
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2014.11.823
AND ENGINEERING
Volume 11, Number 4, August 2014 pp. 823–839

COEXISTENCE AND ASYMPTOTIC STABILITY IN

STAGE-STRUCTURED PREDATOR-PREY MODELS

Wei Feng, Michael T. Cowen and Xin Lu

Mathematics and Statistics Department
University of North Carolina Wilmington

Wilmington, NC 28403-5970, USA

(Communicated by Haiyan Wang)

Abstract. In this paper we analyze the effects of a stage-structured predator-
prey system where the prey has two stages, juvenile and adult. Three different

models (where the juvenile or adult prey populations are vulnerable) are stud-
ied to evaluate the impacts of this structure to the stability of the system and
coexistence of the species. We assess how various ecological parameters, in-
cluding predator mortality rate and handling times on prey, prey growth rate
and death rate, prey capture rate and nutritional values in two stages, affect
the existence and stability of all possible equilibria in each of the models, as
well as the ultimate bounds and the dynamics of the populations. The main
focus of this paper is to find general conditions to ensure the presence and
stability of the coexistence equilibrium where both the predator and prey can
co-exist Through specific examples, we demonstrate the stability of the trivial
and co-existence equilibrium as well as the dynamics in each system.

1. Introduction. Various ecological models have been developed in form of dif-
ferential equation systems to study predator-prey interactions with effects of diffu-
sion, functional responses, time delays and stage-structure (see, for a few examples,
[2, 7, 4, 8, 9, 10, 11, 12, 13, 15, 17, 20, 22]). It has also been realized that the changes
of a certain organism has an impact on the food chain with which it is involved. If
an organism grows radically throughout its life cycle, the amount it eats, and the
amount of it which can be consumed by its predator, if it has one, will most likely
change as well. For this reason, researches regarding non-homogeneous populations
have started to appear in the last forty years [6, 14, 16, 18, 20]. Various work has
been done where stage-structure is used on predator [2, 3, 21] and prey [1, 5, 14, 20].

In 1983, Hastings [14] introduced differential equation models with a stage-
structured prey, which are similar to the ones studied in our paper. In 2005, Abrams
and Quince [1] used Hastings models to analyze the impact of mortality on preda-
tor population size and stability in systems with stage-structured prey, under a
simplified condition where the adult prey and juvenile prey have the same relative
nutritional value (e1 = e2 = 1) to the predator. Two of the special cases they
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considered are: only juvenile prey are vulnerable and only adult prey are vulnera-
ble, which are both extreme cases for the stage-structured model. Although there
are many examples in nature where a predator will mostly consume only young
prey, usually due to the dangers of attacking the larger adult prey, there are still
times even in these scenarios where the predator will attack the adult prey. Possi-
ble explanations for this include vulnerability of the adult prey, desperation of the
predator, or teamwork of several predators. For this reason, it is also important to
consider the generalized model where both young and adult prey are vulnerable,
with various ecological parameters included.

The analysis that is given in this paper focuses on predator-prey systems, in
which the prey has two-stages (juvenile and adulthood), and the predator has one.
The system is described by the following system of equations:

dN1

dt
= b2N2 − d1N1 − gN1 − s1N1PH(e1s1h1N1 + e2s2h2N2)

dN2

dt
= gN1 − d2N2 − s2N2PH(e1s1h1N1 + e2s2h2N2)

dP

dt
= P ((e1s1N1 + e2s2N2) ∗H(e1s1h1N1 + e2s2h2N2)−D)

(1)

where the variables, functions and parameters are defined as follows: N1 and N2 are
the population densities of juvenile and adult prey, P is the population density of
the predator, b2 is the per capita birth rate of adult prey (producing new offsprings
for juvenile prey) , which is presented as a constant here since the model assumes
density-independent prey growth, d1 and d2 are parameters giving the per capita
death rates of juvenile and adult prey, D is the per capita death rate of the predator,
g is the per capita transition rate of juveniles to adults in the prey population, si
is the per capita capture rate of prey in class i by a searching predator, hi is the
predator’s handling time of prey of class i and ei represents the relative nutritional
value of an individual of prey type i to the predator. H is the Holling Type II
function describing predator satiation defined as: H(N) = 1

1+N
[1].

The focus of this paper is to analyze three different models utilizing stage struc-
tures on the prey while the juveniles, or adults, or both are vulnerable to the
predator. We find the conditions to ensure the existence and asymptotic stability
of the equilibrium points, especially the one where both the predator and prey can
co-exist. The main goal is to show, in each of these models, how the ecological
parameters (the birth rate, death rate and transition rate of the prey; the mortality
rate of the predator; the predator capture rates, handling times, and relative nutri-
tional values for different prey stages) affect the dynamics of the populations. For
this purpose, we will consider three possible equilibrium points: (0, 0, 0), (N1, N2, 0),
and (N1, N2, P ), which represent different ecological outcomes in the system. for
the special cases where prey is only vulnerable at one stage, we give explicit stability
conditions and further analysis on the effect of various parameters. These results
are consistent with the discussions in [1] under specific assumptions for certain pa-
rameters. For the general model where prey is vulnerable at both stages, we obtain,
for the first time, the coexistence equilibrium of the model through the population
ratio of adult prey to juvenile prey. This expression also enables us to further an-
alyze the Jacobian matrix of the system and find conditions for local asymptotic
stability and instability of the coexistence equilibrium. Furthermore, we utilize the
comparison argument and method of upper-lower solutions to investigate the global
stability of the trivial equilibrium (for extinction) and the exponential bounds of
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the populations when the coexistence equilibr1um is in presence. Each of our main
results is accompanied by an example of numerical simulations, and the ecological
interpretations of the mathematical analysis are given in the discussion/conclusion
section at the end of the article.

