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Abstract. We consider a model for substrate-depletion oscillations in genetic systems,
based on a stochastic differential equation with a slowly evolving external signal. We show
the existence of critical transitions in the system. We apply two methods to numerically test
the synthetic time series generated by the system for early indicators of critical transitions:
a detrended fluctuation analysis method, and a novel method based on topological data
analysis (persistence diagrams).

1. Introduction. Gene expression is the process by which the genetic code is used to
synthesize functional gene products (proteins, functional RNAs). The timing and the level
of gene production is specified by a wide range of mechanisms, termed gene regulation. It is
believed that a significant number of genes express cyclically, with about 10−15% of genes
directly regulated by the circadian molecular clock. Such gene expression oscillations
allow for rapid adaptation to changes in intracellular and environmental conditions. In
general, the phase and amplitude of gene expression depend on the function of the gene
and internal and external stimuli. It has been postulated that gene expression oscillation
is a basic property of all genes, not necessarily connected with any specific gene function
[27].

Gene regulatory systems are intrinsically stochastic. Stochasticity originates in the sta-
tistical uncertainty of the chemical reactions between molecules, and is inversely propor-
tional to the square root of the number of molecules. Thus, lower numbers of interacting
molecules yield increasingly significant statistical fluctuations. Besides intrinsic stochas-
ticity, gene expression is also subjected to extrinsic stochasticity, due to environmental
effects. In general, stochastic fluctuations are seen as a source of robustness and stability,
but sometimes can adversely affect a cell function [22].

2010 Mathematics Subject Classification. Primary: 92D10, 34C23, 55N99; Secondary: 34F05, 57M99.
Key words and phrases. Gene regulatory networks, critical transitions, stochastic differential equations, per-

sistence diagrams.
Both authors are supported by the Mathematics and Climate Research Network through a grant from the

National Science Foundation: DMS-0940363. The second author is also supported by NSF grant DMS-1201357,
by the National Cancer Institute grant P20 CA157069, and by The Fund for Math of the IAS.

723

http://dx.doi.org/10.3934/mbe.2014.11.723


724 JESSE BERWALD AND MARIAN GIDEA

A motivation for the modeling and simulation of gene regulatory systems comes from
synthetic biology, an emerging field of research devoted to the design and construction of
biological systems, based on engineering principles. An interesting analogy in [31] com-
pares a molecular network to an electrical circuit, where, instead of resistors, capacitors
and transistors connected via circuits one has genes, proteins, and metabolites connected
via chemical reactions and molecular pathways. Some milestone achievements in this di-
rection have been reported, e.g., in [1, 10, 13]. Relatedly, one would also like to achieve
a clear understanding of the functionality of the molecular circuits and networks through
measurements of various product outputs, in the same way one understands an electrical
circuit through measurements of current, voltage, and resistance. In particular, one would
like to discern possible ways in which systems subjected to varying parameters and noise
may switch between different stable regimes, or more generally, between potential attrac-
tors.

It is the concept of suddenly shifts amongst stable regimes which we explore in this
paper. We investigate the occurrence of these critical transitions in a model of a genetic
regulatory system. By a critical transition we mean a sudden change of a system from
one stable regime (fixed point, limit cycle) to an unstable regime, possibly followed by
some other stable regime. We consider a simple genetic circuit that exhibits an oscillatory
regime, and we study the behavior of the system under noise. Explicitly, we consider a
two-gene model whose oscillations depend on several parameters. We show that the system
undergoes a critical transition under slow parameter drift. We accomplish this by recording
the time series generated by this model and analyzing the critical transitions. We utilize
numerical methods to identify early warning signals indicative of critical transitions in the
synthetic data.

First, we apply a statistical method, based on detrended fluctuation analysis, to analyze
these time series data. The method is described in detail in Subsection 4.1. The tests are
performed using a windowed analysis of the data and reveal that the autocorrelation of
the time series increases towards 1, and the variance of the time series distribution grows
steadily prior to a critical transition. These signs are consistent with early warning indi-
cators of critical transitions described by others; for instance, see results in Scheffer, et
al [28].

Secondly, we apply a method from topological data analysis, based on persistence dia-
grams, which we describe in more detail in Subsection 4.2. Again, we consider windows
of data from the time series. In this case, we consider these windows as strings of data
points to which we associate filtrations of Rips complexes and for which we generate as-
sociated persistence diagrams to analyze the topology of the data at different resolutions.
The persistence diagrams reveal qualitative changes in the topology of the strings of data
points prior to the critical transitions: the distribution of data points becomes more wide-
spread and/or asymmetric. While the detrended fluctuation analysis has been previously
used for detection of critical transitions, the application of persistence diagrams, a method
from topological data analysis, is novel.

We also make a comparison between the two methods. While the detrended fluctuation
analysis introduces artificial choices and possible bias (see also [2]), the proposed topolog-
ical method is inherently robust. Note that both methods can be applied to detect or predict
critical transitions in experimental data as well. As such, the results from model testing
may serve as benchmarks for testing data measured from real world sources.



