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Abstract. In this paper, we study the dynamics of a diffusive Leslie-Gower

model with a nonlinear harvesting term on the prey. We analyze the existence
of positive equilibria and their dynamical behaviors. In particular, we consider

the model with a weak harvesting term and find the conditions for the local and

global asymptotic stability of the interior equilibrium. The global stability is
established by considering a proper Lyapunov function. In contrast, the model

with strong harvesting term has two interior equilibria and bi-stability may
occur for this system. We also give the conditions of Turing instability and

perform a series of numerical simulations and find that the model exhibits

complex patterns.

1. Introduction. Reaction diffusion systems have long been of the interest to both
mathematicians and ecologists to understand the dynamics of biological popula-
tions. Predator-prey models are arguably the building blocks of ecosystems due to
its universal existence and importance. One of the earliest and also the best known
predator and prey model is Lotka-Volterra model. However, there are no upper
limits to the rates of increase of both prey H and predator P in this model. Leslie
addressed this issue and proposed the now well-known Leslie-Gower model{

dH
dt = (r1 − a1P − b1H)H,
dP
dt = (r2 − a2

P
H )P,

(1)

where H and P are the density of prey species and the predator species, respectively.
We observe that in (1), the carrying capacity of the predator’s environment is
proportional to the number of prey. This model does not admit limit cycles. Only
until relatively recently has it been shown by A. Korobeninikov [8] that the positive
equilibrium is globally asymptotically stable by constructing a Lyapunov function.

An important aspect of predator-prey models is the functional responses of the
predator to the prey density, which refers to the change of the density of prey at-
tached per time unit and predator unit as the prey density changes. In general,
these functional responses, denoted by p(H), is monotone and continuously differ-
entiable on [0,∞). The following functional responses are called Holling-type I, II,
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III and IV, respectively

p(H) =
aH

b
, p(H) =

aH

b+H
, p(H) =

aH2

b+H2
, p(H) =

aH2

b+ rH +H2
,

where a,b,r are positive constants.
The dynamics of Holling-type predator-prey models are very interesting and have

been extensively studied. For example, in [12], the author studied the dynamic be-
havior of the following predator-prey system incorporating Holling-type II response{

dH
dt = r1H(1− H

k )− aHP
b+H ,

dP
dt = r2P (1− P

cH ),
(2)

where the constants r1 and r2 are the birth rate of H and P respectively, k is
the prey environment carrying capacity, c measures the conversion rate from prey
into the predator births, a is the maximum number of prey that can be consumed
by the predator per time unit and b measures the extent to which environment
provides protection to prey H. Many interesting behaviors, such as stable limit
cycles, bifurcations and global stability of constant equilibrium solutions, have been
studied. We refer the readers to [1, 3, 14].

In [2], the authors proposed the following modified Leslie-Gower model with
Holling-type II response scheme:{

dH
dt = r1H(1− H

k )− a1HP
n1+H ,

dP
dt = r2P (1− a2P

n2+H ),
(3)

where n1 and n2 measures the extent to which the environment protects the prey
and predator respectively.

Many aspects of this model, including permanence, boundedness and global sta-
bility of solutions, have already been investigated in [2, 4, 18]. We also refer the
readers to [13] for the model incorporating time delay.

The harvesting of the prey species and(or) the predator species is another impor-
tant issue from the ecological perspective and the economic perspective. In many
cases, the goal is to achieve maximum and sustainable yield of the prey species.
Sometimes the harvesting of the predator species is introduced in order to control
the populations of the species. These are commonly practiced in wildlife manage-
ment. Predator-prey systems incorporating harvesting terms have also been studied
by many authors. We refer the readers to [9, 10, 15] and the references within. Re-
cently, Gupta [7] proposed the following modified version of Leslie-Gower model
with Michaelis-Menten type prey harvesting:{

dH
dτ = rH(1− H

K )− cHP
n+H −

qEH
m1E+m2H

,
dP
dτ = sP (1− cP

n+H ).
(4)

Note that they made the assumption that the environment provides the same pro-
tection to both the prey and the predator. By considering the following non-
dimensional scheme:

