i.e., phosphorus) into the model is based on the principles of ecolog-
ical stoichiometry. The theory of ecological stoichiometry [40], which refers to the
balance of energy and multiple chemical substances in living systems, has seen some
exciting progresses in modeling and understanding ecosystems [11, 31, 35, 40, 41, 43].
Ecological stoichiometry provides rigorous and ubiquitous mechanistic basis for ex-
ploring the effect of nutrients on the evolutionary dynamics because the evolutionary
model is generally determined by the fitness gradients of the ecological model. Some
attempts have been made to examine the effects of the evolution of some traits re-
lating to stoichiometry on the evolutionary dynamics [2, 5, 17, 26, 42]. However,
most of those studies are just case-related or based on numerical or computational
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Table 1. Symbols of the Model Parameters

Para. Definition Value Unit Reference

r0 Producer’s maximum growth rate
with x1 = x0

1 day−1 [43]

PT Total phosphorus 0.02 mg P/l [31]
q0 Producer minimal P/C 0.0038 mg P/mg C [31]
q2 Grazer constant P/C 0.03 mg P/mg C [31]
c0 Maximum strength of intraspecific

competition
0.1 (day·mg C/l)−1 Default

d1 Loss rate of producer 0.2 day−1 [11]
a0 Maximum capture rate 0.8 (day·mgC/l)−1 [11, 31]
ê Maximal conversion rate of grazer 0.8 [11, 31]
d2 Loss rate of grazer 0.2 day−1 [11, 31]
x0 Intermediate body size at which the

best advantage occurs
0.5 [48]

σ2
r Variance of the phenotypic effect of

individuals with trait x1

0.014 [48]

σ2
c Variance of the phenotypic effect of

individuals with traits y1 and x1 in-
teractions

0.01 Default

σ2
a Variance of phenotypic effect of in-

dividuals with traits x1 and x2 in-
teractions

0.009 Default

µ1 Probabilities that the birth events
are mutant for producer

0.1 [48]

µ2 Probabilities that the birth events
are mutant for grazer

0.1 [48]

σ2
1 Variances of the mutation distribu-

tion of producer
0.1 [48]

σ2
2 Variances of the mutation distribu-

tion of grazer
0.01 [48]

approach. In addition, there are less theoretical studies on identifying the effects
of nutrients incorporating ecological stoichiometry on the long-term evolutionary
dynamics in natural ecosystems although the coevolution dynamics of community
have attracted a lot of attentions.

Motivated by the above considerations, by integrating the evolutionary dynamics
with the stoichiometric theory, here we present and analyze an evolutionary stoi-
chiometric producer-grazer (ESPG) model, which combines adaptive dynamics and
ecological stoichiometry, to explore the patterns and consequences of the evolution
of evolutionary trait (i.e., body size), and to expound the impacts of nutrient on the
evolutionary dynamics. In Section 2, both the ecological stoichiometric model and
the evolutionary model are introduced and their qualitative dynamics are math-
ematically explored. Section 3 deals with the evolutionary dynamics of producer
when the grazer is absent. Section 4 devotes to investigating the effects of nutrient
on the coevolution dynamics of the ESPG when grazer is present. Section 5 ends
the paper with a discussion. To our knowledge, this is the first theoretical study on
producer-grazer coevolution incorporating elements of ecological stoichiometry and
adaptive dynamics and therefore constitutes a relevant contribution to integrate
these two emerging frameworks.
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2. The model. In this section, a stoichiometric producer-grazer ecological model is
proposed to illustrate the effects of the total phosphorus density on the dynamics of
the ecological model by qualitative analysis. Then, an evolutionary model is built
based on the ecological model by applying the adaptive dynamics theory[9, 19].
Consider body sizes as the evolutionary traits and assume the pace of the change
of the traits is slower than the ecological dynamics. Hence, the ecological process
and the evolutionary process occur on different time-scales and can be separated
analytically later.

2.1. The ecological model. Consider a simple community, with one limiting nu-
trient (say phosphorus), a primary producer (A(t) (mg C/l), the density of producer
at time t), and a grazer (G(t) (mg C/l), the density of grazer at time t). We assume
that the growth rate of primary producer is nutrient limited. As in [31], assume that
the system is closed for phosphorus with a total of PT (mg P/l) and all phosphorus
in the system is divided into two pools: phosphorus in the producer and phosphorus
in the grazer. Essentially, it is assumed that the free phosphorus is immediately
taken by the producer. Moreover, the intracellular nutrient content (also known as
cell quota) of producer (q1 (mg P/ mg C)) varies (e.g., increases due to nutrient
uptake and declines due to dilution by growth) but never falls below the minimum
q0. The cell quota of the grazer (q2 (mg P/ mg C)) is assumed to stay constant
[31, 40]. From the above assumptions, it follows that

PT = q1A(t) + q2G(t).

In the absence of grazer, the growth of producer follows the Droop equation ([14])

dA

dt
= r(1− q0

q1
)A− cA2 − d1A,

where r (day−1) is the per capita maximum growth rate of producer, q0 (mg P/mg
C) is the fixed minimum cell quota of producer, c ((day · mgC/l)−1) is the in-
traspecific competition coefficient of producer, which is caused by non-phosphorus-
dependent factors such as light, allelopathy or other nutrients et al., and d1 (day−1)
is the loss rate of producer.

The grazer follows exponential decay dG/dt = −d2G when there is no producer,
where d2 (day−1) is its loss rate. Since the grazer keeps the constant cell quota
for phosphorus, its growth rate can be limited not only by food quantity (producer
biomass measured in carbon terms) but also by food quality (the phosphorus content
in the producer, q1). When q1 < q2, the grazer is limited by food quality and, hence,
cannot incorporate the excess of carbon in the ingested food into its own biomass.
Instead, the grazer respires (as CO2), excretes or egests the excess of carbon, thus
reducing its conversion efficiency. As in [31], we assume that the grazer’s conversion
efficiency is governed by the mass balance law: e follows a minimum function, i.e.,
êmin{1, (PT − q2G)/(q2A)}, where ê is the grazer’s maximal conversion efficiency
achieved at good food quality (i.e. when q1 ≥ q2). For simplification, the functional
response of grazer is assumed to be of bilinear type, i.e., aAG, where a ((day ·
mgC/l)−1) is the predation rate of grazer.

Now, the stoichiometric producer-grazer ecological model comes into play
dA

dt
= r(1− q0A

PT − q2G
)A− cA2 − d1A− aAG := Φ(A,G),

dG

dt
= êmin{1, PT − q2G

q2A
}aAG− d2G := Ψ(A,G).

(1)



EFFECTS OF NUTRIENT ENRICHMENT ON COEVOLUTION 845

The per capita fertility rate of producer, i.e., r(1− q0A/(PT − q2G)), indicates both
the intraspecific competition among producers and the interspecific competition for
phosphorus between producer and grazer. One must have r > d1. Otherwise, the
producer will be extinct and the system collapses.

Define

D = {(A,G)|0 < A <
PT

q0
, G > 0, q0A+ q2G < PT }.

It is trivial to show that D is the feasible region of (1) and is positive invariant with
respect to (1). The straight line A + G = PT /q2 divides D into two parts D1 and
D2, where

D1 = {(A,G)|0 < A < PT /q2, A+G < PT /q2},
D2 = {(A,G)|PT /q2 < A < PT /q0, A+G > PT /q2, q0A+ q2G < PT }.

Thus

Ψ(A,G) =

(êaA− d2)G, (A,G) ∈ D1,

[
êa

q2
(PT − q2G)− d2]G, (A,G) ∈ D2.

The nullcline of producer Φ(A,G) = 0 implies that A = 0 and

A =
(PT − q2G)(r − d1 − aG)

c(PT − q2G) + rq0
:= N(G).

Solve A = N(G) in D, one has

G =
aPT + (r − d1 − cA)q2 −

√
∆

2aq2
:= N−1(A),

where ∆ = [(r − d1 − cA)q2 − aPT ]2 + 4q0q2arA. It is not difficult to show that
G = N−1(A) is decreasing with respect to A and passes through (PT (r − d1)/
(cPT + rq0), 0) and (min{PT /q2, (r − d1)/a}, 0). The nullcline of grazer Ψ(A,G) =
0 implies that G = 0 and êmin{1, (PT − q2G)/(q2A)}aA = d2, which is equivalent
to A = d2/(êa) in D1 and to G = PT /q2 − d2/(êa) in D2 (see dashed lines in Fig.
1).

Theorem 2.1. The boundary equilibrium E0 = (Ā, 0) of (1) always exists and is
globally asymptotically stable if one of the following conditions is satisfied

1. PT < d2q2/(êa),
2. d2q2/(êa) < rd2q0q2/[(r − d1)êa− cd2q2] and d2q2/(êa) < PT ≤ rd2q0q2/[(r−

d1)êa− cd2q2].

Proof. (1) always has a boundary equilibrium E0 = (Ā, 0) with Ā = (r−d1)/(rq0/PT

+ c). Based on the previous analysis of the nullclines, it is trivial to show that (1)
has no positive equilibrium when PT < d2q2/(êa) and E0 is the unique equilibrium
of (1). If 0 < Ā ≤ PT /q2, then the Jacobian of (1) at E0 reads

J(E0) =

 −rq0ĀPT
− cĀ −rq0q2Ā

2

P 2
T

− aĀ

0 êaĀ− d2

 .