CRITICAL TRANSITIONS IN A MODEL OF A GENETIC REGULATORY SYSTEM 725

2. Background. In this section we briefly describe critical transitions in the context of
fast-slow systems. We consider both deterministic and stochastic systems. Then we present
a simple genetic regulatory model of the substrate-depletion oscillator type.

2.1. Critical transitions. A fast-slow system of ordinary differential equations is a system
of the type

x′ = f (x, y), (1)
εy′ = g(x, y), (2)

where (x, y) ∈ Rm × Rn, f : Rm+n → Rm, g : Rm+n → Rn are Cr-functions with r ≥ 3, ε > 0
is a small parameter, and ′ = d

dt . One can regard y as a fast variable. Rescaling the time
t = ετ yields

ẋ = ε f (x, y), (3)
ẏ = g(x, y), (4)

where ˙ = d
dτ . The singular limit of (1),(2) when ε → 0 gives the slow subsystem, and the

singular limit of (3),(4) gives the fast subsystem. The critical set is defined as

C0 = {(x, y) : g(x, y) = 0}

and consists of equilibrium points for the fast subsystem. If the Jacobian ∂g
∂y is nonsingu-

lar on C0, then C0 is an m-dimensional manifold, and is the graph of a smooth function
y = h0(x). The slow subsystem is determined by x′ = f (x, h0(x)) and restricts to C0. In
the case that all eigenvalues of ∂g

∂y at a point have non-zero real parts, then the point is
normally hyperbolic. The set of normally hyperbolic points forms a normally hyperbolic
invariant manifold (NHIM). In particular, it has stable and unstable manifolds. The NHIM
can have attractive components, where all the eigenvalues of ∂g

∂y have negative real part,
and repelling components, where at least one eigenvalue has positive real part. An attrac-
tive component has an n-dimensional stable manifold, while a repelling component has a
non-trivial unstable manifold.

Fenichel’s Theorem [11] implies that, for all sufficiently small ε, every compact sub-
manifold (with boundary) S 0 of C0 can be continued to a NHIM S ε (not uniquely defined)
for the flow of (1), (2), which is the graph of a smooth function y = hε(x). The stable and
unstable manifolds of S 0 continue to stable and unstable manifolds of S ε. The flow on S ε

converges to the slow flow as ε→ 0. Such a manifold S ε is referred to as a slow manifold.
We define a critical transition for this type of system following [17]. We assume that

the critical set C0 can be decomposed as C0 = S a
0 ∪ S r

0 ∪ S b
0, where S a

0 is an attractive
NHIM, S r

0 a repelling NHIM, and S b
0 is the part of C0 that is not normally hyperbolic

(corresponding to bifurcation points). By definition, a point p0 = (x0, y0) on C0 that is not
normally hyperbolic is a critical transition if there exists a concatenation of trajectories γ0,
γ1, where γ0 : [t−1, t0]→ Rm+n, γ1 : [t0, t1]→ Rm+n satisfy the following properties:

(1) γ0(t−1, t0) is a trajectory of the slow subsystem, oriented from γ0(t−1) to γ0(t0), con-
tained in the attracting NHIM S a

0;
(2) γ0(t0) = γ1(t0) = p0 ∈ S b

0 is a point that is not normally hyperbolic;
(3) γ1(t0, t1) is a trajectory of the fast subsystem, oriented from γ1(t0) to γ1(t1).

When we consider the dynamics of the system for ε > 0 sufficiently small, a trajectory
starting near γ0 follows closely the slow dynamics around γ0 for some time, after which it
transitions to follow the fast dynamics near γ1 for a period of time. In [17, 18] several types
of bifurcations are examined to determine whether or not they exhibit the characteristics of
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critical transitions, under some suitable conditions on the smoothness, compactness, and
non-degeneracy on the system. We summarize the findings below:

(a) for m = n = 1, saddle-node (fold) bifurcation points determine critical transitions;
(b) for m = n = 1, subcritical pitchfork bifurcation points determine critical transitions;
(c) for m = n = 1, transcritical bifurcation points determine critical transitions;
(d) for m = 2 and n = 1, subcritical non-degenerate Hopf bifurcations determine critical

transitions.

2.2. Incorporating noise. It is often important for the understanding of a physical system
to incorporate stochastic effects. We consider the Langevin form of (1), (2)

dx = f (x, y) + σ1dW1, (5)

dy =
1
ε

g(x, y) +
1
√
ε
σ2dW2, (6)

where σ1, σ2 represent noise levels (depending on ε), and W1,W2 are one-dimensional
Wiener processes (Brownian motions). Assuming σ1, σ2 are sufficiently small, the sample
paths of the system (5), (6) stay near S a

0 with high probability, up to a neighborhood of the
critical transition, after which they exit the neighborhood. In [17, 18], it is argued that the
following behaviors are typical of a system prior to a critical transition:

(i) The system recovery from small perturbations is ‘critically’ slows down;
(ii) The variance in the time series increases steadily;

(iii) The autocorrelation of the time series increases towards 1;
(iv) The distribution of the time series becomes more asymmetric.