H = Ku, cP = Kv, rτ = t,

k =
1

r
, a =

n

K
, h =

qE

rm2K
, c =

m1E

m2K
, δ =

s

r
.
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We can further reduce the system to the following simpler system:{
du
dt = u(1− u)− kuv

a+u −
hu
c+u ,

dv
dt = δv(1− v

a+u ).
(5)

The goal of this paper to study the associated reaction diffusion system:
∂u
∂t = d1∆u+ u(1− u)− kuv

a+u −
hu
c+u , x ∈ Ω, t > 0,

∂v
∂t = d2∆v + δv(1− v

a+u ), x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ ∂Ω.

(6)

The main purpose is to study the dynamical behaviors of this model. We focus
on the stability of the equilibria and pattern formation analysis of the model. In
particular, we study the stability of the trivial and axial equilibria, as well as the
local and global asymptotic stability of interior equilibrium. Another issue we will
address is the nonexistence of non-constant positive equilibrium solutions.

The rest of this article is organized as follows: In Section 2, We investigate
the persistence property of the system. In Section 3, we study the asymptotic
behavior of the non-interior equilibria. In Section 4, we consider the local and
global stability of the interior equilibrium for the weak harvesting case. In this
case, the interior equilibrium is unique. In Section 5, we give the lower bounds
of the diffusion coefficients for which the model has no non-constant equilibrium
solutions. In Section 6, we discuss the Turing instability. In Section 7, we carry
out some numerical simulations to illustrate the diffusion driven instability for our
model. Finally in Section 8, we end our investigation with some concluding remarks.

2. Persistence property. In this section, we show that the solutions to our model
are bounded. We also show that our system is persistent under certain condition.

Lemma 2.1. (See [16]) Assume that u(x, t) is defined by
∂u
∂t = d1∆u+ ru(1− u

K ), x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω,

(7)

then limt→∞ u(x, t) = K.

Theorem 2.1. All solution (u, v) of (6) with nonnegative initial conditions satisfies

lim sup
t→∞

maxu(·, t) ≤ 1, (8)

lim sup
t→∞

maxv(·, t) ≤ a+ 1. (9)

Proof. Since (u, v) = (u(x, t), v(x, t)) is a solution of (6), u satisfies
∂u
∂t ≤ d1∆u+ ru(1− u), x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω.

(10)

From the standard comparison principle of parabolic equations and Lemma 2.1,
it follows that for any arbitrary ε > 0, there exists t1 such that for any t > t1,

u(x, t) ≤ 1 + ε.
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Hence

lim sup
t→∞

maxu(·, t) ≤ 1.

It then follows that v satisfies
∂v
∂t ≤ d2∆v + δv(1− v

a+1+ε ), x ∈ Ω, t ≥ t1,
∂v
∂ν = 0, x ∈ ∂Ω, t ≥ t1,
v(x, t) > 0, x ∈ Ω, t = t1.

(11)

Similarly, by comparison principle, there exists t2 > t1 > 0 such that for t > t2, we
have

v(x, t) ≤ a+ 1 + 2ε.

Hence

lim sup
t→∞

maxv(·, t) ≤ a+ 1.

Definition 2.1. System (6) is said to be persistent if for any nonnegative initial
data (u0(x), v0(x)) with u0(x) and v0(x) are both not identically equal to 0, there
exists positive constants ε1, ε2 such that

lim inf
t→+∞

minu(·, t) ≥ ε1, lim inf
t→+∞

minv(·, t) ≥ ε2.

In our next result we give the condition under which the system is persistent.
Note that this result implies that prey and predator will coexist, no matter what
their diffusion coefficients are.

Theorem 2.2. Assume that

β := 1− k(a+ 1)

a
− h

c
> 0,

then system (6) is persistent.

Proof. From the first equation of (6), we have

∂u

∂t
= d1∆u+ u(1− u)− kuv

a+ u
− hu

c+ u

≥ d1∆u+ u(1− u)− ku(a+ 1 + 2ε)

a
− hu

c

= d1∆u+ u

(
1− u− k(a+ 1 + 2ε)

a
− h

c

)
(12)

for t > t2.