If PT /q2 < Ā < PT /q0, then the Jacobian of (1) at E0 reads

J(E0) =

 −
rq0Ā

PT
− cĀ −rq0q2Ā

2

P 2
T

− aĀ

0
êaPT

q2
− d2

 .
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Figure 1. The positive invariant set D = D1 ∪ D2 of (1). The
red curve l1 represents Φ(A,G)/A = 0 and the blue lines l2 denote
Ψ(A,G)/G = 0. l3 and l4 are q2A+q2G = PT and q0A+q2G = PT ,
respectively. H = (AH , GH) is the intersection of l1 and l3.

Hence, E0 is locally asymptotically stable when PT < d2q2/(êa).
If PT > d2q2/(êa) and Ā ≤ d2/êa, then there exists no positive equilibrium of

(1) and the Jacobian of (1) at E0 reads

J(E0) =

 −rq0ĀPT
− cĀ −rq0q2Ā

2

P 2
T

− aĀ

0 êaĀ− d2

 .

Therefore, if d2q2/(êa) < PT ≤ rd2q0q2/((r − d1)êa− cd2q2), then E0 is locally asy-
mptotically stable.

Note that both the A-axes and G-axes are trajectories of (1), so the existence
of any periodic orbits is precluded. Therefore, the boundary equilibrium E0 is

globally asymptotically stable for PT <
d2q2
êa

and
d2q2
êa

< PT ≤
rd2q0q2

(r − d1)êa− cd2q2
with

d2q2
êa

<
rd2q0q2

(r − d1)êa− cd2q2
.

Based on the above analysis, there exists positive equilibrium of (1) if PT >
max{d2q2/(êa), rd2q0q2/[(r − d1)êa− cd2q2]}. For the convenience of discussion,
we assume that d2q2/(êa) ≥ rd2q0q2/[(r − d1)êa − cd2q2] always holds. Denote
the intersection of Φ(A,G)/A = 0 and A + G = PT /q2 in the first quadrant by
H = (AH , GH), where

AH =
aPT + rq0 − rq2 + d1q2

(a− c)q2
.

Next, we deal with the existence and stability of the positive equilibrium of (1).
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Theorem 2.2. Assume that PT > d2q2/(êa). Then (1) has a unique positive
equilibrium E1 = (A1, G1) being globally asymptotically stable. In particular, E1

lies in D1 when AH > d2/(êa) and lies in D2 when AH < d2/(êa).

Proof. The proof of the existence and uniqueness of E1 = (A1, G1) is straight-
forward. Note that Φ(A,G)/A = 0 is decreasing with respect to A. Then, if
AH > d2/(êa), then E1 is located in D1 with A1 = d2/(êa), and, if AH < d2/(êa),
then E1 is located in D2 with G1 = PT /q2 − d2/(êa). If AH = d2/(êa), then
E1 = (A1, G1) = (d2/(êa), PT /q2 − d2/(êa)).

For the stability of E1, consider the Jacobian J(E1) of (1) at E1. If AH <
d2/(êa), then J(E1) writes

J(E1) =

 − rq0A1

PT − q2G1
− cA1 −rq0q2A

2
1

P 2
T

− aA1

0 −êaG1

 .

If AH > d2/(êa), then J(E1) reads

J(E1) =

 − rq0A1

PT − q2G1
− cA1 −rq0q2A

2
1

P 2
T

− aA1

êaG1 0

 .

It is not difficult to show that both of the eigenvalues of J(E1) always have negative
real parts. Hence, E1 is locally asymptotically stable. Furthermore, it is obvious
that E0 is always unstable by the Jacobian of (1) at E0 when PT > d2q2/(êa).

Consider the Dulac function defined by B(A,G) = 1/(AG), then

∂(BΦ(A,G))

∂A
+
∂(BΨ(A,G))

∂G
=


− c

G
− rq0

(PT − q2G)G
, (A,G) ∈ D1,

− c

G
− rq0

(PT − q2G)G
− êa

A
, (A,G) ∈ D2.

Define

λ1 = min
(A,G)∈D1

{ c
G

+
rq0

(PT − q2G)G
},

λ2 = min
(A,G)∈D2

{ c
G

+
rq0

(PT − q2G)G
+
êa

A
}

and let λ = min{λ1, λ2}. Then, λ is obviously positive. Hence, the generalized Du-
lac’s criterion is applied and (1) has no nontrivial periodic solutions in D. Therefore,
by the Poincaré-Bendixson theory, E1 = (A1, G1) is globally asymptotically stable
when PT > d2q2/(êa).

When PT < d2q2/(êa), E0 is globally asymptotically stable, that is, the grazer
is extinct and the producer persists. When PT > d2q2/(êa), E1 is globally asymp-
totically stable, which implies that both the producer and the grazer coexist. Note
that AH > d2/(êa) is equivalent to

PT >
d2q2
êa

(1− c

a
) +

r(q2 − q0)

a
− d1q2

a
.

Therefore, the location of E1 is also determined by the total phosphorus PT . In
summary, the total phosphorus PT characterizes the global dynamics of (1), and
the producer and grazer coexist for higher phosphorus.
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2.2. The evolutionary model. Body size is an important factor in a food web,
especially for phytoplankton, because it affects the carbon cycling and nutrients
availability [16, 29]. In the following, the body size is considered as the evolution-
ary trait due to its considerable impacts on the metabolism and interactions of
organisms[22, 29, 42, 48]. Our study focuses on how the total phosphorus density
affects the evolution of body size. Let x1 and x2 be the traits of producer and grazer
respectively. Although the parameters in (1) are constant in the ecological process,
some of them vary with the body sizes in the evolutionary process.

Recent studies show that the per capita maximum growth rate of producer
changes with its body size and is a function of body size [22, 37, 38]. For example,
for some phytoplankton with relatively large body or cell sizes, the per capita max-
imum growth rate tends to decline with a decelerating rate as body size increases,
whereas for the species with relatively small body size, the per capita maximum
growth rate tends to increase with body or cell size [22]. Therefore, we assume
that the per capita maximum growth rate r of producer is a Gaussian function of
(x1 − x0) given by

r := r(x1) = r0 exp{−(x1 − x0)2

2σ2
r

}, (2)

where x0 is the intermediate body size at which the best advantage occurs and r0
is the producer’s maximum growth rate with x1 = x0 and σ2

r is the variance of the
phenotypic effect of individuals with trait x1.

When a mutant producer with trait y1 is present, suppose that producers with
different sizes may take up different nutrients and the competition between them is
weaker than that between the ones with the same size [25, 13, 48], so the strength
of intraspecific competition of producer (say c) depends on the traits difference and
is modeled by

c := c(y1, x1) = c0 exp{−(y1 − x1)2

2σ2
c

}, (3)

where c0 is the maximum strength of intraspecific competition of producer and σ2
c is

the variance of the phenotypic effect of individuals with traits y1 and x1 interactions.
Usually, the grazer is inefficient to catch and feed on producers with too large

or too small body size, and it selectively feeds on the producers that are of certain
size to maximize energy gains[22, 29, 48]. So, we assume that the capture rate of
grazer is a Gaussian function with a maximum value and is given by

a := a(x1, x2) = a0 exp{−(x1 − θx2)2

2σ2
a

}, (4)

where a0 is the maximum capture rate, θ is a constant that defines grazer selectivity
and σ2

a is the variance of phenotypic effect of individuals with traits x1 and x2
interactions. The capture rate a is maximized at x1 = θx2. In this paper, we assume
that θ = 1 always holds for simplification. Therefore, the ecological dynamics of
resident producer and grazer populations with traits x1 and x2 reads

dA(x1, t)

dt
= A(x1, t)[r(x1)(1− q0A(x1, t)

PT − q2G(x2, t)
)− c(x1, x1)A(x1, t)− d1

−a(x1, x2)G(x2, t)],
dG(x2, t)

dt
= G(x2, t)[êmin{1, PT − q2G(x2, t)

q2A(x1, t)
}a(x1, x2)A(x1, t)− d2],

(5)
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where A(x1, t) is the density of resident producer population with trait value x1 at
time t, G(x2, t) is the density of resident grazer population with trait value x2 at
time t, and, r(x1), c(x1, x1) and a(x1, x2) are defined in (2)-(4).

Define the traits set of (5) for coevolution by

X = {(x1, x2)|PT >
d2q2

êa(x1, x2)
, x1 > 0, x2 > 0}.

By carrying out similar arguments to those in Theorem 2.2, one concludes that, if
(x1, x2) ∈ X, then the positive ecological equilibrium (A∗(x1, x2), G∗(x1, x2)) of (5)
exists and is globally asymptotically stable, that is, the producer and the grazer
can coexist and co-evolve (see Fig. 2). We will deliberately study the coevolution
of (5) in X. It is obvious that, when x1 = x2 = x0, r = r0, c = c0, and a = a0, one
has A∗ = A1 and G∗ = G1.