We note that (iv) from above depends on whether or not the underlying bifurcation has
symmetry. For example, a saddle-node bifurcation as in (a) from above will typically yield
asymmetric fluctuations, while a pitchfork bifurcation as in (b) from above will typically
yield symmetric fluctuations. A complementary characteristic to (iv) is that the distribution
of the time series loses its normality, for example it changes from uni-modal to multi-
modal.

Such system response characteristics can be monitored numerically and serve as ‘early
warnings’ of critical transitions in real-world systems. Examples include Earth’s climate,
ecological systems, global finance, asthma attacks or epileptic seizures; see, e.g., [7, 28,
29, 30], and the references therein.

2.3. A simple genetic circuit. We briefly describe a model of simple genetic circuit which
generates oscillations of varying amplitude. The model consists of two genes, one produc-
ing the protein R(t), and the other producing the protein X(t). The protein X(t) is a substrate
for the activator protein R(t) that is produced in an autocatalytic process. As R(t) accumu-
lates, the production of R(t) accelerates until there is an explosive conversion of the whole
of X(t) into R(t). This rapid change corresponds to a critical transition in the underlying
system. With the substrate X(t) depleted, the autocatalytic reaction terminates, and the ac-
tivator R(t) degrades in time. This allows the level of X(t) to grow again, leading to another
cycle of explosive growth in R(t). This process is know as a substrate-depletion oscillator.

An example of this mechanism is the oscillation of the M-phase-promoting factor (MPF)
activator in the frog egg, where the substrate is the phosphorylated form of the B-cyclin-
dependent kinase (note that the true mechanism involves several other proteins and reac-
tions) [26]. A mathematical model for the substrate-depletion oscillator is given by the
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following system:

X′(t) = k1S − [k′0 + k0EP(R(t))]X(t), (7)
R′(t) = [k′0 + k0EP(R(t))]X(t) − k2R(t). (8)

Here EP(R(t)) represents the level of the phosphorylated version of the protein R(t) – in-
volved with R(t) in a mutual activation process – given by EP(R) = G(k3R, k4, J,K), where
G, the Goldbeter-Koshland function, is defined by

G(u, v, J,K) =
2uK

v − u + vJ + uK +
√

(v − u + vJ + uK)2 − 4(v − u)uK
.

The Goldbeter-Koshland function represents the equilibrium concentration of the phos-
phorylated form of a protein, for a phosphorylation-dephosphorylation reaction governed
by Michelis-Menten kinetics. The Goldbeter-Koshland function is responsible for cre-
ating a switch-like signal-response in the evolution of the protein R(t). The quantities
k0, k′0, k1, k2, k3, k4, J,K, S are parameters. The parameter S is the strength of a signal, rep-
resenting the rate of synthesis of the substrate X, which we regard as an external input to
the system.

This system presents both positive and negative feedback. The positive feedback loop
creates a bistable system and the negative-feedback loop drives the system back and forth
between two stable steady states. In what follows, we will modify the simple genetic circuit
in (7) and (8) by considering the external input S as a slowly varying parameter, in addition
to including a stochastic term. We will study critical transitions in the resulting system.

3. Model. We consider a new model of a genetic regulatory network with a slowly depen-
dent signal, given by (7), (8), with S being now a slowly evolving parameter, i.e.

X′(t) = k1S (t) − [k′0 + k0EP(R(t))]X(t), (9)
R′(t) = [k′0 + k0EP(R(t))]X(t) − k2R(t), (10)
S ′(t) = ε, (11)

where ε > 0 is small. We will fix the parameter as in [31], k0 = 0.04, k′0 = 0.01, k1 = k2 =

k3 = 1, k4 = 0.3, J = K = 0.05.
The fast subsystem is obtained by letting ε→ 0 yielding

X′(t) = k1S (t) − [k′0 + k0EP(R(t))]X(t), (12)
R′(t) = [k′0 + k0EP(R(t))]X(t) − k2R(t), (13)
S ′(t) = 0. (14)

We rescale time τ = εt, and we rewrite the corresponding system relative to the rescaled
time

εẊ = k1S − [k′0 + k0EP(R)]X, (15)

εṘ = [k′0 + k0EP(R)]X − k2R, (16)

Ṡ = 1. (17)

Sample trajectories for this system are plotted in Fig. 1. From the above equations the slow
subsystem is obtained by letting ε→ 0 yielding

0 = k1S − [k′0 + k0EP(R)]X, (18)
0 = [k′0 + k0EP(R)]X − k2R, (19)

Ṡ = 1. (20)
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Figure 1. A sample trajectory, and the X-time series (higher value) and
R-time series (lower values).

Figure 2. The nullclines of the fast system for S = S crit1 and S = S crit2.

From this we see that the critical submanifold is given by

C0 =

(X,R, S ) , X =
k1S

k′0 + k0EP( k1
k2

S )
,R =

k1

k2
S

 .
The critical submanifold consists of equilibrium points of the fast subsystem. The sta-

bility of the C0 is determined by the eigenvalues of the Jacobi matrix evaluated at the
equilibrium points

J =

(
−[k′0 + k0EP(R)] −[k0∂REP(R)X]

k′0 + k0EP(R) k0∂REP(R)X − k2

)
.