Since 1− k(a+1)
a − h

c > 0, there exists t3 > t2 such that for any t > t3,

u(x, t) ≥ 1− k(a+ 1 + 2ε)

a
− h

c
− ε > 0.

We may now apply this lower bound of u to the second equation of system (6)
and we conclude there exists t4 > t3 such that for any t > t4,

v(x, t) ≥ a+ 1− k(a+ 1 + 2ε)

a
− h

c
− 2ε.

Therefore we conclude that

lim inf
t→∞

minu(·, t) ≥ 1− k(a+ 1)

a
− h

c
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and

lim inf
t→∞

minv(·, t) ≥ a+ 1− k(a+ 1)

a
− h

c
.

3. Local stability property of equilibria. We can easily obtain the following
equilibria (1) E0 = (0, 0), (2) E2 = (0, a), (3) E3 = (u1, 0), E4 = (u2, 0), with

u1,2 = 1
2 (1 − c ±

√
(1− c)2 − 4(h− c)). If h > c, c < 1 and (1 − c)2 > 4(h − c),

(remark: this is equivalent to 2
√
h− 1 < c < h )then both equilibrium points exist.

If h < c, then E2 = (u1, 0) = (1
2 (1− c+

√
(1− c)2 − 4(h− c)) exists.

(4) E5,6 = (u∗1,2, v
∗
1,2) with v∗1,2 = a + u∗1,2 and u∗1,2 solves u2 + (k + c − 1)u +

(kc+ h− c) = 0.

u∗1,2 =
1

2

(
−(k + c− 1)±

√
(k + c− 1)2 − 4(kc+ h− c)

)
Case A. kc+ h− c > 0

A1. k+ c < 1 and (k+ c− 1)2 > 4(kc+ h− c): two distinct interior equilibrium
points;

A2. k + c < 1 and (k + c − 1)2 = 4(kc + h − c): one interior equilibrium point
Ē = (ū, v̄) where ū = 1

2 (1− k − c);
A3. (k + c− 1)2 < 4(kc+ h− c): no interior equilibrium.

Case B. kc+ h− c < 0
Only one interior equilibrium point with

u∗1 =
1

2

(
−(k + c− 1) +

√
(k + c− 1)2 − 4(kc+ h− c)

)
.

To investigate the local stability of the equilibrium points, we consider the lin-
earized system at Ei. The linearized system takes the following form

∂U

∂t
= D∆U + J(Ei)U,

where U = (U1(x, t), U2(x, t))T , D = diag(d1, d2) and

J(Ei) =

(
J11 J12

J21 J22

)
=

(
1− 2u− akv

(a+u)2 −
hc

(c+u)2 − ku
a+u

δv2

(a+u)2 δ − 2δv
a+u

)
. (13)

Theorem 3.1. If h < c, then E0 = (0, 0) is unstable.

Proof. The linearized system at E0 takes the following form
∂U1

∂t = d1∆U1 + (1− h
c )U1,

∂U2

∂t = d2∆U2 + δU2,
∂U1

∂ν |∂Ω = ∂U2

∂ν |∂Ω = 0.

(14)

Consider the following associated eigenvalue problem
d1∆U1 + (1− h

c )U1 = ηU1,

d2∆U2 + δU2 = ηU2,
∂U1

∂ν |∂Ω = ∂U2

∂ν |∂Ω = 0.

(15)

To prove that E0 is unstable under the hypothesis, we need to show that the largest
eigenvalue of this system is positive. Let η be an eigenvalue of this system with
eigenfunction (U1, U2). If U1 6= 0, then η is an eigenvalue of d1∆ + (1 − h

c ) with
homogeneous Neumann boundary condition. Therefore, η must be real. Similarly,
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if U2 6= 0, η is also real. Hence all eigenvalues of (15) are real. Since 1− h
c > 0, the

principle eigenvalue λ1 of{
d1∆U1 + (1− h

c )U1 = ηU1,
∂U1

∂ν |∂Ω = 0,
(16)

is positive and the associated eigenvector Ũ1 > 0. It follows that (U1, U2) = (Ũ1, 0)
solves (15) with η = λ1, i.e., λ1 is an eigenvalue of (15). Hence the largest eigenvalue
of (15) is positive and E0 is unstable.

