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Abstract. We develop a finite difference scheme to approximate the solution

of a novel size-structured mathematical model of the transmission dynamics of
Mycobacterium marinum (Mm) in an aquatic environment. The model con-

sists of a system of nonlinear hyperbolic partial differential equations coupled

with three nonlinear ordinary differential equations. Existence and uniqueness
results are established and convergence of the finite difference approximation

to the unique bounded variation weak solution of the model is obtained. Nu-

merical simulations demonstrating the accuracy of the method are presented.
We also conducted preliminary studies on the key features of this model, such

as various forms of growth rates (indicative of possible theories of develop-

ment), and conditions for competitive exclusion or coexistence as determined
by reproductive fitness and genetic spread in the population.

1. Introduction. Despite extensive public health efforts, Mycobacterium tubercu-
losis (Mtb), the etiological agent of tuberculosis (TB) in humans, continues to pose
a major global public health problem, afflicting more than two billion people, or
about one-third of humanity [37]. Activation of TB occurs relatively infrequently
(∼0.1%), and yet, because of the large size of the TB-infected population, acute TB
remains the leading cause of mortality by a single infectious agent, killing approx-
imately 2 million annually [16, 19, 37]. A fish pathogen, Mycobacterium marinum
(Mm), is one of the most closely related species to the Mtb complex, sharing many
of the same bacterial virulence genes required by Mtb to infect, grow, spread and
cause disease in humans [17, 30, 41, 44].
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The impact of Mm infections provides substantial motivation for their study
independent of the additional benefit of providing insight into the persistence of
an important human pathogen. Mm is known to infect at least 200 fish species in
marine and fresh water environments [17, 19, 28]. Annually, fish mycobacteriosis
costs billions of dollars in combined losses to wild-caught fisheries, to aquaculture-
raised fish, to the aquarium trade and to research colonies [22, 24, 28]. The study
of these pathogens in animal models provides an attractive alternative to working
with TB directly. Since Mm grows much faster than Mtb, represents less risk to
researchers, and similarly infects host macrophages (both human and fish), Mm
has recently become a tractable surrogate pathogen to study TB-like infections
[17, 18, 30, 36, 42, 44]. Transmission studies have indicated that Mm retrieved
from infected tissues is considerably more infectious, likely because these bacteria
reside in host macrophages of the target organs [17, 20, 21, 31, 36], and are in an
‘activated’ state. The work of [17, 18, 33] has made significant progress toward
establishing a model of Mm infections in medaka, a Japanese ricefish, which have
been shown to be efficiently infected from ingestion of mosquito larvae carrying a
number of Mm. This mechanism is thought to be relevant to a natural situation.
Mosquito larvae, which are plentiful in aquatic environments, feed readily on Mm
in the laboratory setting. Further, it is commonly known that mosquito larvae
are a food source for ricefish and other small fish. Therefore, the spread of these
infections within a food network must be considered for this pathogen. Since this
inherently involves nonlinear processes between dynamically changing quantities, a
mathematical model has been developed in [9] as a tool to understand and make
use of this biological model.

The structure of the model developed in [9] to address Mm transmission dynam-
ics in aquatic animals, necessitated the development of a novel scheme with which
to compute its solutions, similar to the one we discuss in this paper. Key to the
model’s structure is a food network, since many modes by which Mm is transmitted
are a result of the consumption of infected tissues. Therefore, the metabolic activity
of the fish is important, and so is any process that may accelerate or hinder that
activity. To account for commonly observed variability in feeding behavior (even
within genetically inbred fish stocks) as well as variability in other processes repre-
sented in the model (susceptibility, growth, death, etc.), the authors considered m
‘physiological groups’. Within these, all individuals were characterized as equiva-
lent and the processes therefore occurred at the same rates. These rates depend on
the size of the fish or possibly also the severity of its infection. A model structured
by size allows for the study of various metabolic effects on transmission dynamics
through the network, whereas a bacterial load-structured model allows one to con-
sider the effect of differences in infection severity; namely, the effect of progressing
from a chronic to an acute state. A general model would include the dependence
on both fish size and intra-animal bacterial load. However, for tractability, a model
structured by bacterial load only is presented in [9], and here, we consider a size-
structured version. In [9], theoretical foundations for the numerical scheme were not
developed; the aim of the paper was mainly on the development and preliminary
studies of the model. However, since the differences between the model we present
here and that in [9] are not major from a mathematical point of view (they are from
the biology point of view as each model is well suited to answer different biological
questions), the theoretical results we establish here - existence and uniqueness of
solutions and convergence for the computational scheme - apply to the model [9].
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Structured models have been studied numerically using various approaches in-
cluding finite element methods [13, 14, 32], monotone approximations [5], finite
difference schemes [4, 6, 7, 38, 43], integration along characteristics [1, 3, 11, 12,
25, 26, 29, 35], and ideas from semigroup theory [15]. Several different methods
for numerically solving structured population models are reviewed and compared
in [2]. Here, we develop an implicit first order finite difference method for solving a
novel structured model and establish the convergence of this method to a bounded
variation weak solution of the model using an approach in the spirit of those used
in [4, 6, 7, 8, 10, 43]. As will be clear in the next section, the model we develop here
is complex and consists of a large system of partial differential equations coupled
to a system of ordinary differential equations. Thus, we choose a finite difference
approach due to its simplicity of implementation even when the vital rates are
nonlinear and time dependent (see [2]). Other popular approaches like integration
along characteristics require solving two coupled problems simultaneously: 1) the
characteristic curves have to be numerically solved to obtain the grid points and
2) the PDEs have to be numerically solved along characteristics [2]. Often in these
methods the number of grid points increase in every time step and hence a grid
selection method has to be used to control the grid size [2, 12].