For the values of the parameters chosen above, we find that the stability at an equilibrium
point changes at S crit1 = 0.13326703 and S crit2 = 0.34680193, respectively. The corre-
sponding equilibria are Xcrit1 = 5.41285587, Rcrit1 = 0.13326703, and Xcrit2 = 1.07370450,
Rcrit2 = 0.34680193.

Precisely, for S < S crit1 and S > S crit2 the equilibrium point is stable. For S ∈
(S crit1, S crit2) the equilibrium point is unstable, and there exists a periodic orbit that is
asymptotically stable, whose existence can be established numerically, as observed in
Fig. 1. The values S = S crit1, S = S crit2 yield subcritical Hopf bifurcations, where an
unstable equilibrium point is turned into a stable one and a small unstable periodic orbit is
born (or vice versa). In addition, one expects canard-type solutions in some exponentially
small neighborhoods of S crit1, S crit2, relative to ε (see, e.g., [19]). In Fig. 2 we plot the
nullclines of the system for the critical points S crit1 and S crit2.
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Figure 3. Phase space of the model described by (21), (22), (23), and a
corresponding R-time series.

The specific stochastic differential equation (SDE) system associated to (15), (16), (17)
can be written

Ẋ =
1
ε

(k1S − [k′0 + k0EP(R)]X) +
σ1
√
ε

dW1, (21)

Ṙ =
1
ε

([k′0 + k0EP(R)]X − k2R) +
σ2
√
ε

dW2, (22)

Ṡ = 1, (23)

where W1,W2 represent Brownian motions, andσ1, σ2 are noise levels. Since the parameter
values S crit1 and S crit2 yield subcritical Hopf bifurcations, the theory from Subsection 2.1
allows us to conclude that the corresponding points (Xcrit1,Rcrit1), (Xcrit2,Rcrit2) determine
critical transitions. A typical trajectory of the stochastic system in the phase space and its
corresponding R-time series are shown in Fig. 3. Examining the R-time series, one can
see that a critical transition occurs near time t ≈ 1000. We note that a similar analysis for
activator-inhibitor oscillations has been performed in [18].

Remark 1. As mentioned in Section 1, noise in the form of random fluctuations arises nat-
urally in gene regulatory networks. One typically distinguishes between intrinsic noise, in-
herent in the biochemical reactions, and extrinsic noise, originating in the random variation
of the externally set control parameters. Both types of noise can be model by augmenting
the governing rate equations with additive or multiplicative stochastic terms. We refer the
interested reader to [14].

In our model we only consider the effects of additive noise, which can be thought of as
a randomly varying external field acting on the biochemical reactions. The field enters into
the governing rate equations as an additive stochastic term in the Langevin equation. We
choose to focus on additive extrinsic noise as this could be used as a switch and/or ampli-
fier for gene expression, which has potential applications to gene therapy [14]. Switching
mechanisms are exactly the type of phenomena that we would like to capture via the critical
transitions approach.
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4. Methods. We use the model proposed in Section 3 to generate a synthetic time series
given by successive reading of one of the variables. We investigate the synthetic time
series for early warning signs of critical transitions. Below we describe two such detection
methods: a well-known detrended fluctuation analysis method, and a novel method inspired
by topological data analysis.

4.1. Detrended fluctuation analysis. Detrended fluctuation analysis (DFA) is a technique
introduced by Hurst half a century ago to analyze fluctuations in time series. The DFA
procedure has been widely used for early detection of critical transitions [23, 28, 30]. We
outline the algorithm below.

4.1.1. Algorithmic description of DFA. The DFA procedure takes as input a time series
(sk, zk), k = 1, . . . ,N, where sk is the instant of time of the k-th measurement (not necessar-
ily equally spaced), and zk is the k-th measurement of some observable. To detect whether
the system undergoes a critical transition, the DFA algorithms proceeds as follows:

Interpolation: Choose an optimal step size ∆t, and interpolate the given time series
such that it is evenly spaced in time. Denote the new series (tk, xk), with tk = k∆t.

Detrending: One way to remove a general trend from statistical data is by subtracting
a moving average. For example, using a Gaussian kernel

Gk(t) =
1
√

2πd
exp

(
−

(t − k∆t)2

2d2

)
of bandwidth d, one may compute the weighted average of xk,

X(k∆t) =

∑N
i=1 Gk(i∆t)xi∑N

i=1 Gk(i∆t)
.

Subtracting the weighted average from the time series yields the detrended series,

yk = xk − X(k∆t).

Remark 2. Instead of Gaussian kernel detrending, alternative detrending methods
can be used, such as linear, cubic spline, or Fourier interpolation, depending on the
nature of the data. We also explore these additional methods in Section 5

Lag-1 autocorrelation: The final step involves fitting a first-order autoregressive
(AR(1)) process

yk+1 = ckyk + σξk,

to the detrended time series yk, where (σξk)k∈N is white noise of intensity σ. In order
to compute ck, choose a sliding window of size w and determine the least-squares fit

y j+1 ≈ cky j, for j = k, . . . , k + w − 1.