Theorem 3.2. If 1 − k − h
c > 0, E2 is unstable, while if 1 − ka − h

c < 0, E2 is
stable.

Proof. At E2 = (0, a), the linearized system is
∂U1

∂t = d1∆U1 + (1− k − h
c )U1,

∂U2

∂t = d2∆U2 + δU1 − δU2,
∂U1

∂ν |∂Ω = ∂U2

∂ν |∂Ω = 0.

(17)

As in previous theorem, we obtain the following eigenvalue problem
d1∆U1 + (1− k − h

c )U1 = ηU1,

d2∆U2 + δU1 − δU2 = ηU2,
∂U1

∂ν |∂Ω = ∂U2

∂ν |∂Ω = 0.

(18)

If 1− k − h
c > 0, the principle eigenvalue λ1 of{

d1∆U1 + (1− k − h
c )U1 = λU1,

∂U1

∂ν |∂Ω = 0,
(19)

is positive and the corresponding eigenfunction Ũ1 > 0.
λ1 is in fact an eigenvalue of (18). To show this, we let Ũ2 to be the solution of{

d2∆U2 − (δ + λ1)U2 = −δŨ1,
∂U2

∂ν |∂Ω = 0.
(20)

We can verify that (U1, U2) = (Ũ1, Ũ2) satisfies problem (18) with η = λ1. So λ1 is
an eigenvalue of (18). Thus, the largest eigenvalue of (18) η1 ≥ λ1 > 0, and E2 is
unstable.

If 1 − ka − h
c < 0, we let (Ũ1, Ũ2) be the principle eigenfunction of (18) corre-

sponding to the largest eigenvalue η1. If Ũ1 6= 0, then η1 is also an eigenvalue of
(18). But if 1− ka− h

c < 0, the leading eigenvalue of (18) is negative, thus η1 < 0.

If Ũ1 ≡ 0, then η1 is an eigenvalue of{
d2∆U2 − δU2 = λU2,
∂U2

∂ν |∂Ω = 0.
(21)

The largest eigenvalue of this problem is obviously −δ which is negative. Therefore,
we also have η1 < 0. Hence in this case, E2 is stable.

Theorem 3.3. E3 and E4 are both unstable.
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Proof. At E3 and E4, the Jacobian matrix takes the following form

J(E3,4) =

(
J11 J12

J21 J22

)
=

(
1− 2u− hc

(c+u)2 − ku
a+u

0 δ

)
. (22)

We shall consider the following eigenvalue problem:
d1∆U1 + (1− 2u− hc

(c+u)2 )U1 − ku
a+uU2 = ηU1,

d2∆U2 + δU2 = ηU2,
∂U1

∂ν |∂Ω = ∂U2

∂ν |∂Ω = 0.

(23)

Since δ > 0, let λ1 > 0 be the principle eigenvalue of{
d2∆U2 + δU2 = λU2,
∂U2

∂ν |∂Ω = 0,
(24)

with the associated eigenfunction Ũ2 > 0.
Let Ũ1 be the solution of the following linear problem{

d1∆U1 + (1− 2u− hc
(c+u)2 − λ1)U1 = ku

a+u Ũ2,
∂U1

∂ν |∂Ω = 0.
(25)

It follows that (Ũ1, Ũ2) solves (23) with η = λ1, i.e., λ1 is also an eigenvalue of (23).
Therefore η ≥ λ1 > 0.

4. Local and global stability of interior equilibrium. In this section, we
will investigate the dynamics of the spatial model in the case of weak harvesting
h < c(1− k).

Theorem 4.1. If 1−2u∗− ak
a+u∗− hc

(c+u∗)2 < 0, then the interior equilibrium (u∗, v∗)

is locally asymptotically stable.