For the convenience of discussion, define

A(x1, x2) := N(G(x1, x2)) =
(PT − q2G(x1, x2))(r(x1)− d1 − a(x1, x2)G(x1, x2))

c(x1, x1)(PT − q2G(x1, x2)) + r(x1)q0
,

G(x1, x2) := N−1(A(x1, x2)) =
a(x1, x2)PT + (r(x1)− d1 − c(x1, x1)A)q2 −

√
∆

2a(x1, x2)q2
,

X1 := {(x1, x2)|a(x1, x2)PT + r(x1)(q0 − q2) + d1q2
(a(x1, x2)− c(x1, x1))q2

>
d2

êa(x1, x2)
, x1 > 0, x2 > 0},

X2 := {(x1, x2)|a(x1, x2)PT + r(x1)(q0 − q2) + d1q2
(a(x1, x2)− c(x1, x1))q2

<
d2

êa(x1, x2)
, x1 > 0, x2 > 0},

where

∆ = [(r(x1)− d1 − c(x1, x1)A(x1, x2))q2 − a(x1, x2)PT ]2

+4q0q2a(x1, x2)r(x1)A(x1, x2).

When (x1, x2) ∈ X, (5) has a unique positive equilibrium (A∗, G∗) with
A∗ := A∗(x1, x2) =


d2

ea(x1, x2)
, (x1, x2) ∈ X1,

N(G∗), (x1, x2) ∈ X2,

G∗ := G∗(x1, x2) =

N
−1(A∗), (x1, x2) ∈ X1,

PT

q2
− d2
êa(x1, x2)

, (x1, x2) ∈ X2.

(6)

Suppose the mutations in producer and grazer are rare and there is either a
mutant producer or a mutant grazer but not both at a time [21, 48]. A significant
assumption in the adaptive dynamics is that the time-scale of evolutionary process
is much greater than the time scale of ecological process [21, 30]. Consequently, the
ecological dynamics first lead (5) to its equilibrium, next the mutations arise, then
the two populations reach the steady state before next mutations come out.

Evolutionary process is described by invasion fitness. The fitness of a mutant is
defined by its long-term per capita growth rate in the resident population and the
mutant can spread if its fitness is positive [9, 21]. The fitness of a mutant producer
with trait y1 in the resident populations is given by

f1(y1, x1, x2) =
dA(y1, t)

Adt
= r(y1)(1− q0A

∗

PT − q2G∗
)− d1− c(y1, x1)A∗− a(y1, x2)G∗.

The mutant producer can grow in the resident producer population if f1(y1, x1, x2) >
0. Similarly, the fitness of a mutant grazer with trait y2 in the resident populations
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Figure 2. (a) X is the traits set for coevolution of (5). If
(x1, x2) ∈ X, then (5) has a globally asymptotically stable positive
equilibrium (A∗, G∗), which implies that the producer and grazer
coexist and co-evolve. (b)The positive equilibrium (A∗, G∗) is glob-
ally asymptotically stable with the traits x1 = 0.4 and x2 = 0.3.
The parameter values are listed in Table 1.

can be described by

f2(y2, x1, x2) =
dG(y2, t)

Gdt
= ea(x1, y2)A∗ − d2,

where e = êmin{1, (PT − q2G∗)/(q2A∗)}.
The fitness gradient is the derivative of the fitness with respect to mutant trait

value at the resident trait value and determines the direction in which the trait
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evolves [21, 30]. Therefore, the fitness gradients g1(x1, x2) and g2(x1, x2) reads

g1(x1, x2) =
∂f1(y1, x1, x2)

∂y1
|y1=x1

= − (x1 − x0)r(x1)

σ2
r

(1− q0A
∗

PT − q2G∗
)

+
(x1 − x2)a(x1, x2)G∗

σ2
a

,

g2(x1, x2) =
∂f2(y2, x1, x2)

∂y2
|y2=x2

=
(x1 − x2)ea(x1, x2)A∗

σ2
a

.

(7)

If gi(x1, x2) > 0(i = 1, 2), then invasion fitness increases for mutants with trait
value yi(i = 1, 2). Since fi(xi, x1, x2) = 0(i = 1, 2), by necessity (i.e., the resident
neither grows nor declines in its own equilibrium population), mutants with higher
trait values can invade and are favored by natural selection, while mutants with
lower trait values are selected against [13].

According to [9], if the mutations are random and rare, the evolutionary model
of traits x1 and x2 can be written into

dx1
dt

= m1(x1, x2)g1(x1, x2),

dx2
dt

= m2(x1, x2)g2(x1, x2),
(8)

where m1(x1, x2) = µ1σ1
2A∗/2, m2(x1, x2) = µ2σ2

2G∗/2, µi(i = 1, 2) are the
probabilities that the birth events are mutant for producer and grazer respectively,
σ2
i (i = 1, 2) are the variances of the mutation distribution of producer and grazer

respectively and are assumed to be constants.

3. Evolutionary outcomes without grazer. We first introduce some basic con-
cepts in adaptive dynamics. One can find more details in [21]. Evolutionary singular
point is a trait value at which the locally fitness gradient is zero. The singular points
are classified by evolutionary stable strategy (ESS), convergence stability, continu-
ously stable strategy (CSS) and evolutionary branching point. ESS-stability means
a singular point can not be invaded by nearby mutants. A singular point is conver-
gence stable if a population of a nearby phenotype can be invaded by mutants that
are even closer to the singular point. If the singular point is both convergence stable
and ESS-stable, we call it CSS-stable. If the singular point is convergence stable
but not ESS-stable, and the initially monomorphic population becomes dimorphism
on the long run, we call it an evolutionary branching point.

In this section, we explore CSS-stability and evolutionary branching for the pro-
ducer with grazer absent. Our results suggest that the producer population evolves
to continuously stable strategy if the total phosphorus density is relatively low,
while if the total phosphorus density is relatively high, the producer population
evolves to an evolutionary branching point.

In the absence of grazer, the ecological model of the resident producer with trait
x1 becomes

dA(x1, t)

dt
= A(x1, t)[r(x1)(1− q0A(x1, t)

PT
)− c(x1, x1)A(x1, t)− d1]. (9)

Since r > d1, there exists an asymptotically stable equilibrium Ã of (9), where

Ã := Ã(x1) =
(r(x1)− d1)PT

c(x1, x1)PT + r(x1)q0
.
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It is observed that Ã = Ā when x1 = x0, r = r0 and c = c0. When the grazer is
absent, the fitness for the mutant producer is

f11(y1, x1) = r(y1)(1− q0Ã

PT
)− c(y1, x1)Ã− d1.

The fitness gradient is

g11(x1) =
∂f11(y1, x1)

∂y1
|y1=x1 = − (x1 − x0)r(x1)

σr2
(1− q0Ã

PT
).

So the evolutionary model of the trait x1 is

dx1
dt

=
1

2
µ1σ1

2Ãg11(x1). (10)

By (10), it is not difficult to show that x1
∗ = x0 is the evolutionarily singular point

and is always convergence stable since

dg11(x1)

dx1
= −r(x1)

σ2
r

(1− q0Ã

PT
) +

(x1 − x0)2r(x1)

σr4
(1− q0Ã

PT
)

and
dg11(x1)

dx1
|x1=x0

< 0.

When the grazer is absent, the producer evolves to the strategy x∗1 = x0, which
means that the producer achieves the maximum growth rate.

Next we consider the second derivative of the mutant fitness with respect to
mutant trait value to demonstrate the ESS-stability. Direct calculations lead to

∂f211(y1, x1)

∂y21
|y1=x1=x0

= − r0
σr2

(1− q0Ā

PT
) +

c0
σc2

Ā.

If [∂f211(y1, x1)/∂y21 ]|y1=x1=x0 < 0, then x0 is ESS-stable. It follows that the evolu-
tionary attractor x0 is CSS-stable if

(r0 − d1)
c0σr

2

σc2
− r0c0 <

d1r0q0
PT

.

If [∂f211(y1, x1)/∂y21 ]|y1=x1=x0
> 0, then x0 is not ESS-stable and it is an evolution-

ary branching point when

∂f211(y1, x1)

∂y21
|y1=x1=x0

+
∂f211(y1, x1)

∂x21
|y1=x1=x0

> 0.

Note that
∂f211(y1, x1)

∂x21
|y1=x1=x0

=
c0
σc2

Ā,

we reach the following claim on the continuously stable strategy and the evolution-
ary branching of (9).

Theorem 3.1. Assume that r0 > d1.

1. The evolutionarily singular point x0 is CSS-stable if (r0 − d1)σr
2 ≤ r0σc2.

2. The evolutionarily singular point x0 is CSS-stable if (r0− d1)σr
2 > r0σc

2 and
PT < d1r0q0σc

2/[(r0 − d1)c0σr
2 − r0c0σc2].

3. The evolutionarily singular point x0 is an evolutionary branching point if (r0−
d1)σr

2 > r0σc
2 and PT > d1r0q0σc

2/[(r0 − d1)c0σr
2 − r0c0σc2].
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Figure 3. The graph of [∂f211(y1, x1)/∂y21 ]|y1=x1=x0 versus PT .
When [∂f211(y1, x1)/∂y21 ]|y1=x1=x0

< 0, the singular point x0 is
ESS-stable; when [∂f211(y1, x1)/∂y21 ]|y1=x1=x0

> 0, it is an evo-
lutionary branching point. All the parameters values are listed in
Table 1.

From Theorem 3.1, it follows that, if (r0 − d1)σr
2 ≤ r0σc

2, then the singular
point x0 is always CSS-stable no matter how much the total phosphorus density
PT is; if (r0 − d1)σr

2 > r0σc
2, then the producer population will evolve to the

CSS-stability with relatively low PT , and evolve to an evolutionary branching point
with relatively high PT . The graph of [∂f211(y1, x1)/∂y21 ]|y1=x1=x0

versus PT for
(r0 − d1)σr

2 > r0σc
2 is presented in Fig. 3 and it is increasing with respect to PT .