Hence, for each window we extract the value of AR(1) ck. Recall that the lag-1
autocorrelation AR(1) is 0 for white noise and close to 1 for red (autocorrelated)
noise.

4.1.2. Detection of critical transitions via DFA. The following criterion has been proposed
for the detection of critical transition [28]:

• Given a time series measured from a system approaching a critical transition, the
DFA outputs a time series (tk, yk) for which

1. the autocorrelation has a general trend which increases towards 1;
2. the variance has a positive trend.
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In certain special cases, this criterion has a rigorous justification [17, 18].
The DFA method is an effective tool in detecting early signs of critical transitions in

noisy data. However, the method comes with several significant drawbacks, such as its
sensitivity to the procedures and parameters used in processing the data. For instance, the
sample frequency, detrending method (e.g., the bandwidth of the Gaussian detrending),
or the size of the sliding window all have a strong effect on the conclusions drawn from
the algorithm in subsection 4.1 and hence on the power of the DFA method to serve as a
prediction tool. One concern is that the measurement of the AR(1) values as well as the
variance are strongly influenced by the fit of the detrending method, with a poor fit being
likely to signal ‘false positives’ for critical transitions (see [2]).

4.2. Persistence diagrams. As mentioned in Section 1, we propose to use tools from the
field of topological data analysis as a new method to detect critical transitions in dynamical
systems. In particular, we leverage the stability properties of persistence diagrams to detect
critical transitions. Topological persistence is a relatively recent development that forms the
core of topological data analysis and has been widely used to extract relevant information
from noisy data (see [8] for background in persistence topology in general). There are
numerous applications, including computer vision, cluster analysis, biological networks,
cancer survival analysis, and granular material (see [4, 8, 12, 20, 25] and the references
listed there).

In this section we describe the way in which we adapt this method to observe changes in
time series from systems approaching or undergoing critical transitions. The key idea is to
extract from the time series consecutive strings of data points of a fixed length, which we
regard as individual point cloud data sets. To each such point cloud we assign a topological
invariant, namely its persistence diagram. Roughly speaking, the persistence diagram is a
representation of the data set in an abstract metric space which encodes information about
topological features of the data.

The highlight of this method is that when the system undergoes a critical transition,
the topological features associated to the point cloud data sets also change significantly.
The fact that the corresponding persistence diagrams and distances between them can be
computed algorithmically enables us to describe these changes quantitatively.

4.2.1. Description of persistence diagrams. We describe the concept of a persistence dia-
gram associated with point cloud data starting with an informal description. From a high-
level perspective, the data analysis pipeline works as follows:

Data =⇒ Filtration =⇒ Persistence Module =⇒ Persistence Diagram

We focus on the first two and the fourth parts of this pipeline, and only briefly detail the
algebraic aspects of the third component below. Suppose that one is provided with a point
cloud data set, X0, that is an approximation of some geometric shape. One would like to
infer from the data the topological information on that shape. However, a finite collection
of points has only trivial topology. One way to convert the collection of points into a non-
trivial topological space is to replace the points of the set by balls of a certain radius ε. One
then computes the topological features of the resulting set, Xε . Typical invariants result-
ing from this computation, which serve to classify the set, include the number connected
components along with the number of ‘tunnels’ and number of ‘cavities’ (known as Betti
numbers).

Of course, the topology of Xε depends on the choice of the radius of the balls in this con-
struction. Instead of fixing a certain radius, topological persistence considers all possible
radii, from some sufficiently small value, up to a sufficiently large radius. This growth of the
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radius yields the filtration step above. As the radius is gradually increased, new topological
features will be ‘born’ and certain existing ones will ‘die’. A schematic representation of
this process is depicted in Fig. 4. The birth and death of each topological feature at a given
dimension is recorded by a persistence diagram. This is a collection (multiset actually) of
(birth,death) times in R2. The 0- and 1-dimensional diagrams for the associated filtration
are shown in the bottom row of Fig. 4.

The lifespan of a feature is easily computed by calculating (death time) - (birth time).
A topological feature with a long lifespan, measured by the range of radii over which it
‘persists’, is likely to capture an essential topological feature of the underlying space from
which the data was sampled. On the other hand, short lived features are likely to result from
‘noise’ in the data. However, rather than discriminating between what is an essential feature
of the topology and what is not, the persistence diagram method provides a summary of
topological features that appear and disappear throughout the variation of the radii of the
balls, as well as a ranking of the significance of these features, expressed in terms of the
lifespans.