2. The ultimate bounds for the populations. In this section we obtain some
preliminary results on upper-bound functions for the predator and prey populations.
These bounds will provide crucial information on extinction and exponential con-
vergence of the species. In general, the population dynamics in the stage-structured
predator-prey model (1) depends on many ecological parameters. However, in this
section we see that the relation within a few parameters can determine the ultimate
ecological outcome of the system.

2.1. Extinction of the predator by death rate and prey handling time.
Our first result is about the ultimate bound of the predator population. From the
third equation in (1),

dP

dt
= P

(

e1s1N1 + e2s2N2

1 + e1s1h1N1 + e2s2h2N2
−D

)

≤ P

(

e1s1N1 + e2s2N2

1 + h(e1s1N1 + e2s2N2)
−D

)

≤ P

(

1−Dh

h

)

(2)

where h = min{h1, h2}. This implies that

Theorem 2.1. If Dh1 > 1 and Dh2 > 1, then the predator population in model
(1) will go to extinction exponentially.

• 0 ≤ P (t) ≤ P (0)e−(
Dh−1

h )t, with h = min{h1, h2}.

2.2. Extinction of the total population by birth and death rate of the
adult prey. Let F (t) = N1(t) +N2(t) + P (t) be the total population of the three
species in model (1). Based on the fact that the relative nutritional values for the
preys 0 < e1, e2 ≤ 1, the summation of the three equations in (1) gives:

dF

dt
= (b2 − d2)N2 − d1N1 − P

(

(1− e1)s1N1 + (1− e2)s2N2

1 + e1s1h1N1 + e2s2h2N2
+D

)

≤ (b2 − d2)N2 − d1N1 −DP

≤ −δF

(3)

where δ = min{d2 − b2, d1, D}. This implies that

0 ≤ F (t) ≤ F (0)e−δt.

Theorem 2.2. If d2 > b2, then all three populations in model (1) will go to extinc-
tion exponentially.

• 0 ≤ N1(t) + N2(t) + P (t) ≤ [N1(0) + N2(0) + P (0)]e−δt,with δ = min{d2 −
b2, d1, D} > 0.

In this case, the trivial equilibrium (0, 0, 0) is globally asymptotically stable.
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3. Equilibrium points with extinction of predator. In this section, we give
stability results on the two equilibrium points with absence of the predator popu-
lation.

3.1. Equilibrium for extinction of predator and prey. The Jacobian matrix
of the system (1) for the equilibrium (0, 0, 0), with extinction of both predator and
prey, is:

J(0, 0, 0) =





−d1 − g b2 0
g −d2 0
0 0 −D





The eigenvalues for this matrix are:

• λ1 = 1
2 (−

√

(d1 + d2 + g)2 − 4(d1d2 + d2g − b2g)− d1 − d2 − g),

• λ2 = 1
2 (
√

(d1 + d2 + g)2 − 4(d1d2 + d2g − b2g)− d1 − d2 − g),
• λ3 = −D.

If b2g > d2(d1 + g) then λ2 is a positive real number, which indicates that the
trivial equilibrium is an unstable saddle point.

In order to investigate the global asymptotic stability, we define a pair of upper-
lower solutions [19] (Ñ1, Ñ2, P̃ ) and (N̂1, N̂2, P̂ ) for system (1) satisfying the follow-
ing differential inequalities:

dÑ1

dt
≥ b2Ñ2 − d1Ñ1 − gÑ1 − s1Ñ1P̂H(e1s1h1Ñ1 + e2s2h2Ñ2)

dÑ2

dt
≥ gÑ1 − d2Ñ2 − s2Ñ2P̂H(e1s1h1Ñ1 + e2s2h2Ñ2)

dP̃

dt
≥ P̃ [(e1s1Ñ1 + e2s2Ñ2) ∗H(e1s1h1Ñ1 + e2s2h2Ñ2)−D]

dN̂1

dt
≤ b2N̂2 − d1N̂1 − gN̂1 − s1N̂1P̃H(e1s1h1N̂1 + e2s2h2N̂2)

dN̂2

dt
≤ gN̂1 − d2N̂2 − s2N̂2P̃H(e1s1h1N̂1 + e2s2h2N̂2)

dP̂

dt
≤ P̂ [(e1s1N̂1 + e2s2N̂2) ∗H(e1s1h1N̂1 + e2s2h2N̂2)−D].