Pairwise invasibility plot can be used to analyze the evolution of a monomorphic
population[21]. For one strategy x of the resident, when the vertical line through
x lies in the region where the population’s mutant fitness is positive, it implies
potentially invading mutants. While the vertical line through x lies in the region
where the population’s mutant fitness is negative, it means impossibly invading
mutants. In Fig. 4, the singular point x0 is CSS-stable and the producer population
evolves to a monomorphic population for PT = 0.04, and the singular point x0 is
an evolutionary branching point and the producer population splits up into two
divergence sub-populations for PT = 1.

Our studies suggest that the total phosphorus density exerts a considerable in-
fluence on the producer evolution. When the grazer is absent, the increasing of the
total phosphorus density leads to the producer population undergoing CSS-stability
first and then evolutionary branching.

4. Co-evolutionary outcomes. In this section, we devote to investigating the ef-
fects of the total phosphorus density on the coevolution dynamics of (8) when grazer
is present. In particular, it shows, with the increasing of the total phosphorus, the
producer and grazer may co-evolve from CSS-stability to evolutionary branching if
the singular point is convergence stable. Moreover, if the mutants whose invasion
fitness is larger than zero not only invade but also replace the former resident, then
the producer and grazer may evolve into an evolutionary cycle, which is a likely
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Figure 4. Pairwise invasibility plot in the absence of grazers. Mu-
tant traits values of producer are denoted by y1 and resident traits
values of producer by x1. The producer’s mutant fitness f11(y1, x1)
is positive when (x1, y1) is located in the shaded area, which means
that the mutant with trait y1 can invade. The producer’s mutant
fitness f11(y1, x1) is negative when (x1, y1) is located in the un-
shaded area, which means that the mutant with trait y1 can not
invade. (a) For PT = 0.04, the vertical line through x0 completely
locates inside the unshaded region and then x0 is ESS-stable. (b)
For PT = 1, the vertical line through x0 locates completely inside
the shaded region and then x0 is an evolutionary branching point.
The parameter values are listed in Table 1 except PT .
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evolutionary outcome representing that the species coexist with cyclic changes in
traits values [10, 48]. The existence and stability of the evolutionary cycle are ob-
tained by bifurcation theory. Numerical simulations reveal that the coevolutionary
process is sensitive to the initial condition under high phosphorus density.

4.1. Continuously stable strategy. The Jacobian of (8) at (x1, x2) reads

J(x1, x2) =

 m1
∂g1
∂x1

m1
∂g1
∂x2

m2
∂g2
∂x1

m2
∂g2
∂x2

 ,

where

∂g1
∂x1

= [− 1

σ2
r

+
(x1 − x0)2

σ4
r

]r(x1)(1− q0A
∗

PT − q2G∗
) + [

1

σ2
a

− (x1 − x2)2

σ4
a

]a(x1, x2)G∗,

∂g1
∂x2

= [− 1

σ2
a

+
(x1 − x2)2

σ4
a

]a(x1, x2)G∗,

∂g2
∂x1

= [
1

σ2
a

− (x1 − x2)2

σ4
a

]ea(x1, x2)A∗,

∂g2
∂x2

= [− 1

σ2
a

+
(x1 − x2)2

σ4
a

]ea(x1, x2)A∗,

and e = êmin{1, (PT − q2G∗)/(q2A∗)}. The evolutionary model (8) has a unique
singular point (x∗1, x

∗
2) with x∗1 = x∗2 = x0. Let A∗0 = A∗(x0, x0), G∗0 = G∗(x0, x0),

m1 = µ1σ
2
1A
∗
0/2, m2 = µ2σ

2
2G
∗
0/2. Then

J(x0, x0) =

 m1[− r0
σ2
r

(1− q0A
∗
0

PT − q2G∗0
) +

a0
σ2
a

G∗0] −m1a0G
∗
0

σ2
a

m2ea0A
∗
0

σ2
a

−m2ea0A
∗
0

σ2
a


and

det(J(x0, x0)) =
m1m2ea0r0A

∗
0

σ2
rσ

2
a

(1− q0A
∗
0

PT − q2G∗0
) > 0,

Tr(J(x0, x0)) =
1

2
A∗0[−µ1σ

2
1

σ2
r

(d1 + c0A
∗
0) + (

µ1σ
2
1

σ2
a

− µ1σ
2
1

σ2
r

− eµ2σ
2
2

σ2
a

)a0G
∗
0],

where r0[1− q0A∗0/(PT − q2G∗0)] = d1 + c0A
∗
0 + a0G

∗
0 has been used.

For simplification, denote the two critical values of PT by P 1
T and P 2

T , where

P 1
T =

d2q2
êa0

, P 2
T = q2[

d2
êa0

(1− c0
a0

) +
r0
a0

(1− q0
q2

)− d1
a0

]. (11)

We only study the evolutionary model (8) for P 1
T < P 2

T since E1 is always located
in D1 when P 1

T ≥ P 2
T and the results can be deduced in the same way for P 1

T < P 2
T .

We first discuss the convergence stability of (x0, x0) ∈ X1, which means that
PT > P 2

T and e = ê. It is obvious that Tr(J(x0, x0)) is always negative when
µ1σ

2
1σ

2
r ≤ µ1σ

2
1σ

2
a + êµ2σ

2
2σ

2
r . If µ1σ

2
1σ

2
r > µ1σ

2
1σ

2
a + êµ2σ

2
2σ

2
r , then Tr(J(x0, x0)) is

negative for G∗0 < Gc1, where

Gc1 =
µ1σ

2
1σ

2
a(êa0d1 + c0d2)

êa20(µ1σ2
1σ

2
r − µ1σ2

1σ
2
a − êµ2σ2

2σ
2
r)
.
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By the properties of G = N−1(A), G∗0 is monotonically increasing with respect to
PT and there exists a unique

PT
c1 = q2Gc1 +

r0q0d2
ea0(r0 − d1 − a0Gc1)− c0d2

such that G∗0 = Gc1. If P c1
T > P 2

T , then Tr(J(x0, x0)) < 0 for P 2
T < PT < P c1

T . Now,
the convergence stability of (x0, x0) ∈ X1 is summarized in the following theorem.

Theorem 4.1. Assume that PT > P 2
T . Then the singular point (x0, x0) of (8) is

convergence stable if one of the following conditions is satisfied

1. µ1σ
2
1σ

2
r ≤ µ1σ

2
1σ

2
a + eµ2σ

2
2σ

2
r ,

2. µ1σ
2
1σ

2
r > µ1σ

2
1σ

2
a + eµ2σ

2
2σ

2
r , P 2

T < PT
c1, P 2

T < PT < PT
c1.

Theorem 4.1 characterizes the effect of total phosphorus on the convergence sta-
bility of the singular point (x0, x0) ∈ X1. The first claim in Theorem 4.1 shows that
the convergence stability of the singular point (x0, x0) is independent of PT . In the
second claim, the convergence stability of (x0, x0) depends on PT and is convergence
stable for lower PT . The increasing of PT is negative to the convergence stability of
the singular point (x0, x0). Fig. 5 shows an example that the singular point (x0, x0)
is convergence stable for 0.0335 < PT < 0.2866 and is not convergence stable for
PT > 0.2866. In fact, PT > P 2

T = 0.0335 guarantees that the positive ecological
equilibrium (N∗, P ∗) is asymptotically stable at (x0, x0) ∈ X1.
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Figure 5. The graph of Tr(J(x0, x0)) versus PT with PT > P 2
T .

The singular point (x0, x0) is convergence stable when Tr(J) is
negative and is not convergence stable when Tr(J) is positive. Pa-
rameters values are listed in Table 1 except σ2

r = 0.013, σ2
c = 0.015,

σ2
a = 0.0099, σ2

2 = 0.001.

Next, we discuss the convergence stability of (x0, x0) ∈ X2, which means that
P 1
T < PT < P 2

T and e = ê(PT − q2G∗0)/(q2A
∗
0). It is obvious that, if σ2

r ≤ σ2
a, then



EFFECTS OF NUTRIENT ENRICHMENT ON COEVOLUTION 857

Tr(J(x0, x0)) < 0. If σ2
r > σ2

a, then

Tr(J(x0, x0)) =
1

2
A∗0[−µ1σ

2
1

σ2
r

(d1 + c0A
∗
0) + (

µ1σ
2
1

σ2
a

− µ1σ
2
1

σ2
r

)a0G
∗
0 −

ea0µ2σ
2
2

σ2
a

G∗0]

=
1

2
A∗0[−µ1σ

2
1

σ2
r

(d1 + c0A
∗
0) + (

µ1σ
2
1

σ2
a

− µ1σ
2
1

σ2
r

)a0G
∗
0 −

µ2σ
2
2d2
σ2
a

G∗0
A∗0

]

for G∗0 = PT /q2 − d2/êa. Note that

A∗0 =
d2q2(r0 − d1 − a0G∗0)

c0d2q2 + r0êa0q0
:= α− βG∗0, (12)

where α = d2q2(r0 − d1)/(c0d2q2 + r0êa0q0), β = d2q2a0/(c0d2q2 + r0êa0q0), and
G∗0 < α/β. Then

sgn(Tr(J(x0, x0))) = sgn((α− βG∗0){−µ1σ
2
1

σ2
r

[d1 + c0(α− βG∗0)]

+(
µ1σ

2
1

σ2
a

− µ1σ
2
1

σ2
r

)a0G
∗
0} −

µ2σ
2
2d2
σ2
a

G∗0)

= sgn((α− βG∗0)(G∗0 − γ)− δG∗0)

= sgn(−βG∗0
2 + (α+ βγ − δ)G∗0 − αγ),

where

γ =
σ2
a(d1 + c0α)

σ2
ac0β + (σ2

r − σ2
a)a0

> 0, δ =
µ2σ

2
2d2σ

2
r

µ1σ2
1(σ2

ac0β + (σ2
r − σ2

a)a0)
> 0.