Proof. The linearized problem around the interior equilibrium is

∂U

∂t
= D∆U + J(E5,6)U, (26)

where

J(Ei) =

(
J11 J12

J21 J22

)
=

(
1− 2u∗ − ak

a+u∗ − hc
(c+u∗)2 − ku∗

a+u∗

δ −δ

)
(27)

We then expand the solution U of (26) via

U(x, t) = Σ∞j=0zj(t)φj(x), (28)

where zj ∈ R2 and φj(x) is the jth eigenfunction of −∆ on Ω with Neumann
boundary condition. Substituting (28) into (26) and equating the coefficients of
each φj , we have

dzj
dt

= Ajzj ,

where Aj = −λjD + J(E5,6) and λj is the j − th eigenvalue satisfying 0 = λ0 <
λ1 < λ2 < . . . .

The eigenvalues η1,2 of Aj are determined by

η2 − tr(Aj)η + det(Aj) = 0,

where
tr(Aj) = −(d1 + d2)λj +A− δ,
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det(Aj) = d1d2λ
2
j + (d1δ − d2A)λj + (−Aδ +

ku∗

a+ u∗
δ),

A = 1− 2u∗ − ak

a+ u∗
− hc

(c+ u∗)2
.

To guarantee that each Aj has two eigenvalues with negative real parts, we shall
need

tr(Aj) < 0 and det(Aj) > 0.

It is easy to see that A < 0 guarantees both conditions hold.

Theorem 4.2. The positive equilibrium is globally asymptotical stable if

k

(
(u∗ + a)− k(a+ 1)

a
− h(u∗ + a)

c(c+ u∗)

)
− k2

4
+
k2(a+ β)

2a
− k2(a+ 1)2

4a2
> 0.

Proof. We consider the following Lyapunov function:

V (t) =

∫
Ω

[V1(u(x, t)) + V2(v(x, t))] dx, (29)

where V1(u) = (u∗ + a)(u− u∗ − u∗ ln(u/u∗)), V2(v) = kv∗

δ (v − v∗ − v∗ ln(v/v∗)).
We have
dV

dt
=
∫

Ω
(u∗ + a)(1− u∗

u )d1∆u+ k
δ v
∗(1− v∗

v )d2∆vdx+
∫

Ω
dV1

dt + dV2

dt dx

= −
∫

Ω

(
d1(u∗ + a)u

∗

u2 |∇u|2 + d2
kv∗2

δv2 |∇v|
2
)
dx+

∫
Ω
dV1

dt + dV2

dt dx. (30)

Note that
dV1

dt
=(u∗ + a)(u− u∗)(1− u− kv

a+ u
− h

c+ u
)

=(u∗ + a)(u− u∗)
(
−u− kv

a+ u
− h

c+ u
+ u∗ +

kv∗

a+ u∗
+

h

c+ u∗

)
=(u∗ + a)(u− u∗)

[
−(u− u∗) +

−k(u+ a)(v − v∗) + kv(u− u∗)
(a+ u)(a+ u∗)

+
h(u− u∗)

(c+ u)(c+ u∗)

]
and

dV2

dt
= k(v − v∗)−a(v − v∗)− u(v − v∗) + v(u− u∗)

u+ a
. (31)

d(V1 + V2)

dt
=

[
−(u∗ + a) +

kv

a+ u
+

h(u∗ + a)

(c+ u)(c+ u∗)

]
(u− u∗)2

+ (−k +
kv

u+ a
)(u− u∗)(v − v∗)− k(v − v∗)2.

The above equation can be written as

dV

dt
= −(u− u∗, v − v∗)

(
φ1 φ2

φ2 k

)(
u− u∗
v − v∗

)
where

φ1(u, v) = (u∗ + a)− kv

a+ u
− h(u∗ + a)

(c+ u)(c+ u∗)

and

φ2(u, v) =
1

2
(k − kv

u+ a
).
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It is obvious that d(V1+V2)
dt < 0 if the matrix above is positive definite. Since k > 0,

we shall need the following conditions:
(i) φ1(u, v) > 0;

(ii) Φ(u, v) = φ1k − φ2
2 = k

(
(u∗ + a)− kv

a+u −
h(u∗+a)

(c+u)(c+u∗)

)
− 1

4

(
k − kv

u+a

)2

> 0.