(4)

and with (Ñ1(t), Ñ2(t), P̃ (t)) ≥ (N̂1(t), N̂2(t), P̂ (t)) for all t ≥ 0. It is well-known
by comparison arguments in differential equation systems [19] that if there exists a

pair of upper-lower solutions, then the solution of (1) satisfies (Ñ1(t), Ñ2(t), P̃ (t)) ≥

(N1(t), N2(t), P (t)) ≥ (N̂1(t), N̂2(t), P̂ (t)) for all t > 0 as long as (Ñ1(0), Ñ2(0),

P̃ (0)) ≥ (N1(0), N2(0), P (0)) ≥ (N̂1(0), N̂2(0), P̂ (0)).
The three inequalities in (4) for lower solution can be satisfied by setting

(N̂1(t), N̂2(t), P̂ (t)) = (0, 0, 0).

It then suffices to look for upper solutions (Ñ1(t), Ñ2(t), P̃ (t)) with

dÑ1

dt
= b2Ñ2 − d1Ñ1 − gÑ1

dÑ2

dt
= gÑ1 − d2Ñ2

dP̃

dt
= P̃ [(e1s1Ñ1 + e2s2Ñ2) ∗H(e1s1h1Ñ1 + e2s2h2Ñ2)−D]
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From here we obtain that

(Ñ1(t), Ñ2(t))
T = eAt(N1(0), N2(0))

T ,

where

A =

(

−d1 − g b2
g −d2

)

The eigenvalues for A are listed as λ1 and λ2 for J(0, 0, 0). If b2g < d2(d1 + g),
then both eigenvalues are either negative real numbers or complex numbers with
negative real parts. In this case, we have (Ñ1(t), Ñ2(t))

T → (0, 0)T as t → ∞. For
any positive ε, there exists a Tε > 0 such that

dP̃

dt
= P̃ [(e1s1Ñ1 + e2s2Ñ2) ∗H(e1s1h1Ñ1 + e2s2h2Ñ2)−D] < −εP̃

for t > Tε. This also implied that P̃ (t) → 0 as t → ∞. Hence we have

Theorem 3.1. The trivial equilibrium (0, 0, 0) in system (1) is

• unstable if b2g > d2(d1 + g),

• globally asymptotically stable if b2g < d2(d1 + g).

We now illustrate the asymptotic stability of the trivial equilibria (0, 0, 0) through
numerical simulations of model (1), with parameters: {b2 = 0.6, g = 0.2, d1 =
0.3, d2 = 0.4, e1 = 0.5, e2 = 1.0, s1 = 0.6, s2 = 0.3, h1 = 0.1, h2 = 0.2, D = 0.1}.
These ecological parameters satisfy b2g < d2(d1+g), so the trivial equilibria (0, 0, 0)
is globally asymptotically stable. With initial populationsN1(0) = 2.5, N2(0) = 2.0,
P (0) = 0.7, the numerical simulation of model (1) demonstrated in Figure 1 shows
the extinction of all species.

Figure 1. Stability of Trivial Equilibrium

3.2. Equilibrium for extinction of predator only. We will next consider the
equilibrium points with extinction of the predator (N1, N2, 0). The positive popu-
lation sizes N1 and N2 must satisfy:

• b2N2 − d1N1 − gN1 = 0 and gN1 − d2N2 = 0.

This is a system of dependent equations so there will be an infinite number of
solutions N1 = d2N2

g
if b2g = d2(d1 + g) and no solution if b2g 6= d2(d1 + g).
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Under the assumption of b2g = d2(d1+ g), there are infinite number of equilibria
and asymptotic stability cannot occur. The Jacobian Matrix for (d2N2

g
, N2, 0) is:















−d1 − g b2 −
N2b2s1

d1 + g + e1s1h1b2N2 + e2s2h2N2d1 + e2s2h2N2g

g −d2 −
s2N2(d1 + g)

d1 + g + e1s1h1b2N2 + e2s2h2N2d1 + e2s2h2N2g

0 0 −
e1s1b2N2(h1D − 1) + e2s2N2(d1 + g)(h2D − 1) +D(d1 + g)

d1 + g + e1s1h1b2N2 + e2s2h2N2d1 + e2s2h2N2g















The eigenvalues of this matrix are:

• λ1 = −(d1 + d2 + g) < 0,
• λ2 = 0,

• λ3 =
e1s1b2N2(1−Dh1) + e2s2N2(d1 + g)(1−Dh2)−D(d1 + g)

d1 + g + e1s1h1b2N2 + e2s2h2N2d1 + e2s2h2N2g

Theorem 3.2. When b2g = d2(d1 + g), the system (1) has infinite many prey-only

equilibria (d2N2

g
, N2, 0). Each equilibrium in this set is unstable if e1s1b2N2(1 −

Dh1) + e2s2N2(d1 + g)(1−Dh2) > D(d1 + g).

4. Coexistence while only one stage of the prey is vulnerable. We now
consider the conditions for both the prey and predator to coexist in model (1).
First, we will examine a couple of special cases where the prey is vulnerable to the
predator at only one stage. After that, we then proceed to the general case.