If 1 < σ2
r/σ

2
a ≤ r0/(r0 − d1), then γ ≥ α/β and Tr(J(x0, x0)) < 0 since G∗0 <

α/β < γ. If σ2
r/σ

2
a > r0/(r0 − d1) and (α+βγ− δ)2− 4αβγ < 0, then γ < α/β and

Tr(J(x0, x0)) < 0. If σ2
r/σ

2
a > r0/(r0 − d1) and (α+ βγ − δ)2 − 4αβγ > 0, then the

equation

−βG∗0
2 + (α+ βγ − δ)G∗0 − αγ = 0

has two positive roots Gc2 and Gc3 with Gc2 < Gc3. Whence, Tr(J(x0, x0)) < 0
for G∗0 < Gc2 and G∗0 > Gc3, Tr(J(x0, x0)) > 0 for Gc2 < G∗0 < Gc3. Since G∗0
is increasing with respect to PT , there exist P c2

T and P c3
T such that G∗0 = Gc2 and

G∗0 = Gc3. For PT < P 1
T , one has G∗0 = 0 and Tr(J(x0, x0)) < 0, hence P 1

T < P c2
T .

If P 2
T ≤ P c2

T , then Tr(J(x0, x0)) < 0 for P 1
T < PT < P 2

T . If P c2
T < P 2

T ≤ P c3
T , then

Tr(J(x0, x0)) < 0 for P 1
T < PT < P c2

T and Tr(J(x0, x0)) > 0 for P c2
T < PT < P 2

T .
If P 2

T > P c3
T , then Tr(J(x0, x0)) < 0 for P 1

T < PT < P c2
T and P c3

T < PT < P 2
T , and

Tr(J(x0, x0)) > 0 for P c2
T < PT < P c3

T .
Summarize up the above discussion, we reach the following theorem on the con-

vergence stability of the singular point (x0, x0) ∈ X2 of (8).

Theorem 4.2. Assume that P 1
T < PT < P 2

T . Then the singular point (x0, x0) of
(8) is convergence stable if one of the following conditions is satisfied

1. σ2
r ≤ σ2

a;

2. 1 <
σ2
r

σ2
a

≤ r0
r0 − d1

;

3.
σ2
r

σ2
a

>
r0

r0 − d1
,(α+ βγ − δ)2 − 4αβγ < 0;

4.
σ2
r

σ2
a

>
r0

r0 − d1
, (α+ βγ − δ)2 − 4αβγ > 0, P 2

T ≤ P c2
T ;

5.
σ2
r

σ2
a

>
r0

r0 − d1
, (α+ βγ − δ)2 − 4αβγ > 0, P c2

T < P 2
T ≤ P c3

T , P 1
T < PT < P c2

T ;



858 LINA HAO, MENG FAN AND XIN WANG

6.
σ2
r

σ2
a

>
r0

r0 − d1
, (α + βγ − δ)2 − 4αβγ > 0, P 2

T > P c3
T , P 1

T < PT < P c2
T and

P c3
T < PT < P 2

T .

Theorem 4.2 characterizes the effect of total phosphorus on the convergence sta-
bility of the singular point (x0, x0) ∈ X2. The first four claims in Theorem 4.2 show
that the convergence stability of the singular point (x0, x0) is independent of PT .
In the fifth claim, the convergence stability of (x0, x0) depends on PT , (x0, x0) is
convergence stable for lower PT and the increasing of PT is negative to the conver-
gence stability of the singular point (x0, x0). Fig. 6 (a) shows an example that, the
singular point (x0, x0) is convergence stable for 0.0094 < PT < 0.0292 and is not
convergence stable for 0.0292 < PT < 0.0335, here P 1

T = 0.0094, P c2
T = 0.0292 and

P 2
T = 0.0335. The sixth claim implies that the increasing of phosphorus may possi-

bly destabilize or stabilize the evolutionary system. Fig.6 (b) shows that (x0, x0) is
convergence stable for P 1

T < PT < P c2
T and P c3

T < PT < P 2
T , where P 1

T = 0.000469,
P c2
T = 0.0191, P c3

T = 0.0237, and P 2
T = 0.0253.

Next we go ahead with the ESS-stability and CSS-stability of (x0, x0).

Theorem 4.3. Assume that PT > P 2
T . Let

Ge1 =
σ2
a[c0d2(σ2

r − σ2
c )− ea0d1σ2

c ]

ea20σ
2
c (σ2

a − σ2
r)

, PT
e1 = q2Ge1 +

r0q0d2
ea0(r0 − d1 − a0Ge1)− c0d2

.

Then the singular point (x0, x0) is ESS-stable if the one of the following conditions
holds

1. σa = σr and c0d2(σ2
r − σ2

c ) < ea0d1σ
2
c ,

2. σa > σr and c0d2(σ2
r − σ2

c ) ≤ ea0d1σ2
c ,

3. σa < σr, c0d2(σ2
r − σ2

c ) < ea0d1σ
2
c , P 2

T < PT
e1, P 2

T < PT < PT
e1,

4. σa > σr, c0d2(σ2
r − σ2

c ) > ea0d1σ
2
c , PT > max{PT

e1, P 2
T }.

Proof. Direct calculations produce

∂2f1(y1, x1, x2)

∂y21
= [− 1

σ2
r

+
(y1 − x0)2

σ4
r

]r(y1)(1− q0A
∗

PT − q2G∗
)

+[
1

σ2
c

− (y1 − x1)2

σ4
c

]c(x1, y1)A∗ + [
1

σ2
a

− (y1 − x2)2

σ4
a

]a(y1, x2)G∗,

∂2f2(y2, x1, x2)

∂y22
= [− 1

σ2
a

+
(y2 − x1)2

σ4
a

]ea(x1, y2)A∗,

Since PT > P 2
T , one has A∗0 = d2/(êa0), then

∂2f1(y1, x1, x2)

∂y21
|y1=x1=x2=x0 = (

a0
σ2
a

− a0
σ2
r

)G∗0 + (
c0
σ2
c

− c0
σ2
r

)
d2
ea0
− d1
σ2
r

,

∂2f2(y2, x1, x2)

∂y22
|y2=x1=x2=x0 = −ea0

σ2
a

A∗0 < 0.

For convenience, denote Ie := [∂2f1(y1, x1, x2)/∂y21 ]|y1=x1=x2=x0 . When the first
two claims hold, it is obvious that Ie is always negative and the singular point
(x0, x0) is always ESS-stable. When the third claim holds, by carrying out similar
arguments as those in Theorem 4.1, there exists a unique PT

e1 such that G∗0 = Ge1.
Then G∗0 < Ge1 for P 2

T < PT < PT
e1, so Ie < 0 and the singular point (x0, x0) is

ESS-stable. If the fourth claim holds, when PT > PT
e1, one has Ie < 0. Therefore,

the singular point (x0, x0) is ESS-stable for PT > max{PT
e1, P 2

T }. The proof is
complete.
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Figure 6. The graph of Tr(J(x0, x0)) versus PT with P 1
T < PT <

P 2
T . The singular point (x0, x0) is convergence stable when Tr(J)

is negative and is not convergence stable when Tr(J) is positive.
(a) The fifth claim in Theorem 4.2 holds and the parameter values
are listed in Table 1. (b) The sixth claim in Theorem 4.2 holds
and the parameter values are listed in Table 1 except d1 = 0.21,
d2 = 0.01 and σ2

2 = 0.023

Theorem 4.3 shows that the singular point (x0, x0) ∈ X1 is always ESS-stable if
one of the first two conditions holds. If the third condition is valid, then the singular
point (x0, x0) is ESS-stable with lower PT and is not ESS-stable with higher PT (Fig.
7(a)) . The singular point (x0, x0) is ESS-stable with higher PT and is not ESS-
stable with lower PT when the fourth condition holds(Fig. 7(b)). From Theorem
4.1 and 4.3, it is not difficult to establish sufficient criteria for the CSS-stability
of (x0, x0). It follows that the total phosphorus affects the convergence stability,
ESS-stability of (x0, x0), and hence its CSS-stability. Fig. 5 and Fig. 7(a) reveals
that the singular point (x0, x0) is CSS-stable for 0.0335 < PT < 0.0347.
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Figure 7. The graph of Ie versus PT with PT > P 2
T . When Ie is

negative, the singular point (x0, x0) is ESS-stable. (a) The case of
the fourth claim in Theorem 4.3 holds and parameters values are
as in Fig. 5. (b) The case of the fifth claim in Theorem 4.3 holds
and the parameter values are listed in Table 1 except d1 = 0.1,
c0 = 0.6, d2 = 0.27, σ2

c = 0.009, σ2
a = 0.015.