We now continue with a concise, formal description of persistence diagrams. For an
introduction to algebraic topology and homology, see [15]; surveys of persistent topology
can be found in [8, 32] Given point cloud data X ⊂ Rd, i.e., a collection of points in Rd,
and δ > 0, we associate to them the Rips complex Rδ. This is, by definition, the abstract
simplicial complex whose 0-simplices are points xα, and whose k-simplices are given by
unordered (k+1)-tuples of points {xα j } j=0,...,k which are pairwise within a distance δ. Figure
4 provides an example for X ⊂ R2. For all 0 < a < b we have Ra ⊂ Rb. That is, the family
{Rδ}δ>0 forms a filtration.

Denote by Hp(Ra) the p-homology of Ra with Z2 coefficients. Heuristically, the ho-
mology of a simplicial complex provides information about the topological features of the
complex, e.g., the number of connected components, tunnels and cavities in that complex.
The inclusion Ra ↪→ Rb induces the homomorphisms f a,b

∗ : H∗(Ra) → H∗(Rb) in all di-
mensions. Note that the image Fa−ρ,b of f a−δ,a

∗ in H∗(Rb) is independent of ρ for all ρ > 0
sufficiently small. We denote this image by Fa−,b

∗ .
A real value c > 0 is called a homological critical value if there exists q such that the

homomorphism f c−ρ,c
q : Hq(Rc−ρ)→ Hq(Rc) is not an isomorphism for all sufficiently small

ρ > 0. The image Fc−,c
q of f c−ρ,c

q in Hq(Rc) is independent of ρ, if this is small enough. The
quotient group Bc

q = Hq(Rc)/Fc−,c
q is called the q-th birth group at Rc, and it captures the

homology classes that did not exist in Rc−ρ. A homology class α ∈ Hq(Rc) is born in Rc if
it represents a non-trivial element in Bc

q, that is, the canonical projection of α is non-zero.
Now consider the homomorphism ga,b

q : Ba
q → Hq(Rb)/Fa−,b, where ga,b

q ([α]) =

[ f a,b
q (α)], for α ∈ Hq(Rb), where the notation [·] stands for equivalence class. We set

ga,b
q = 0 for all b > 0 sufficiently large. The kernel Da,b

q of the map ga,b
q is called the death

subgroup of Ba
q at Rb

q. A homology class α ∈ Hq(Ra) dies entering Rb if [α] ∈ Da,b
q but

[α] < Da,b−ρ
q , for ρ > 0 sufficiently small. The degree r of the death value b of Ba

q is defined
by r = rankDa,b

q − rankDa,b−
q . The sum of the degrees of all death value of the birth group

Ba
q is clearly equal to rank(Ba

q). The birth time of a homology class α is the value a > 0
where the α is born in Ra, and the death time is the value b > 0 where α dies in Rb.

The q-persistence diagram of the filtration (Rδ)δ>0 is defined as a multiset Pq in R2

consisting of points of the type zi = (a, bi), where a is a birth value corresponding to a
non-trivial group Ba

p, and bi is a death value of Ba
p; the point zi appears in the diagram with

multiplicity equal to the degree ri of the death value bi. Since deaths occur after births,
all points (a, bi) lie above the diagonal set of R2. By default, the diagonal set of R2 is part
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Figure 4. A collection of points in the plane, resembling a ‘noisy’ circle,
is given. At each instant of time t = 1, . . . , 4, around each point we
constructs disks of radii δ1/2, . . . , δ4/2, respectively, with δ1 < δ2 <
δ3 < δ4. The corresponding Rips complexes are also constructed at each
instant. The topological features of the Rips complexes change as time
increases. At time t = 1 there are 8 connected components and no 1-
dimensional hole. At time t = 2 the connected components coalesce into
a single component (thus in the 0-dimensional diagram there are actually
7 deaths represented at (1, 2)), and a 1-dimensional hole is born. Both
the single connected component and the 1-dimensional hole survive to
t = 3. At time t = 4 the 1-dimensional hole dies as it fills in (the death
is represented at (2, 4)), while the single connected component continues
living (in fact, it has infinite lifespan). The _ at (1, 4) represents this fact.
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of the persistence diagram, representing all trivial homology generators that are born and
die at every level. Each point on the diagonal has infinite multiplicity. The axes of the
persistence diagram are birth values on the horizontal axis and death values on the vertical
axis. Again, see Figure 4 for a schematic representation of the construction of a persistence
diagram.

It is convenient to define a metric on the space of persistence diagrams. A number
of options exist. A fairly standard metric is the p-Wasserstein metric. On the set of the
q-persistence diagrams consider the p-Wasserstein metric, 1 ≤ p ≤ ∞, defined by

dp(P1
q,P

2
q) =

inf
φ

∑
z∈P1

q

‖z − φ(z)‖p∞


1/p

,

where P1
q,P

2
q are two q-persistence diagrams, and the sum is taken over all bijections φ :

P1
q → P2

q. The set of bijections, {φ : P1
q → P2

q}, is nonempty owing to the fact that
each diagram includes the diagonal set, allowing one to match off-diagonal elements in one
diagram with diagonal elements in another when their numbers differ.