4.1. Only juveniles are vulnerable. Often, in biological systems, the predator is
similar in size to the prey, and so attacking adult prey can actually be harmful to the
predator. Therefore, in these systems, the predator will only attack juvenile prey.
The first case considered here assumes that only the juvenile prey are vulnerable to
the predator and is described by the following equations: [1]

dN1

dt
= b2N2 − d1N1 − gN1 − sN1P ∗H(eshN1)

dN2

dt
= gN1 − d2N2

dP

dt
= P (esN1 ∗H(eshN1)−D)

(5)

Here theH function only takes eshN1 as its parameter and we can drop the subscript
1 from e1, s1, and h1. The population densities in the coexistence equilibrium
(N1, N2, P ) of (5) are:

N1 =
D

es(1−Dh)

N2 =
Dg

d2es(1−Dh)

P =
g(b2 − d2)− d1d2

d2s(1−Dh)

(6)

The conditions for the existence of a positive equilibrium are:

0 < Dh < 1 and b2g > d2(d1 + g) > 0. (7)
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The Jacobian matrix for this equilibrium in model (5) is:

J(N 1, N2, P ) =











−b2g + hDb2g − hDd1d2 − hDd2g

d2
b2 −

D

e
g −d2 0

e(1−Dh)(b2g − d1d2 − d2g)

d2
0 0











The determinant of (J(N 1, N2, P )− λI) is: λ3 +A1λ
2 +A2λ+A3 where:

• A1 =
b2g(1−Dh)

d2
+ d1Dh+ gDh+ d2

• A2 =
D(b2g − d1d2 − d2g)(1−Dh)

d2
−Dh(b2g − d1d2 − d2g)

• A3 = D(b2g − d1d2 − d2g)(1−Dh)

Applying the Routh-Hurwitz criteria for stability, the coexistence equilibrium is
asymptotically stable if : A1 > 0, A3 > 0, and A1A2 > A3. We first observe that
the positivity condition (7) for the equilibrium (N1, N2, P ) given in (6) ensures that
A1 > 0 and A3 > 0.

A1A2 −A3 =

D(gb2 − gd2 − d1d2)

d22

[

(1−Dh− d2h)(gb2 − gb2Dh+ gd2Dh+ d1d2Dh)− d32h
]

This leads to the following theorem about the stability of the coexistence equilibrium
in model (5).

Theorem 4.1. For the model (5) where only the juvenile prey is vulnerable, there
is a unique coexistence equilibrium (N1, N2, P ) given by (6) if the conditions in (7)
hold. This equilibrium is (locally) asymptotically stable if:

(1 −Dh− d2h)(gb2 − gb2Dh+ gd2Dh+ d1d2Dh) > d32h, (8)

and unstable if

(1 −Dh− d2h)(gb2 − gb2Dh+ gd2Dh+ d1d2Dh) < d32h.

In order to show the stability of the coexistence equilibrium while d2 (the death
rate of the adult prey) is sufficiently small, we also observe that

A1A2 −A3 > (d1Dh+ gDh+ d2)A2 −A3

= Dh(b2g − d1d2 − d2g)

[

D(d1 + g)(1−Dh)

d2
− (d1Dh+ gDh+ d2)

]

.

Hence we can conclude that A1A2 > A3 if D(d1+g)(1−Dh) > d2(d1Dh+gDh+d2),
which is equivalent to the condition given in the following corollary:

Corollary 4.1. If the conditions in (7) hold, then the unique coexistence equilibrium
(N1, N2, P ) given by (6) in model (5) is (locally) asymptotically stable whenever:

d2 <

√

D(d1 + g)(1−Dh) +

[

Dh(d1 + g)

2

]2

−
Dh(d1 + g)

2
. (9)

We now give an example of coexistence in model (5) with numerical simulations.
With the following set of ecological parameters: {b2 = 0.8, g = 0.2, d1 = 0.3, d2 =
0.2, e = 0.5, s = 0.8, h = 0.1, D = 0.1}, the condition (8) for asymptotic stability of
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the coexistence equilibrium is ensured by Theorem 4.1. The coexistence equilibrium
given by (6) is

(N1, N2, P ) = (0.3367, 0.3367, 0.5050).

With initial populations N1(0) = 0.2, N2(0) = 0.3, P (0) = 0.1, the numerical
simulation of model (4) demonstrated in Figure 2 shows that all three populations
converge to the equilibrium values for coexistence.

Figure 2. Asymptotic Stability, Coexistence While Only Juvenile Vulnerable

4.2. Only adults are vulnerable. Another common occurrence in biological sys-
tems is when the predator is much larger than its prey. Therefore, it is not efficient
for it to consume young prey. Assuming that the predator will only consume adult
prey, the second special case considered here is described by the following equations:

dN1

dt
= b2N2 − d1N1 − gN1

dN2

dt
= gN1 − d2N2 − sN2P ∗H(eshN2)

dP

dt
= P (esN2 ∗H(eshN2)−D)

(10)

Since this model is assuming that only adult prey is vulnerable to the predator, the
H function only takes eshN2 as its parameter. In addition, we can drop the sub-
script 2 from e2, s2, and h2. The population densities in the coexistence equilibrium
(N1, N2, P ) of model (10) are:

N1 =
b2D

es(1−Dh)(g + d1)

N2 =
D

es(1−Dh)

P =
g(b2 − d2)− (d1d2)

s(1−Dh)(g + d1)

(11)

It is obvious that the conditions in (7) also ensures the positivity of the equilibrium
(11) for model (10).