In addition to the fact that the model we present here is new, there are mathemat-
ical differences in the structure of this model and those studied in [4, 6, 7, 8, 10, 43].
One key difference is that here, as mentioned above, we explicitly model genetic
or phenotypic heterogeneity between individuals in a size-structured framework for
susceptible and infected fish. This results in 2m partial differential equations cou-
pled to three ordinary differential equations with quadratic nonlinearities to model
the transmission of the disease. These nonlinearities, in turn, require a clever choice
of mixed explicit and implicit approximations to preserve positivity, which is im-
portant for the biological integrity of model solutions. Also, our choice of mixed
explicit and implicit approximations resulted in stability of the method without the
need of a CFL condition. Thus, to obtain a priori estimates needed for proving
convergence, substantial modifications of existing techniques are necessary to adapt
them to the new model.

We succinctly present the size-structured model of Mm transmission dynamics
between aquatic animals in Section 2, highlighting the key differences between this
and the model structured by bacterial load in [9]. The weak solution for the model is
given in Section 3. The finite difference approximation is given in 4, and its conver-
gence is established in Section 5. We then numerically demonstrate the convergence
as the time and mesh sizes decrease, as well as examples of the model’s behavior
under investigations of differences in growth functions, and long-term effects of
different reproductive patterns on the genetic heterogeneity of the population in
Section 6.

2. Mathematical model structured by fish size. We present here a model of
Mm transmission dynamics in an aquatic environment, in which the fish dynamics
are structured by size. This is complementary to the model developed recently in
[9], where each mechanism was derived carefully, citing either biological evidence
or rationale for each assumption. These models have several similarities and a few
key differences. Those differences will be highlighted here. For further explanation
on mechanisms that appear in both models, we point the interested reader to the
more detailed derivation in [9]. This model is well suited to explore questions of
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metabolic effects and reproductive fitness on the overall infection dynamics, which
is particularly relevant to study the establishment and maintenance of a chronically
infected population. The large chronically infected population is likely a key aspect
of the persistence of this pathogen, and therefore, of great interest.

We consider m distinct physiological groups of fish with identical characteristics
amongst fish of the same group. The density (per size) of susceptible and infected
fish is represented by Si(t, x) and Ii(t, x), respectively, of physiological group i for
i = 1, ...,m. Other model variables are the number of carrier mosquito larvae M(t),
activated bacteria Ba(t), and unactivated bacteria Bu(t). To account for the effect
of fish size on model processes (growth, death, susceptibility, etc.), we model the
dynamics of these fish populations as they change in time t using the following
system of partial differential equations:

∂Si

∂t
+
∂(giSi)

∂x
+ µiSi + (ν1δ1Bu + ν2δ2Ba + ν3ζc

i
2M + ν4c

i
1Bu)Si = 0,

∂Ii

∂t
+
∂(g̃iIi)

∂x
+ µ̃iIi − (ν1δ1Bu + ν2δ2Ba + ν3ζc

i
2M + ν4c

i
1Bu)Si = 0,

with initial conditions

Si(0, x) = Si,0(x), Ii(0, x) = Ii,0(x),

for 0 ≤ t ≤ T , x ∈ [xmin, xmax], and i = 1, . . . ,m. Here xmin is the assumed
smallest fish size (the average birth size of the fish population considered), xmax is
the assumed largest fish size, and T is some arbitrary finite time.

Susceptible and infected fish of type i grow at rates gi(P, x) and g̃i(P, x), and
die at rates µi(P, x) and µ̃i(P, x) respectively. Both the growth and death rates are
dependent on the total size of the population P (t) of susceptible fish and infected
fish at the current time t and the size x of the fish. The dependency on population
size, given by P (t) =

∑m
i=1

∫ xmax

xmin

(
Si(t, x) + Ii(t, x)

)
dx, allows for the possibility of

reduced growth and increased death at high population levels, and the dependence
on the size of the fish allows for varying growth rates depending on the individual’s
current stage of development. For instance, it may be reasonable to consider much
faster growth rates for smaller (juvenile) fish than larger (adult) fish. We also note
that gi(P, xmax) = g̃i(P, xmax) = 0 to implement the assumption that growth will
stop when a fish reaches its maximum size.