The space of q-persistence diagrams together with the p-Wasserstein metric forms a
metric space, which is complete and separable. The Wasserstein distance takes the ‘best’
matching; that is, it minimizes the distance, relative to the Lp norm, that one has to shift
generators in P1

q to match them with those in P2
q. In probability theory, and in particu-

lar cases with continuous or weighted distributions, the Wasserstein metric is sometimes
termed the ‘earth mover distance’, which refers to the operation of transforming one dis-
tribution into another with the minimal change in mass. In what follows we set p = 2 and
drop the reference to p. For details on the Wasserstein metric, see [6].

One of the remarkable properties of persistence diagrams is their stability, meaning that
small changes in the initial point cloud data produce persistence diagrams that are close
to one another relative to Wasserstein metric. The stability results are very general for the
‘bottleneck distance’, when p = ∞, and more restrictive for the Wasserstein metric with
p < ∞. The essence of the stability results, as shown in [3, 6, 9], is that the persistence
diagrams depend Lipschitz-continuously on point cloud data.

In applications, the stability result ensures the robustness of the data analysis performed
via persistence diagrams, which makes them a powerful alternative to statistical methods.
This is particularly useful in context of data from stochastic systems, since persistence
diagrams turn out to be quite versatile in distinguishing between small but relevant features
in a data set and noise.

4.2.2. Detection of critical transitions via persistence diagrams. We now describe how to
apply this method to detect critical transitions in time series. Consider a time series (t j, x j),
j = 1, . . . , J, with x j ∈ R

d. (In the case of a time series obtained from the model discussed
in Section 3, we will chose d = 1). Assume that the time series (t j, x j) is obtained as a
time discretization of a process (t, xt) which is Lipschitz continuous. (This is indeed the
case when a time series is obtained from a Langevin equation, as in Subsection 3.) To each
ti we associate a string of N consecutive data points points from the time series, with N
sufficiently large, which we denote

ti 7→ Xi = (xi, xi+1, . . . , xi+N−1). (24)

We regard each Xi as a point cloud set in Rd. We compute the persistence diagrams P∗(Xi)
of Xi, in all dimensions, and follow the evolution of the persistence diagrams in time.
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Figure 5. R-time series for the gene regulatory network model from Sec-
tion 3 cut off before the critical transition.

Diagrams corresponding to nearby times will be close to one another, due to the Lip-
schitz continuity of the process underlying the time series and to the robustness of per-
sistence diagrams. Within this context, persistence diagrams that are near to each other in
time, but relatively far from one another in the Wasserstein metric, indicate a sudden change
in the time series. Therefore, we propose the following empirical criterion for detection of
critical transitions in slow-fast systems:

• Persistence diagrams undergo significant changes, measured using the Wasserstein
metric, prior to a critical transition.

This criterion follows from the following heuristic argument. If the noise level in the
Langevin equation is small, then far from a critical transition the time series follows closely,
with high probability, a trajectory of the slow subsystem. A point cloud associated to a data
string displays significant topological features similar to those of the slow manifold, plus
less significant topological features due to noise. In addition, the corresponding persistence
diagrams at nearby times are close to one another relative to the Wasserstein metric.

When the system undergoes a critical transition, the time series ceases to follow the slow
manifold, as the dynamics enters a transient regime. The topological features associated
to the slow manifold are destroyed, and new topological features appear in the point cloud
structure. Furthermore, if the system moves to a different stable regime after a finite time,
the point cloud will reflect the topological features associated to that regime. Critically, for
a point cloud data near a critical transition the corresponding persistence diagrams shift
away from those diagrams corresponding to data far from the critical transition. Conse-
quently, successive distances between diagrams in this region exhibit a large jump prior to
a critical transition.

5. Results. We numerically solve the SDE defined in (21) – (23) using the Euler-Maruya-
ma procedure, with stepsize 0.01 and noise level σ1 = σ2 = 0.02. We fix the rate of change
of the parameter S to be ε = 10−4. As output, we choose the time series given by the
R-component; a particular realization of this time series is shown in the righthand panel of
Fig. 3. Since the solution values are dense in time, we subsample the time series by taking
every 10-th data point. The time series follows a slowly varying attractive equilibrium
point, until it reaches a critical transition, at which point it enters an oscillatory mode. To
test for early signs of the critical transition, we truncate the time series before it enters the
oscillatory regime. This truncated region is shown in Fig. 5.
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5.1. DFA analysis. We conduct three experiments to detect critical transitions using the
DFA1 methodology on the time series generated by our model. The first experiment uses a
Gaussian kernel to detrend the time series; in the second experiment we use a cubic spline
interpolation; and in the third experiment, we use Fourier interpolation. For each of the
detrended time series we compute AR(1) and the variance for a windowed time series. The
results are summarized in Fig. 6. All three experiments show AR(1) increases to 1 as the
system approaches the transition, while the variance also grows steadily, both behaviors
being consistent with a critical transition.