The Jacobian matrix for this equilibrium in model (10) is:

J(N 1, N2, P ) =











−d1 − g b2 0

g
−b2g + hDb2g − hDd1d2 − d2ghD

d1 + g
−
D

e

0
e(1−Dh)(b2g − d1d2 − d2g)

d1 + g
0










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Again, the determinant of (J(N1, N2, P )− λI) is: λ3 +A1λ
2 +A2λ+A3 where:

• A1 =
b2g(1−Dh)

d1 + g
+ d1 + g + d2Dh

• A2 =
D(b2g − d1d2 − d2g)(1−Dh)

d1 + g
−Dh(b2g − d1d2 − d2g)

• A3 = D(b2g − d1d2 − d2g)(1−Dh)

Once again, by applying the Routh-Hurwitz criteria for stability, we see that the
coexistence equilibrium is asymptotically stable if : A1 > 0, A3 > 0, and A1A2 >
A3. The positivity condition (7) for the equilibrium (N 1, N2, P ) given in (11)
already ensures that A1 > 0 and A3 > 0.

A1A2 −A3 =
D(gb2 − gd2 − d1d2)

(d1 + g)2

×
[

(1−Dh− d1h− gh)(gb2 − gb2Dh+ gd2Dh+ d1d2Dh)− (d1 + g)3h
]

This leads to the following theorem about the stability of the coexistence equilibrium
in model (10).

Theorem 4.2. For the model (10) where only the adult prey is vulnerable, there is
a unique coexistence equilibrium (N1, N2, P ) given by (11) if the conditions in (7)
hold. This equilibrium is (locally) asymptotically stable if:

(1−Dh− d1h− gh)(gb2 − gb2Dh+ gd2Dh+ d1d2Dh) > (d1 + g)3h. (12)

and unstable if

(1 −Dh− d1h− gh)(gb2 − gb2Dh+ gd2Dh+ d1d2Dh) < (d1 + g)3h.

For a simplified sufficient condition of stability for coexistence equilibrium, We
can also obtain that

A1A2 −A3 > (d1 + g + d2Dh)A2 −A3

= Dh(b2g − d1d2 − d2g)

[

Dd2(1−Dh)

d1 + g
− (d1 + g + d2Dh)

]

.

From here we conclude that A1A2 > A3 if Dd2(1−Dh) > (d1 + g)(d1 + g+ d2Dh),
which can hold if the sum of d1 and g (the death rate of the juvenile and the
transition rate of juvenile prey to adult) is sufficiently small. This condition is
stated in the following corollary:

Corollary 4.2. If the conditions in (7) hold, then the unique coexistence equilibrium
(N1, N2, P ) given by (11) is (locally) asymptotically stable in model (10) whenever:

d1 + g <

√

Dd2(1−Dh) +

[

d2Dh

2

]2

−
d2Dh

2
. (13)

We also give an example of coexistence in model (10) with numerical simulations.
Given the following set of ecological parameters: {b2 = 0.8, g = 0.2, d1 = 0.3, d2 =
0.2, e = 1.0, s = 0.3, h = 0.5, D = 0.1}, the condition (12) for asymptotic stability of
the coexistence equilibrium is ensured by Theorem 4.2. The coexistence equilibrium
given by (11) is

(N1, N2, P ) = (0.5442, 0.3401, 0.4082).

With initial populations N1(0) = 0.2, N2(0) = 0.3, P (0) = 0.1, the numerical
simulation of model (10) demonstrated in Figure 3 shows that all three populations
converge to the equilibrium values for coexistence.
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Figure 3. Asymptotic Stability, Coexistence While Only Adults Vulnerable

5. Coexistence while juvenile and adult prey are both vulnerable. The
past two models represent extreme cases in model (1). In general, it is more likely
that a predator will consume both the juvenile prey and the adult prey. In addition,
the stage-structure in model (1) does play an important role in most predator-prey
relationships. Different population densities, physical sizes, and predator handling
times for juvenile and adult prey directly affect the dynamics in model (1). Assum-
ing that both juvenile and adult prey are vulnerable to the predator, we explore the
nature of the coexistence state and its stability in model (1), with distinct capture
rates, handling times and nutritional values which correspond to juvenile and adult
prey.

In order to find a component-wise positive equilibrium in model (1), we first
assume the restrictions for positivity observed in the two simpler models (5) and
(10) still hold:

b2g > d2(d1 + g),

1−Dh1 > 0,

1−Dh2 > 0.