Note that

∂Φ(u, v)

∂u
= k2v(a+ u)−2(1/2 +

v

u+ a
) +

kh(u∗ + a)

(c+ u∗)(c+ u)2
> 0,

hence Φ(u, v) is strictly increasing with respect to u in R+.
Thus

Φ(0, v) =k

[
(u∗ + a)− kv

a
− h(u∗ + a)

c(c+ u∗)

]
− 1

4
(k − kv

a
)2

≥k
[
(u∗ + a)− k(a+ 1)

a
− h(u∗ + a)

c(c+ u∗)

]
− k2

4

+
k2(a+ β)

2a
− k2(a+ 1)2

4a2
> 0

implies Φ(u, v) > 0. Since Φ(u, v) = φ1k − φ2
2, thus φ1(u, v) > 0 and the global

stability follows.

5. Nonexistence of nonconstant positive solutions. In this section we shall
derive the lower bounds of the diffusion rates under which the system (6) has no
nonconstant positive steady-state solutions, that is the nonexistence of nonconstant
positive classical solutions of the following elliptic system

−d1∆u = u(1− u)− kuv
a+u −

hu
c+u , x ∈ Ω,

−d2∆v = δv(1− v
a+u ), x ∈ Ω,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

(32)

For any φ ∈ L1(Ω), we denote by φ̄ the average value of φ over Ω, that is,

φ̄ =
1

|Ω|

∫
Ω

φdx.

Our main result is stated in the following theorem.

Theorem 5.1. The system (32) does not admit any nonconstant positive solutions
if

d1 >
1

µ1
+

k2

4a2
+

δ4(a+ 1)4c4

4((a+ 1)(c− k)− h)4

and

d2 >
2

µ2
1

+
δ

µ1
,

where µ1 is the second eigenvalue of the Laplacian in Ω with Neumann boundary
conditions.

The proof is based on Poincaré inequality and Cauchy inequality [5].

Proof. In what follows, we shall apply the Cauchy inequality

xy ≤ µ1

4
x2 +

1

µ1
y2.



816 PENG FENG

Let (u, v) be a nonconstant positive solution of (32). Then we have u ≤ 1 and
v ≤ a+ 1. Multiplying the two equations in (32) by ξ := u− ū and η := v − v̄, and
then integrating over Ω and applying the Cauchy inequality, we obtain

d1

∫
Ω

|∇ξ|2dx =

∫
Ω

(
u+ u(1− u)− kuv

a+ u
− hu

c+ u

)
ξdx

=

∫
Ω

((
u+ u(1− u)− kuv

a+ u
− hu

c+ u

)
−
(
ū+ ū(1− ū)− kūv

a+ ū
− hū

c+ ū

))
ξdx

=

∫
Ω

(
ξ − (u+ ū)ξ − akv̄ξ

(a+ ū)(a+ u)
− kuη

a+ u
− hcξ

(c+ u)(c+ ū)

)
ξdx

=

∫
Ω

(
1− (u+ ū)− akv̄

(a+ ū)(a+ u)
− hc

(c+ u)(c+ ū)

)
ξ2dx

−
∫

Ω

ku

a+ u
ξηdx

≤
∫

Ω

(
1− (u+ ū)− akv̄

(a+ ū)(a+ u)
− hc

(c+ u)(c+ ū)

)
ξ2dx

+

∫
Ω

k

a
|ξη|dx

≤
∫

Ω

ξ2dx+
k2µ1

4a2

∫
Ω

ξ2dx+
1

µ1

∫
Ω

η2dx

and

d2

∫
Ω

|∇η|2dx =

∫
Ω

(δv − δv2

a+ u
)ηdx

=

∫
Ω

(
(δv − δv2

a+ u
)− (δv̄ − δv̄2

a+ ū

)
ηdx

=

∫
Ω

(
δ − δ(v + v̄)

a+ ū

)
η2dx+

δ

a+ ū

∫
Ω

δv2

a+ u
ξηdx

≤ δ
∫

Ω

η2dx+

∫
Ω

δ2(a+ 1)2c2

((a+ 1)(c− k)− h)2
ηξdx

≤ δ
∫

Ω

η2dx+
µ1

4

δ4(a+ 1)4c4

((a+ 1)(c− k)− h)4
+

1

µ1

∫
Ω

η2dx. (33)