5.2. Persistence diagram analysis. We compute the 0-dimensional persistence diagrams
for strings of N data points Xi (see Eq. (24)) as the ti approaches a critical transition, as
for the example time series in Fig. 5. We construct Rips complexes, with an initial radius
of δ = 10−4 around each data point, and then grow the radii of the balls δ, 2δ, . . . , nδ,
where n is chosen large enough so that the final complex in the resulting filtration has a
single connected component. From this filtration we compute the 0-persistence diagrams.
We choose the size of the data sets N = 300; larger sizes make little difference in the
qualitative behavior of the diagrams.

The 0-dimensional persistence diagrams are easy to interpret: they track of the births
and deaths of connected components in the Rips complex, as the radii of the balls increase.
Note that all births occur at the same time, when the radius of balls is zero and we have N
disjoint points. After this initial stage, a large number of connected components die as the
radii of the balls increase, as connected components merge with one another.

Consider Fig. 7, where the persistence diagrams for a data string far from the critical
transition (left panel) and a data string close to the critical transition (right panel) are shown.
For data far from the critical transition, points cluster near the attractive equilibrium. Thus,
when balls are constructed in the Rips filtration around these points, they will quickly yield
a robust connected component around the attractive equilibrium , plus a small number
of scattered connected components corresponding to points that escape for brief periods
time from the equilibrium point due to stochastic effects. The implication is that, in the
corresponding persistence diagram, the vertical spread of the death times is relatively small,
and consists of a small numbers of points away from the diagonal (accounting for the robust
connected component and a few outliers), plus many short-lived points close to the diagonal
(accounting for noise).

Conversely, when a data string originates from close to a critical transition, the points
tend to spread further away from the attractive equilibrium point, due to changes in the
potential field. Heuristically, the equilibrium loses its attractiveness. This causes the dis-
tribution of the data points from the time series to grow. The implication is that, in the
corresponding persistence diagram, the vertical spread of the death times is much larger,
with a tendency to form multiple small clusters.

The visual inspection of persistence diagrams provides intuition, but is not a precise
way to indicate the approach to a critical transition. To quantify the above assessment, we
study the behavior of the Wasserstein distances between consecutive diagrams which are
summarized in Fig. 8. In the figure, time increases from left to right. The figures in the
top row represent persistence diagrams for data sampled far from the critical transition, and
those in the middle represent persistence diagrams for data sampled close to the critical
transition. The five time frames captured in each column spread over a time interval of
size ∆t = 0.5. We then compute the Wasserstein distances between consecutive persistence
diagrams. These changes in the persistence diagrams are quantified in the bottom row of

1The DFA procedure that we use here was implemented in Matlab by Rebecca M. Jones [16]
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Figure 6. DFA analysis of the time series using (top to bottom) Gaussian
kernel, cubic spline, and Fourier interpolation detrending.
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Figure 7. The 0-persistence diagram on the left corresponds to a string
of data sampled far from the critical transition; the diagram on the right
corresponds to a string of data sampled near the critical transition. In
each persistence diagram, the dots mark finite deaths times, and the dia-
mond indicates infinite death times.

Fig. 8. The solid curve, corresponding to data near the critical transition, shows a significant
increase in the distances between consecutive diagrams as the point cloud anayzed near
the critical transition. The dotted curve, corresponding to distances between diagrams far
from the critical transition, shows only small variations in the consecutive distances. The
computed distance are indicated by the symbols on each curve and are placed between the
diagrams from which they were computed.2

Note that the variance of the lifespans is related to the variance in the time series. An
increase in the vertical spread while approaching a critical transition is consistent with the
findings by the DFA method in Subsection 5.1. Also, the change observed in the clustering
of the diagram coordinates is related to asymmetric or multimodal properties of the data,
as mentioned in Subsection 4.2.

6. Conclusions. The substrate-depletion oscillator that we analyze in this paper is a real-
istic model for certain types of molecular regulation circuits studied experimentally. The
methods for detecting critical transitions that we propose are suitable for the analysis of
real data as well. Indeed, most of the experimental data obtained about gene regulatory
networks (e.g., data obtained from microarrays, or reverse transcriptase polymerase chain
reaction) is limited by background noise, and both the DFA and persistence diagram meth-
ods are robust to noise in data, as long as the noise does not overwhelm the signal. Also,
in comparison with the DFA method, which necessitates a number of ‘ad-hoc’ choices of
statistical parameters and procedures, the persistence diagram method appears more robust
and objective.

In current and future work, we are developing a theoretical framework for the empirical
criterion proposed in this paper. Namely, we plan to establish rigorously that bifurcation-
induced critical transitions determine large changes in the persistence diagrams, and, con-
versely, large changes in the persistence diagrams imply the existence of bifurcations.

2For the computation of persistence diagrams we use the Perseus software developed by Vidit Nanda [24].
The Wasserstein distances were computed using software written by Miroslav Kramar [21].
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Figure 8. The 0-persistence diagrams on the top row correspond to con-
secutive strings of data sampled far from the critical transition; the dia-
grams in the middle row correspond to consecutive strings of data sam-
pled near the critical transition. The bottom curves describe the dis-
tances between consecutive diagrams. The plot labels are positioned
between two successive diagrams with values on the y-axis indicating
the 2-Wasserstein distances between them.
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