(14)

The coexistence equilibrium in model (1) can be solved from the following system
of algebraic equations:

b2N2 − d1N1 − gN1

s1N1
−

gN1 − d2N2

s2N2
= 0

e1s1N1 + e2s2N2

1 + e1s1h1N1 + e2s2h2N2
−D = 0

P =
(gN1 − d2N2)(1 + e1s1h1N1 + e2s2h2N2)

s2N2

(15)

From the first equation in system (15), we can obtain the adult-to-juvenile ratio
r = N2/N1in the prey population :

r =
d1s2 + gs2 − d2s1 +

√

(d1s2 + gs2 − d2s1)2 + 4gs1s2b2
2b2s2

> 0. (16)
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Hence, the population densities in the coexistence equilibrium (N1, N2, P ) of (1)
are:

N1 =
D

e1s1(1−Dh1) + re2s2(1−Dh2)

N2 = rN1

P =
(g − rd2)(1 + e1s1h1N1 + re2s2h2N1)

rs2

(17)

It is obvious that r, N1, N2 > 0, and P > 0 if g − rd2 > 0 which means

2gb2s2 > d2

(

d1s2 + gs2 − d2s1 +
√

(d1s2 + gs2 − d2s1)2 + 4gs1s2b2

)

. (18)

Noting that condition (18) is equivalent to

[2gb2s2 − d2 (d1s2 + gs2 − d2s1)]
2
− d22

[

(d1s2 + gs2 − d2s1)
2
+ 4gs1s2b2

]

= 4gb2s
2
2(gb2 − gd2 − d1d2) > 0,

(19)

which is ensured by assumption (14). We can now find the following theorem about
the coexistence equilibrium in model (1):

Theorem 5.1. If the conditions Dh1 < 1, Dh2 < 1, and b2g > d2(d1 + g) hold,
then the stage-structured predator-prey model (1) has a unique coexistence equilib-
rium (N1, N2, P ) given in (17), where r is the adult-to-juvenile ratio in the prey
population given in (16).

The Jacobian Matrix of system (1) for equilibrium (N1, N2, P ) is:

J(N1, N2, P ) =





j11 j12 j13
j21 j22 j23
j31 j32 j33





where

j11 = −d1 − g −
s1P (1 + e2s2h2N2)

(1 + e1s1h1N1 + e2s2h2N2)2
,

j12 = b2 +
e2s1s2h2N1P

(1 + e1s1h1N1 + e2s2h2N2)2
,

j13 = −
s1N1

1 + e1s1h1N1 + e2s2h2N2
,

j21 = g +
e1s1s2h1N2P

(1 + e1s1h1N1 + e2s2h2N2)2
,

j22 = −d2 −
s2P (1 + e1s1h1N1)

(1 + e1s1h1N1 + e2s2h2N2)2
,

j23 = −
s2N2

1 + e1s1h1N1 + e2s2h2N2
,

j31 =
e1s1P [1 + e2s2(h2 − h1)N2]

(1 + e1s1h1N1 + e2s2h2N2)2
,

j32 =
e2s2P [1 + e1s1(h1 − h2)N2]

(1 + e1s1h1N1 + e2s2h2N2)2
,

j33 =
e1s1N1 + e2s2N2

1 + e1s1h1N1 + e2s2h2N2
−D.

(20)
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After substituting the coexistence equilibrium (17) into the Jacobian matrix,the
determinant of (J(N1, N2, P )− λI) is: λ3 +A1λ

2 +A2λ+A3 where

A1 =
1

rs2(e1s1 + re2s2)
{e2s

2
2r[r(d2Dh2 + d1 + g) + g(1−Dh2)]

+ s1[e1s1(1−Dh1) + e2s2r](g − rd2) + e1s1s2(gr + d1r + g)};

A2 =
A2 − A2

s2r2(e1s1 + re2s2)
where

A2 = s1(g − rd2)[e1s1(g + rD)(1−Dh1) + gre2s2(1−Dh2)]

+ e2s
2
2r

2(g + d1 +D)[rd2Dh2 + g(1−Dh2)] + e1s1s2rg(d1 + g),

A2 = s2r
2[b2g(e1s1 + re2s2) + re2s2] + s1s2rD(g − rd2)[rb2e1h1 + e2h2(g − rd2)];

A3 =
1

s2r2(e1s1 + re2s2)
{D(g − rd2)[e2s

2
2r

2(g + d1)(1−Dh2)

+ e1s1(s1g + s2b2r
2)(1−Dh1) + e2s1s2r(1−Dh2)(2g − rd2)]}.

(21)

Here r is the adult-to-juvenile ratio in the coexistence equilibrium given by (16).
With assumptions in (14), we already know that Dh1, Dh2 < 1 and g − rd2 > 0,
which imply that A1, A3 > 0. By the Routh-Hurwitz criteria for stability, the
coexistence equilibrium in (17) is asymptotically stable if and only if A1A2 > A3.

Theorem 5.2. If the assumptions in (14) hold, then the coexistence equilibrium
for model (1) given in (16)-(17) is

• (locally) asymptotic stable when A1A2 > A3,
• unstable when A1A2 < A3,

where A1, A2, and A3 are given in (21).

We now illustrate the dynamics of the populations in model (1) with respect to
the presence and stability of the coexistence equilibrium stated in Theorem 5.1 and
Theorem 5.2. Consider the following set of parameters: {b2 = 0.8, g = 0.2, d1 =
0.1, d2 = 0.2, e1 = 0.4, e2 = 0.8, s1 = 0.8, s2 = 0.4, h1 = 0.1, h2 = 0.2, D = 0.2},
which satisfies assumption (14). From Theorem 5.1, the adult-to-juvenile ratio given
in (16) is r = 0.6474 and the coexistence equilibrium given by (17) is

(N1, N2, P ) = (0.3903, 0.2526, 0.2802).