Applying Poincaré inequality, we have

d1µ1

∫
Ω

ξ2dx+ d2µ1

∫
Ω

η2dx ≤ d1

∫
Ω

|∇ξ|2dx+ d2

∫
Ω

|∇η|2dx

≤
(

1 +
k2µ1

4a2
+

µ1δ
4(a+ 1)4c4

4((a+ 1)(c− k)− h)4

)∫
Ω

ξ2dx+ (
2

µ1
+ δ)

∫
Ω

η2dx. (34)

Hence if

d1 >
1

µ1
+

k2

4a2
+

δ4(a+ 1)4c4

4((a+ 1)(c− k)− h)4

and

d2 >
2

µ2
1

+
δ

µ1
,
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then system (32) does not admit any nonconstant positive solutions.

6. Turing instability and pattern formation. As usual, we introduce small
perturbations U1 = u − u∗, U2 = v − v∗, where |U1|, |U2| << 1. We consider the
following linearized system about (u∗, v∗) as follows:{

∂U1

∂t = d1∆U1 + J11U1 + J12U2,
∂U2

∂t = d2∆U2 + J21U1 + J22U2,
(35)

where J11, J12, J21 and J22 are defined as in (13).
We know any solution of (35) can be expanded into the following Fourier series

so that

U1(x, t) =

∞∑
n,m=0

unm(x, t) =
∞∑

n,m=0

αnm(t) sin kx, (36)

U2(x, t) =

∞∑
n,m=0

vnm(x, t) =

∞∑
n,m=0

βnm(t) sin kx, (37)

where x = (ξ, η), and 0 < ξ < Lx, 0 < η < Ly. k = (kn, km) = (nπ/Lx,mπ/Ly)
are the corresponding wavenumbers.

Substituting unm and vnm into (35), we obtain:{
dαnm

dt = (J11 − d1k
2)αnm + J12βnm,

dβnm

dt = J21αnm + (J22 − d2k
2)βnm,

(38)

where k2 = k2
n + k2

m.
A general solution of (38) has the form C1e

λ1t + C2e
λ2t, where the constant

C1, C2 are determined by the initial conditions and the exponents λ1, λ2 are the
eigenvalues of the following matrix

D̃ =

(
J11 − d1k

2 J12

J21 J22 − d2k
2

)
. (39)

Correspondingly, λ1, λ2 are the solutions of the following characteristic equation:

λ2 − ρ1λ+ ρ2 = 0,

where

ρ1 = −k2(d1 + d2) + (J11 + J22),

ρ2 = d1d2k
4 − (d1J22 + d2J11)k2 + det(J).

The roots yield the dispersion relation

λ1,2(k) =
ρ1 ±

√
ρ2

1 − 4ρ2

2
. (40)

Diffusive instability occurs when at least one of the following conditions is violated:

ρ1 < 0 or ρ2 < 0.

Clearly ρ1 < 0 is not violated when J11 + J22 < 0. Hence, only violation of the
condition ρ2 < 0 will give rise to diffusion instability. Then reversal of the inequality
gives the following

H(k2) = d1d2k
4 − (d1J22 + d2J11)k2 + det(J) < 0. (41)
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Since H ′(k2) = 2d1d2k
2 − (d1J22 + d2J11), the minimum of H(k2) occurs at

k2 = k2
m, where

k2
m =

d1J22 + d2J11

2d1d2
.

Hence the sufficient condition for instability is

d1J22 + d2J11 > 2
√
d1d2(J11J22 − J12J21).

Hence we arrive at the conclusion that the equilibrium solution is diffusively unstable
if

d2

(
1− 2u∗ − ak

a+ u∗
− hc

(c+ u∗)2

)
− δd1

> 2

√
δd1d2

(
ku∗

a+ u∗
− 1 + 2u∗ +

ak

a+ u∗
+

hc

(c+ u∗)2

)
.