Theorem 4.4. Assume that P 1
T < PT < P 2

T . Let

Ge2 =
c0α(σ2

rσ
2
a − σ2

aσ
2
c )− d1σ2

aσ
2
c

a0(σ2
rσ

2
c − σ2

aσ
2
c ) + c0β(σ2

aσ
2
c − σ2

aσ
2
r)
, PT

e2 = q2Ge2 +
d2q2
ea0

.

Then the singular point (x0, x0) is ESS-stable if the one of the following conditions
holds

1.
a0
σ2
a

− a0
σ2
r

+
c0β

σ2
r

− c0β

σ2
c

= 0,
c0α

σ2
c

− c0α

σ2
r

− d1
σ2
r

< 0,

2.
a0
σ2
a

− a0
σ2
r

+
c0β

σ2
r

− c0β

σ2
c

< 0,
c0α

σ2
c

− c0α

σ2
r

− d1
σ2
r

≤ 0,
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3.
a0
σ2
a

− a0
σ2
r

+
c0β

σ2
r

− c0β

σ2
c

> 0,
c0α

σ2
c

− c0α

σ2
r

− d1
σ2
r

< 0, P 1
T < PT

e2, P 1
T < PT <

max{PT
e2, P 2

T },

4.
a0
σ2
a

− a0
σ2
r

+
c0β

σ2
r

− c0β
σ2
c

< 0,
c0α

σ2
c

− c0α
σ2
r

− d1
σ2
r

> 0, P e2
T < PT

2, max{PT
e2, P 1

T } <

PT < P 2
T .

Proof. Direct calculations lead to

∂2f1(y1, x1, x2)

∂y21
= [− 1

σ2
r

+
(y1 − x0)2

σ4
r

]r(y1)(1− q0A
∗

PT − q2G∗
)

+[
1

σ2
c

− (y1 − x1)2

σ4
c

]c(x1, y1)A∗ + [
1

σ2
a

− (y1 − x2)2

σ4
a

]a(y1, x2)G∗,

∂2f2(y2, x1, x2)

∂y22
= [− 1

σ2
a

+
(y2 − x1)2

σ4
a

]ea(x1, y2)A∗.

Since P 1
T < PT < P 2

T , one has G∗0 =
PT

q2
− d2
êa0

and A∗0 = α− βG∗0. Then

∂2f1(y1, x1, x2)

∂y21
|y1=x1=x2=x0= (

a0
σ2
a

− a0
σ2
r

+
c0β

σ2
r

− c0β

σ2
c

)G∗0 + (
c0α

σ2
c

− c0α

σ2
r

− d1
σ2
r

),

∂2f2(y2, x1, x2)

∂y22
|y2=x1=x2=x0= −ea0

σ2
a

A∗0 < 0.

When the first or the second claim holds, it is obvious that Ie is always negative and
the singular point (x0, x0) is always ESS-stable. When the third claim holds, there
exists a unique PT

e2 such that G∗0 = Ge2. Then G∗0 < Ge2 for P 2
T < PT < PT

e2, and
hence Ie < 0 and the singular point (x0, x0) is ESS-stable. If the fourth claim holds,
when PT > max{P 2

T , PT
e2}, one has G∗0 > Ge2 and Ie < 0, whence the singular

point (x0, x0) is ESS-stable. The proof is complete.

Theorem 4.4 shows that the singular point (x0, x0) ∈ X2 is always ESS-stable if
one of the first two conditions of Theorem 4.3 hold. If the third condition is valid,
then the singular point (x0, x0) is ESS-stable with lower PT and is not ESS-stable
with higher PT (Fig. 8(a)). While the singular point (x0, x0) is ESS-stable with
higher PT and is not ESS-stable with lower PT when the fourth condition holds(Fig.
8(b)). From Theorem 4.2 and 4.4, it is not difficult to establish sufficient criteria for
the CSS-stability of (x0, x0) ∈ X2 and it follows that the total phosphorus affects
the convergence stability and ESS-stability of (x0, x0) hence its CSS-stability.

4.2. Evolutionary branching. Evolutionary branching occurs when frequency-
dependent selection splits a phenotypically monomorphic population into two dis-
tinct phenotypic clusters. In this section, based on the discussions above, the evo-
lutionary branching is explored when the singular point (x0, x0) is not ESS-stable.

Theorem 4.5. Assume that σa < σr, PT > max{PT
b1, P 2

T }. Let

Gb1 =
σ2
a(c0d2 + ea0d1)

ea20(σ2
r − σ2

a)
, PT

b1 = q2Gb1 +
r0q0d2

ea0(r0 − d1 − a0Gb1)− c0d2
.

Then the convergence stable singular point (x0, x0) of (8) is an evolutionary branch-
ing point.
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Figure 8. The graph of Ie versus PT with P 1
T < PT < P 2

T . When
Ie is negative, the singular point (x0, x0) is ESS-stable. (a) The
case of the fourth claim in Theorem 4.4 holds and the parameters
values are the same as those in Fig. 5. (b) The case of the fifth
claim in Theorem 4.4 holds and the parameter values are listed in
Table 1 except σ2

c = 0.005 and σ2
a = 0.015.

Proof. Note that

∂2f2(y2, x1, x2)

∂y22
|y2=x1=x2=x0

= −ea0
σ2
a

A∗0 < 0,

then x2 = x0 is always ESS-stable and the evolutionary branching can not happen
for the grazer.

For the producer, one has

∂2f1(y1, x1, x2)

∂x21
|y1=x1=x2=x0

= − c0
σ2
c

A∗0,

∂2f1(y1, x1, x2)

∂y21
|y1=x1=x2=x0

= (
a0
σ2
a

− a0
σ2
r

)G∗0 + (
c0
σ2
c

− c0
σ2
r

)A∗0 −
d1
σ2
r

.
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Similar to the proof of Theorem 4.1, there exists a unique PT
b1 such that G∗0 = Gb1.

Then, when PT > max{PT
b1, P 2

T }, one has G∗0 > Gb1, which together with σa < σr,
leads to

∂2f1(y1, x1, x2)

∂x21
|y1=x1=x2=x0> −

∂2f1(y1, x1, x2)

∂y21
|y1=x1=x2=x0 .

Therefore, the convergence stable singular point (x0, x0) is an evolutionary branch-
ing point. The proof is complete.
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Figure 9. The graph of Ib versus PT with PT > P 2
T . Here Ib =

[∂f21 (y1, x1, x2)/∂x21 + ∂f21 (y1, x1, x2)/∂y21 ]|y1=x1=x2=x0
. The con-

vergence stable singular point (x0, x0) is an evolutionary branching
point when Ib > 0. The parameter values are the same as those in
Fig. 5.

If P 2
T < PT

e1, then P 2
T < PT

e1 < PT
b1 < PT

c1 and the singular point (x0, x0) ∈
X1 may be CSS-stable for PT

2 < PT < PT
e1, convergence stable but not ESS-

stable for PT
e1 < PT < PT

b1, an evolutionary branching point and the producer
population becomes dimorphic for PT

b1 < PT < PT
c1. Fig. 9 shows an example

that the singular point (x0, x0) is an evolutionary branching point for 0.0671 < PT <
0.2866. Mutual invasibility plot can help to analyze whether a pair of neighbouring
phenotypes on either side of the singular point can invade each other. The set of
all pairs of mutually invasible strategies near a singular strategy is given by the
overlapping parts of ‘shaded’ regions in the pairwise invasibility plot [21]. Fig. 10
shows that the mutual invasibility of mutant producer and resident producer is
possible when PT = 0.1 and gives rise to a dimorphic producer population.

Theorem 4.6. Assume that σa < σr, P b2
T < PT

2, max{PT
b2, P 1

T } < PT < P 2
T , and

let

Gb2 =
c0ασ

2
aσ

2
c + d1σ

2
aσ

2
c

a0(σ2
rσ

2
c − σ2

aσ
2
c ) + c0βσ2

aσ
2
r

, PT
b2 = q2Gb2 +

d2q2
êa

.

Then the convergence stable singular point (x0, x0) of (8) is an evolutionary branch-
ing point.
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Figure 10. (a) Pairwise invasibility plot for fixed grazer trait
x2 = x0 = 0.5. The mutant producer fitness f1(y1, x1, x2) is posi-
tive when (x1, y1) is located in the shaded area. The vertical line
through x0 located completely inside the shaded region indicates
that the singular point (x0, x0) is not ESS-stable. By Theorem
4.5, the singular point (x0, x0) is an evolutionary branching point.
(b) Mutual invasibility plot for fixed grazer trait x2 = x0 = 0.5.
The second diagonal lies in the shaded region, which shows that
the producer population is split into two diverging sub-populations
on the long run. The parameter values are the same as those in
Fig. 9 except PT .

Proof. Note that

∂2f2(y2, x1, x2)

∂y22
|y2=x1=x2=x0

= −ea0
σ2
a

A∗0 < 0,
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then x2 = x0 is always ESS-stable and the evolutionary branching can not happen
for the grazer. For the producer, one has

∂2f1(y1, x1, x2)

∂x21
|y1=x1=x2=x0

= − c0
σ2
c

A∗0,

∂2f1(y1, x1, x2)

∂y21
|y1=x1=x2=x0

= (
a0
σ2
a

− a0
σ2
r

)G∗0 + (
c0
σ2
c

− c0
σ2
r

)A∗0 −
d1
σ2
r

.

Similar to the proof of Theorem 4.1, there exists a unique PT
b2 such that G∗0 = Gb2.