These ecological parameters make A1 = 0.8225 > 0, A3 = 0.0241 > 0, and A1A2 −
A3 = 0.0012 > 0. Theorem 5.2 indicates that the coexistence equilibrium is (locally)
asymptotically stable. The corresponding Jacobian Matrix is:

J(N1, N2, P ) =





−0.5152 0.8053 −0.3035
0.2009 −0.3072 −0.0982
0.0854 0.0837 0





The resulting eigenvalues are:

−0.8208, −0.0008 + 0.1712 ∗ i, −0.0008− 0.1712 ∗ i.

Since each of these eigenvalues have negative real part, then the coexistence equilib-
rium is (locally) asymptotically stable. Figure 4 demonstrates the numerical simu-
lation of model (1) with initial populations N1(0) = 0.2, N2(0) = 0.3, P (0) = 0.1.

To demonstrate the dynamic behavior of all the species in model (1) with unsta-
ble coexistence equilibrium, we consider another set of parameters: {b2 = 0.8, g =
0.2, d1 = 0.3, d2 = 0.2, e1 = 0.5, e2 = 1.0, s1 = 0.6, s2 = 0.3, h1 = 0.5, h2 = 0.8, D =
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Figure 4. Asymptotic Stability, Coexistence While Both Juvenile
and Adults Vulnerable

0.2}. These ecological parameters satisfy assumption (14), hence by Theorem 5.1
model (1) has a unique coexistence equilibrium (N1, N2, P ) = (0.4304, 0.3325,
0.2248). With A1 = 0.8661 > 0, A3 = 0.0117 > 0, and A1A2 −A3 = −0.0049 < 0,
Theorem 5.2 indicates that the coexistence equilibrium is unstable. The correspond-
ing Jacobian Matrix is:

J(N1, N2, P ) =





−0.6112 0.8106 −0.2257
0.2026 −0.2548 −0.0872
0.0531 0.0495 0





The resulting eigenvalues are:

−0.8725, 0.0032 + 0.1158 ∗ i, 0.0032− 0.1158 ∗ i.

Since λ1 < 0, λ2 and λ3 have positive real parts, then the coexistence equilibrium is
an unstable spiral point. Figure 5 demonstrates the numerical simulation of model
(1) with initial populations N1(0) = 0.2, N2(0) = 0.3, P (0) = 0.1. All three of the
species have their population sizes oscillating with increasing magnitude.

Figure 5. Instability of Equilibrium

It is seen in Section 3 that if b2g < d2(d1+g), then the trivial equilibrium (0, 0, 0)
is globally asymptotically stable hence the populations (N1(t), N2(t), P (t)) remain
bounded. Under the assumption (14) that Dh1, Dh2 > 1 and b2g > d2(d1 + g), we
further investigate on the upper bounds of the predator and prey populations in
model (1). Referring to the definition of upper-lower solutions in (4), we can define

a pair of nonnegative upper-lower solutions (Ñ1, Ñ2, P̃ ) and (N̂1, N̂2, P̂ ) for system
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(1) satisfying the following differential equations or inequalities:

dÑ1

dt
= b2Ñ2 − d1Ñ1 − gÑ1,

dÑ2

dt
= gÑ1 − d2Ñ2,

dP̃

dt
≥ P̃ [(e1s1Ñ1 + e2s2Ñ2) ∗H(e1s1h1Ñ1 + e2s2h2Ñ2)−D],

Ñ1(0) = N1(0), Ñ2(0) = N2(0), P̃ (0) = P (0),

N̂1(t) = 0, N̂2(t) = 0, P̂ (t) = 0.

(22)

From the first two equations in (22), we find the upper solutions for the prey species

(Ñ1(t), Ñ2(t))
T = eAt(N1(0), N2(0))

T ,

with

A =

(

−d1 − g b2
g −d2

)

and

eAt =

(

a11e
λ1t + b11e

λ2t a12e
λ1t + b12e

λ2t

a21e
λ1t + b21e

λ2t a22e
λ1t + b22e

λ2t

)

(23)

where λ1 = − 1
2 (α+β) and λ2 = 1

2 (α−β) are eigenvalues of A. For b2g > d2(d1+g),

α =
√

(d1 + d2 + g)2 + 4(b2g − d1d2 − d2g) > β = d1 + d2 + g. (24)

The coefficients aij and bij for eAt in (23) are

a11 =
α+ β − d2

2α
> 0, b11 =

α− β + d2
2α

> 0,

a12 = −
b2
α

< 0, b12 =
b2
α

> 0,

a21 = −
g

α
< 0, b21 =

g

α
> 0,

a22 =
α+ β − d1 − g

2α
> 0, b22 =

α− β + d1 + g

2α
> 0.