Summarizing the above discussions, we obtain the following theorem.

Theorem 6.1. If δ < d2
d1

(
1− 2u∗ − ak

a+u∗ − hc
(c+u∗)2

)
and d2

(
1− 2u∗ − ak

a+u∗−

hc
(c+u∗)2

)
− δd1 > 2

√
δd1d2

(
ku∗

a+u∗ − 1 + 2u∗ + ak
a+u∗ + hc

(c+u∗)2

)
hold, then the posi-

tive equilibrium is Turing unstable. The critical wave number is

kc =

√√√√d2

(
1− 2u∗ − ak

a+u∗ − hc
(c+u∗)2

)
− d1δ

2d1d2
.

7. Numerical simulations. In this section, we numerically solve system (6) in two
dimensional space. All our numerical simulations employ the zero-flux boundary
conditions with a system size 200×200 discretized through x→ (x0, x1, . . . , xn) and
y → (y0, y1, . . . , yn), with n = 200. The numerical integration is done by using a
forward Euler integration with a rather small time step τ = 0.01×h2 where h = 1/4
is the space time step. Then we use the standard five-point approximation for the
2D Laplacian with the zero-flux boundary conditions. The concentration at mesh
point (xi, yj) at the moment (n+ 1)τ is denoted by (un+1

i,j , vn+1
i,j ) is given by

un+1
i,j = uni,j + τd1∆hu

n
i,j + τf(uni,j , v

n
i,j),

vn+1
i,j = vni,j + τd2∆hv

n
i,j + τg(uni,j , v

n
i,j),

with the Laplacian defined by

∆hu
n
i,j =

uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j
h2

,

where f(u, v) = u(1− u)− kuv
a+u −

hu
c+u and g(u, v) = v(1− v

a+u ).
We perform simulations for the following two sets of parameters:
(a) d1 = 0.01, d2 = 10, k = 0.97, a = 0.1, h = 0.1, c = 6, δ = 5;
(b) d1 = 0.01, d2 = 10, k = 0.7, a = 0.1, h = 0.16, c = 6, δ = 5.
In the numerical simulations, we can observe different types of dynamics and we

take snapshots of the distribution of the prey u at different time.
Fig 1 shows the evolution of patterns of prey started with small amplitude random

perturbation around the stationary solutions (u∗, v∗) = (3.01174, 3.11174). In this
case, one can see that the random initial distribution leads to irregular patterns in
the domain as shown at t = 10 and t = 30. Eventually, the spotted pattern forms
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(a) t = 0 (b) t = 10

(c) t = 30 (d) t = 60

Figure 1. Spots patterns obtained with the first parameter set
with (a) t = 0; (b)t = 10; (c) t = 30; (d) t = 60.

and the dynamics of the model does not undergo any further changes. We remark
that the changes at the very beginning is rather rapid.

Fig 2 shows the evolution towards strip patterns. The homogeneous equilib-
rium solution (u∗, v∗) ≈ (3.3990, 3.4990). The random perturbation leads to the
formation of stripes and spots (cf., Fig. 2(b) and (c)), and eventually with only
stripes(Fig 2(d)).

8. Conclusions. In this paper, we investigated the complex dynamics in a diffusive
Leslie-Gower Model with a nonlinear harvesting term on the prey. We gave the
conditions under which the system is persistent. We also analyzed the stability of the
trivial equilibrium and the axial equilibria. We note that the model behaves quite
differently with a strong or weak harvesting term. In the case of weak harvesting
term, we showed the local and global stability of the unique interior equilibrium
under certain conditions. We further analyzed the conditions under which there is
no nonconstant positive steady-state solutions.

Furthermore, we also studied the conditions under which the model undergoes
diffusion driven instability. We derived the conditions of Turing instability in terms
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(a) t = 0 (b) t = 20

(c) t = 30 (d) t = 60

Figure 2. Stripes patterns obtained with the second parameter
set with (a)t = 0; (b) t = 20; (c) t = 30; (d) t = 60.

of our parameters analytically. Numerical simulations show that our model can
exhibit different patterns such as stripes and spots patterns.
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