Then, when max{PT
b2, P 1

T } < PT < P 2
T , one has G∗0 > Gb2, which together with

σa < σr, leads to

∂2f1(y1, x1, x2)

∂x21
|y1=x1=x2=x0

> −∂
2f1(y1, x1, x2)

∂y21
|y1=x1=x2=x0

.

Therefore, the convergence stable singular point (x0, x0) is an evolutionary branch-
ing point. The proof is complete.
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Figure 11. The graph of Ib versus PT with P 1
T < PT < P 2

T .
Here Ib = [∂f21 (y1, x1, x2)/∂x21 + ∂f21 (y1, x1, x2)/∂y21 ]|y1=x1=x2=x0

.
The convergence stable singular point (x0, x0) is an evolutionary
branching point when Ib > 0. The parameter values are listed in
Table 1.

If P 1
T < PT

e2 < PT
b2 < max{PT

c2, P 2
T }, then the singular point (x0, x0) ∈ X2

is CSS-stable for PT
1 < PT < PT

e2, is convergence stable but not ESS-stable for
PT

e2 < PT < PT
b2, is an evolutionary branching point and the producer population

becomes dimorphic for PT
b2 < PT < max{PT

c2, P 2
T }. Fig. 11 shows an example

that the singular point (x0, x0) is an evolutionary branching point for 0.0272 < PT <
0.0292. Fig. 12 shows that the mutual invasibility of mutant producer and resident
producer is possible when PT = 0.0273 and gives rise to a dimorphic producer
population.

Assume that the two producer branches have equal distance δ on the opposite
sides of the singular grazer trait x0, by carrying out similar arguments to those in
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Figure 12. (a) Pairwise invasibility plot for fixed grazer trait
x2 = x0 = 0.5. The mutant producer fitness f1(y1, x1, x2) is posi-
tive when (x1, y1) is located in the shaded area. The vertical line
through x0 located completely inside the shaded region indicates
that the singular point (x0, x0) is not ESS-stable. By Theorem
4.5, the singular point (x0, x0) is an evolutionary branching point.
(b) Mutual invasibility plot for fixed grazer trait x2 = x0 = 0.5.
The second diagonal lies in the shaded region, which shows that
the producer population is split into two diverging sub-populations
on the long run. The parameter values are listed in Table 1 except
PT .

[13] and [48], one has

f2(y2, δ, x0) = ea(x0 − δ, y2)A/2 + ea(x0 + δ, y2)A/2− d2,

and
∂2f2(y2, δ, x0)

∂y22
|y2=x0

= ea0Aσ
−4
a exp{− δ2

2σ2
a

}(δ2 − σ2
a),
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where A is the producer density. If δ > σa, then

∂2f2(y2, δ, x0)

∂y22
|y2=x0> 0.

Therefore, the mutual invasibility is also possible for grazer near the singular point
(x0, x0) after the mutual invasibility of producer when two producer branches have
moved farther than x0. The double-invasibility makes the producer-grazer system
evolve to an evolutionary branching point and generates four sub-populations (two
sub-populations producer and two-subpopulations grazer) on the long run.

4.3. Evolutionary cycle. We have studied the CSS-stability and evolutionary
branching based on the assumption that the mutants can spread if their fitness is
positive and have shown that the population can become dimorphic if the singular
point is an evolutionary branching point. Both the CSS-stability and the evolution-
ary branching require that the singular point has to be convergence stable. In fact,
when the singular point is not convergence stable, the traits values may not evolve
to the singular point but possibly to a limit cycle. For simplicity, it is assumed that
the mutant ones can invade and replace the resident ones only if the mutant ones’
fitness is positive to make sure the monomorphism for each population.

Let x = x1 − x0 and y = x2 − x0, then (8) becomes
dx

dt
= m1[−xR(x)

σ2
r

(1− q0A
∗

PT − q2G∗
) +

(x− y)T (x− y)

σ2
a

G∗],

dy

dt
= m2[

(x− y)

σ2
a

eT (x− y)A∗],
(13)

where

R(x) := r(x+ x0) = r0 exp{− x2

2σ2
r

},

T (x− y) := a(x+ x0, y + y0) = a0 exp{− (x− y)2

2σ2
a

}.

The Jacobian of (13) at (x1, x2) reads

J(x1, x2) =

(
m1a11 m1a12
m2a21 m2a22

)
,

where

a11 = −(
R(x) + xR′(x)

σ2
r

)(1− q0A
∗

PT − q2G∗
) + [

T (x− y) + (x− y)∂T (x− y)/∂x

σ2
a

]G∗,

a12 = [
−T (x− y) + (x− y)∂T (x− y)/∂y

σ2
a

]G∗,

a21 = [
T (x− y) + (x− y)∂T (x− y)/∂x

σ2
a

]eA∗,

a22 = [
−T (x− y) + (x− y)∂T (x− y)/∂y

σ2
a

]eA∗.

Then the Jacobian of (13) at (0, 0) is

J(0, 0) =

 m1[− r0
σ2
r

(1− q0A
∗
0

PT − q2G∗0
) +

a0
σ2
a

G∗0] −m1a0G
∗
0

σ2
a

m2ea0A
∗
0

σ2
a

−m2ea0A
∗
0

σ2
a


=

(
k − h −k
m −m

)
,
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where

k :=
m1a0
σ2
a

G∗0, h :=
m1r0
σ2
r

(1− q0A
∗
0

PT − q2G∗0
), m :=

m2ea0A
∗
0

σ2
a

.

Hence, (13) rewrites 
dx

dt
= (k − h)x− ky + f(x, y),

dy

dt
= mx−my + g(x, y),

(14)

where

f(x, y) = m1[−xR(x)

σ2
r

(1− q0A
∗
0

PT − q2G∗0
) +

(x− y)T (x− y)

σ2
a

G∗0] + (h− k)x+ ky,

g(x, y) = m2[
(x− y)

σ2
a

eT (x− y)A∗0]−mx+my.

Let the Hopf bifurcation conditions be valid [46], i.e., k− h−m = 0 and mh = w2,
then one has

m1a0
σ2
a

G∗0 =
m1r0
σ2
r

(1− q0A
∗
0

PT − q2G∗0
) +

m2ea0A
∗
0

σ2
a

,

=
m1

σ2
r

(c0A
∗
0 + d1 + a0G

∗
0) +

m2ea0A
∗
0

σ2
a

.

Note that k − h −m > 0 is obviously equivalent to Tr(J(x0, x0)) > 0. From the
analysis of convergence stability of (x0, x0), it follows that, if µ1σ

2
1σ

2
r > µ1σ

2
1σ

2
a +

eµ2σ
2
2σ

2
r and P 2

T < PT
c1, then P c1

T is the Hopf-bifurcation point of (8) for PT > P 2
T .

If σ2
r/σ

2
a > r0/(r0 − d1), (α+βγ−δ)2−4αβγ > 0, and P 1

T < P c2
T < P 2

T < P c3
T , then

P c2
T is the Hopf-bifurcation point of (8) for P 1

T < PT < P 2
T . If σ2

r/σ
2
a > r0/(r0 − d1),

(α + βγ − δ)2 − 4αβγ > 0, and P 1
T < P c2

T < P c3
T < P 2

T , then P c2
T and P c3

T are the
Hopf-bifurcation point of (8) for P 1

T < PT < P 2
T .

Now we reach the right position to state the Hopf bifurcation claims of (8).

Theorem 4.7. The following conclusions hold for (8).

1. If µ1σ
2
1σ

2
r > µ1σ

2
1σ

2
a + eµ2σ

2
2σ

2
r and P 2

T < PT
c1, then a supercritical Hopf

bifurcation of (8) occurs when PT passes through P c1
T .

2. If σ2
r/σ

2
a > r0/(r0 − d1), (α+βγ−δ)2−4αβγ > 0, and P 1

T < P c2
T < P 2

T < P c3
T ,

then a supercritical Hopf bifurcation of (8) occurs when PT passes through P c2
T .

3. If σ2
r/σ

2
a > r0/(r0 − d1), (α+βγ−δ)2−4αβγ > 0, and P 1

T < P c2
T < P c3

T < P 2
T ,

then a supercritical Hopf bifurcation of (8) occurs when PT passes through P c2
T

and a subcritical Hopf bifurcation of (8) occurs when PT passes through P c3
T .

Fig. 13 plots the bifurcation diagram of (8) against PT when PT > P 2
T . The

singular point (x0, x0) ∈ X1 is convergence stable for 0.0335 < PT < 0.2866 and
becomes not convergence stable for PT > 0.2866, which suggests that P c1

T = 0.2866.
When PT > P c1

T , the traits of producer and grazer may possibly oscillate (Fig.
14(b)). The evolutionary dynamics of (8) admit the paradox of nutrient enrichment
when PT > P 2

T (Fig. 14). The evolutionary singular point (x0, x0) is convergence
stable for PT being relatively low, and the evolutionary dynamics may evolve to
CSS-stability (Fig. 14(a)) or to an evolutionary branching point (Fig. 10). Fig.
15 suggests that the outcome of producer-grazer co-evolution in our model is sen-
sitive to the initial conditions when the total nutrient density in the ecosystem is
high. The numerical simulations show that, the evolutionary system (8) possibly
admits several different evolution scenarios, e.g., evolving into evolutionary cycle
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Figure 13. A bifurcation diagram of the traits values at the stable
state against PT of (8) for PT > P 2

T . It is observed that P c1
T ≈

0.2866 and the producer and grazer coexist cyclically in trait values
for PT > 0.2866. The parameters values are the same as those in
Fig. 5.
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Figure 14. The time series of the traits dynamics for PT > P 2
T .