(25)

With λ1 < 0 < λ2, the upper solutions N1(t) and N2(t) gives upper bounds for the
prey populations

0 ≤ N1(t) ≤ Ñ1(t) = [a11N1(0) + a12N2(0)]e
λ1t + [b11N1(0) + b12N2(0)]e

λ2t,

0 ≤ N2(t) ≤ Ñ2(t) = [a21N1(0) + a22N2(0)]e
λ1t + [b21N1(0) + b22N2(0)]e

λ2t
(26)

Since each bij > 0 as given in (25) and with α > d1 + d2 + g given in (24), one can
conclude that for large t:

Ñ1(t) ∼

[

α− d1 − g

2α
N1(0) +

b2
α
N2(0)

]

e
α+d1+d2+g

2
t,

N̂2(t) ∼

[

g

α
N1(0) +

α− d2
2α

N2(0)

]

e
α+d1+d2+g

2
t.

(27)

In order to obtain upper bounds for the predator population, we first note the

estimation 0 ≤ P (t) ≤ P̃ (t) = P (0)e(
1−Dh

h )t (where h = min{h1, h2}) given in

Section 2. From the assumption Dh1, Dh2 > 1, we see that P̃ (t) → +∞ as t → ∞.
For an alternate upper bound of the predator population, which depends on more
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ecological parameters and the upper bounds for prey populations, we consider the
fact

d

dt
(1 + e1s1h1Ñ1 + e2s2h2Ñ2)

= [ge2s2h2 − (d1 + g)e1s1h1]Ñ1 + [b2e1s1h1 − d2e2s2h2]Ñ2.

Under the assumption for balanced consumption on the prey

d1 + g

g
<

e2s2h2

e1s1h1
<

b2
d2

, (28)

one can obtain the upper solution P̃ for predator population from

dP̃

dt
= P̃

[

k
[ge2s2h2 − (d1 + g)e1s1h1]Ñ1 + [b2e1s1h1 − b2e2s2h2]Ñ2

1 + e1s1h1Ñ1 + e2s2h2Ñ2

−D

]

,

P̃ (0) = P (0),

(29)

where
1

k
= min{

e2s2hh

e1s1h1
g − (d1 + g),

e1s1h1

e2s2hh

b2 − d2} > 0. (30)

Solving the separable equation (29) leads to the following estimation

0 ≤ P (t) ≤ P̃ (t) = P (0)

[

1 + e1s1h1Ñ1(t) + e2s2h2Ñ2(t)

1 + e1s1h1N1(0) + e2s2h2N2(0)

]k

e−Dt. (31)

For large t, the upper bound for the predator population

P̃ (t) ∼ P (0)e(kλ2−D)t. (32)

6. Discussion/conclusion. In this paper, we work on mathematical analysis of
the predator-prey model (1) with a stage-structured prey, which was initially pre-
sented and studied in [1]. This model has three possible types of equilibrium points:
(0, 0, 0), (N1, N2, 0), and (N1, N2, P ), representing different ecological outcomes.

The global asymptotic stability of the trivial equilibrium is ensured by the con-
dition b2g < d2(d1 + g) (Theorem 3.1). Both the predator and prey will go to
extinction if the difference between the birth-to-death ratio b2/d2 of the adult prey
and the death-to-transition ratio d1/g of the juvenile prey is less than 1. When the
difference is exactly 1, the system has infinitely many prey-only equilibria (N1, N2, 0)
with adult-to-juvenile ratio as g/d2, so there is no asymptotic stability. The con-
dition in Theorem 3.2 implies that each of the prey-only equilibrium is unstable
the death rate D of the predator is sufficiently small or the capture rate (si) and
relative nutritional value (ei) of prey are sufficiently large.

The main focus of the analysis in this paper is to examine the possibility for
long-term survival of both the prey and predator while the difference between the
ratios b2/d2 and d1/g is larger than 1 and the product of predator death rate and
handling time Dhi < 1. We first study the coexistence equilibrium in two special
cases where only one stage (adult or juvenile) of the prey is vulnerable. It is seen
that the equilibrium values of the species in (6) and (11) depend on all ecological
parameters, but the stability conditions (in Theorem 4.1 and Theorem 4.2) are not
affected by the capture rate si and relative nutritional value ei of the prey. The prey
and predator can coexist when the death rate of adult prey d2 or the sum of juvenile
prey death rate and transition rate d1 + g is small enough. These conclusions are
similar to the results in [1], under some simplified condition for parameters.
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Most importantly, when adult and juvenile prey are both vulnerable, we inves-
tigate the presence and asymptotic stability of a unique coexistence equilibrium as
well as the dynamic behavior of all species. We find (for the first time) the exact
values of the unique coexistence equilibrium and conditions for its (local) asymp-
totic stability or instability. These results are made possible by the discovery of the
adult-to-juvenile ratio r > (d1 + g)/b2 given in (17), which also indicate that for
coexistence the adult prey needs to be relatively sizable comparing to the juvenile
prey. The stability condition of the coexistence equilibrium obtained in Theorem
5.1 is demonstrated through simulations in Fig. 4. When that condition fails, we
observe in Fig. 5 a different type of dynamics for long-term survival of all the
species with a pattern of oscillation with increasing magnitude. The complexity
of the model is demonstrated in both the stability analysis through linearization
(Theorem 5.2) and the estimations of upper bounds for all populations. Each of
the ecological parameters (including si and ei) plays its unique role in the dynamics
(equilibrium values, stability, and upper bounds) of the model, and should not be
ignored.
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