(a) The traits of producer and grazer evolve to CSS when PT = 0.1.
(b) The traits of producer and grazer evolve to a stable cycle when
PT = 0.5. Other parameters values are the same as those in Fig.
5.

(Fig. 15(c)), the traits values keep increasing or decreasing but are still in the
coevolution set X (Fig. 15 (a, b, d)).

If P 1
T < P c2

T < P 2
T < P c3

T , the evolutionary model (8) also admits the paradox
of nutrient enrichment(Fig. 16). Fig. 17 depicts the bifurcation diagram of (8)
against PT when P 1

T < PT < P 2
T . When 0.0094 < PT < 0.0292, the singular point

(x0, x0) ∈ X2 is convergence stable. When 0.0292 < PT < 0.0335, the singular point
(x0, x0) ∈ X1 is not convergence stable and evolves into the evolutionary cycle, here
P c2
T = 0.0292. When P 1

T < P c2
T < P c3

T < P 2
T , the evolutionary model (8) sequently

undergoes convergence stability, evolutionary cycle, and convergence stability again
with increasing of PT . Fig. 18 indicates that there are two Hopf bifurcation points
P c1
T = 0.0191 and P c2

T = 0.0237 for P 1
T < PT < P 2

T . When PT is approaching to P c3
T ,
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Figure 15. The coevolution outcomes are sensitive to the initial
conditions under extremely high PT . (a) The trait set for coevolu-
tion with PT = 4.6. (b) The trait values evolve toward large values
with (x1(0), x2(0)) = (0.5, 0.52). (c) The trait values evolve into an
evolutionary cycle with (x1(0), x2(0)) = (0.49, 0.51). (d) The trait
values evolve toward small values with (x1(0), x2(0)) = (0.49, 0.48).
The parameter values are the same as those in Fig. 5.

it takes very long time for the evolutionary system to arrive at stable state. So our
numerical simulations fail to capture this and the bifurcation curve is discontinuous
at P c3

T . In conclusion, qualitative and numerical analyses expound that the total
phosphorus plays an important role in the convergence stability of the singular point
and also the evolutionary dynamics of (8).

5. Discussion. In this paper, we deliberately focus on the effect of nutrient en-
richment on the coevolution of the producer-grazer system. An adaptive evolution
model is built based on a stoichiometric producer-grazer model (1), which models
the impact of the total phosphorus not only on the ecological dynamics but also
on the evolutionary dynamics. We systematically carry out detailed qualitative
analysis of the evolutionary dynamics of (8). Although the ecological model is very
simple, the evolutionary dynamics is rather complex. Our study reveals that total
phosphorus asserts a considerable impact on both the ecological dynamics and the
evolutionary dynamics.
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Figure 16. The time series of the traits dynamics for P 1
T < PT <

P 2
T with P 1

T < P c2
T < P 2

T < P c3
T . (a) The traits of producer and

grazer evolve to CSS when PT = 0.025. (b) The traits of pro-
ducer and grazer evolve to a stable cycle when PT = 0.03. Other
parameters values are the same as those in Fig. 6.
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Figure 17. A bifurcation diagram of the traits values at the stable
state against PT of (8) for P 1

T < PT < P 2
T with P 1

T < P c2
T < P 2

T <
P c3
T . It is observed that P c2

T ≈ 0.0292 and the producer and grazer
coexist cyclically in trait values for 0.0292 < PT < 0.0335. The
parameters values are the same as those in Fig. 6.

The studies show that the higher total phosphorus is always in favor of the
coexistence of producer-grazer system in the ecological dynamics without consid-
ering the evolutionary processes. But when the evolutionary process is incorpo-
rated, the effects of the total phosphorus are very complicated. When the grazer is
absent, lower total phosphorus facilitates the ESS-stability and the CSS-stability,
but higher total phosphorus density may produce evolutionary branching and the
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Figure 18. A bifurcation diagram of the traits values at the stable
state against PT of (8) for P 1

T < PT < P 2
T with P 1

T < P c2
T <

P c3
T < P 2

T . It is observed that P c1
T ≈ 0.0191 and P c2

T ≈ 0.0237
and the producer and grazer coexist cyclically in trait values for
0.01 < PT < 0.0253. The parameters values are the same as those
in Fig. 6.

monomorphic population can become distinctively dimorphic. Since the total phos-
phorus determines the locations of the positive ecological equilibria, the discussion
of co-evolution is divided into two cases: (x0, x0) ∈ X1 and (x0, x0) ∈ X2. When
(x0, x0) ∈ X1, or (x0, x0) ∈ X2 and P 1

T < P c2
T < P 2

T < P c3
T , the lower total

phosphorus is beneficial to the convergence stability and the singular point is an
evolutionary attractor, whereas the higher total phosphorus density can make it
an evolutionary repeller and the evolutionary dynamics present oscillations. When
(x0, x0) ∈ X2 and P 1

T < P c2
T < P c3

T < P 2
T , the phosphorus enrichment can first

destabilize and then stabilize the singular point, which means that (8) subsequently
undergoes convergence stability, evolutionary cycle, and convergence stability again.
The effect of nutrient enrichment on the ESS-stabilty of the singular point depends
on the parameters, and the singular point may be ESS-stable under relatively low
total phosphorus or under relatively high total phosphorus. Higher total phos-
phorus density promotes the evolutionary branching for both (x0, x0) ∈ X1 and
(x0, x0) ∈ X2. In summary, increasing the density of total phosphorus may pro-
duce complex evolutionary dynamics and trigger the dimorphic populations, a cyclic
changes, or sensitive dependence on the initial conditions.

Our model is among the first stoichiometric evolutionary models and sheds some
new light on the effect of nutrient on coevolution of the producer and grazer in
aquatic ecosystem. It is also more interesting and possibly more challenging to take
into account other abiotic or biotic factors such as the global climate changes. In
addition, the intrinsic characteristics of target populations may alter the structure
and hence enrich the dynamics of the evolutionary model. For example, in our
general setting, if the producer represents phytoplankton in lakes, the sinking rate
of phytoplankton should be included since it is closely related to the body size
of phytoplankton [22]. As in [22], assume that the sinking rate is given by the
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well-known Stokes equation s = αx21 in the ecological model (5), then the modified
evolutionary model reads

dx1
dt

=
1

2
µ1σ1

2A∗[− (x1 − x0)r(x1)

σ2
r

(1− q0A
∗

PT − q2G∗
)− 2αx1

+
(x1 − x2)a(x1, x2)G∗

σ2
a

],

dx2
dt

=
1

2
µ2σ2

2G∗
(x1 − x2)êmin{1, PT − q2G∗

q2A∗
}a(x1, x2)A∗

σ2
a

.

(15)

One can well investigate its dynamics by carrying out similar arguments as above.
Denote the singular point of (15) by (x′1, x

′
2). Direct calculations show that x′1 = x′2

and, when (x′1, x
′
2) ∈ X ′2, x′1 = x′2 is increasing with respect to PT , here X ′2 can

be defined in the same way of X2. It is observed that the body size of producer at
the evolutionary equilibrium becomes much larger with the increasing of the total
phosphorus when the singular point is convergence stable. This finding supports
some existing claims [6, 17, 22] that the phytoplankton communities are dominated
by small phytoplankton cells under oligotrophic conditions, whereas larger phy-
toplankton cells are more abundant when the nutrient concentrations tend to be
higher.

Our model expounds the influence of ecological abiotic factors such as nutrient
on the coevolution dynamics of producer and grazer by adaptive dynamics, which
implies the separation of timescales between ecological and evolution. The past
decades also have seen an accumulation of evidences demonstrating that change in
ecologically important traits often evolve at the same time and pace as ecological
dynamics, which has been observed in diverse species and exploiter-victim systems
such as predator-prey interactions [10, 13, 19, 33, 34, 47, 48]. For example, the
changes in prey phenotypes can help the prey avoid encounters with predators or
defend against attacks, while consumer evolution can allow for increased resource
capture and consumption and the ability to overcome prey defense [7]. The eco-
evolutionary dynamics describe the interplay between ecological and evolutionary
processes with comparable timescales and uncover the reciprocal effects between
ecological and evolutionary dynamics. Whence, it is worthy studying the effect of
the nutrient enrichment on the stoichiometric eco-evolutionary dynamics.

In our model, in order to clarify the key issues and to facilitate the discussions,
the predation rate of the grazer is set to follow a linear Holling’s Type I functional
response. It prevents nutrient enrichment from yielding predator-prey cycles and
ecologically precludes the occurrence of the classical paradox of enrichment [39],
which is an important ecological feature that may have a crucial impact on the evo-
lutionary dynamics of the model. More recent theoretical works have demonstrated
that a particular mathematical form of functional response has surprising effects on
the ecological dynamics of the predator-prey interactions. So, it is more interesting
but more challenging to consider more realistic formulations which incorporate the
functional response of different types such as prey-dependent or predator-dependent
and check the similarities or key difference of the evolutionary dynamics. In ad-
dition, (15) assumes that phosphorus in the sinking phytoplankton is immediately
released back while, in reality, some of such phosphorus stays on the bottom of
lakes and then the total phophorus in the system is reduced. Therefore, the sinking
process needs a more thoughtful modeling approach. Those topics are left to our
future work.
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