The remaining terms are new infection rates by distinct transmission modes, and
therefore are loss rates from the susceptible population and corresponding gains in
the infected population. Fish can be infected (per capita) through consumption
of various contaminated food sources (feces of other fish, etc.) containing plank-
tonic inactivated (ν1δ1Bu) or activated (ν2δ2Ba) bacteria. They can also become
infected by consuming mosquito larvae that are carrying an effective load of bacteria
(ν3ζc

i
2M), and by consuming biofilms, which potentially contain Mm (ν4c

i
1Bu). It

is a reasonable assumption that these Mm are not activated, but this assumption
will be explored in the future, and the model can easily be modified. The rates
ν1, ν2, ν3, ν4 are effective transmission rates and ci1(x), ci2(x) are fish consumption
rates that may depend on the size of the animal.

The boundary condition for the susceptible fish of type i is given by

gi(P, xmin)Si(t, xmin) =

m∑
`=1

pi`
∫ xmax

xmin

[
β`(P, x)S`(t, x) + β̃`(P, x)I`(t, x)

]
dx,
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and for the infected fish is given by

Ii(t, xmin) = 0.

The conditions reflect the assumption that all individuals are born susceptible, as
this disease is not transmitted vertically [17, 18]. Here, pi` is the probability of the
progeny of fish of type ` being of type i, and is the (i, `)-th entry of the selection-
mutation matrix p. The construction of this matrix is such that the entries are
ordered according to similarity. We observe that

∑m
i=1 p

i` = 1 since the fractions of
all type-i hatchlings from an individual of type ` must add up to one. The fecundity
kernel of a fish of type ` is dependent on P (t) to account for the possible impact of
crowding on the ability of a fish of type ` to reproduce where this factor decreases
at high population levels. In the special case of progeny being genetically identical
to their parents (where individuals of type i produce individuals of type i only),
the only nonzero entries are pii = 1 for i = 1, ..,m. To mathematically represent
the case in which fish beget fish of similar genetic make-up in addition to identical
types, there are other nonzero entries, for example, pi` where ` = {i − 1, i, i + 1}.
The extent of genetic spread (mutation) can be represented by choosing different
probabilities in this manner.

The dynamics of the unactivated bacteria Bu(t) (which may be planktonic or
residing in biofilms) and planktonic activated bacteria Ba(t) in the environment are
given by

dBu
dt

= H + λBa − cMM∗Bu − δ1BuP − S
(
t; c1

)
Bu − I

(
t; c̃1

)
Bu,

dBa
dt

= I(t; ρ)− δ2BaP − λBa,

where we have used the notation

S
(
t; c1

)
=

m∑
i=1

∫ xmax

xmin

ci1(x)Si(t, x)dx,

I
(
t; c̃1

)
=

m∑
i=1

∫ xmax

xmin

c̃i1(x)Ii(t, x)dx,

I(t; ρ) =

m∑
i=1

∫ xmax

xmin

ρi(x)Ii(t, x)dx, where ρi(x) = ρ̄i
x− xmin

xmax − xmin
.

The (indirect) actions of humans H(t) (for example, agricultural run-off, industrial
waste, etc.) can provide a source of unactivated mycobacterial populations. Unacti-
vated bacteria in biofilms are lost through consumption by susceptible and infected
fish at rates S

(
t; c1

)
and I

(
t; c̃1

)
, respectively. All unactivated bacteria may be

consumed by mosquito larvae at rate cMM
∗Bu, where cM is the consumption rate

of bacteria per capita mosquito larva and M∗ denotes the (constant by assumption)
total larval population. Planktonic unactivated and activated bacteria are taken up
by fish along with other planktonic sources of nutrients, which are contaminated by
these bacterial populations. The planktonic unactivated and activated bacteria are
taken up at rates δ1BuP and δ2BaP , respectively. Activated bacteria are released
into the environment primarily through shedding by infected fish at rate I(t; ρ)
(where ρi(x) is the per capita shedding rate of fish of type i and size x), and go into
an unactivated state if they remain planktonic for a period of time 1/λ.
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Table 1. Description of Model Parameters

ν1 effective number of planktonic unactivated bacteria required
to result in infection

ν2 effective number of planktonic activated bacteria required
to result in infection

ν3 effective number of ingested carrier mosquito larvae required to result
in infection

ν4 effective number of unactivated bacteria found in biofilms required to
result in infection

ci1(x), c̃i(x) consumption rate of unactivated bacteria in biofilms by susceptible
and infected fish, respectively, of size x in physiological class i

ci2(x), c̃i2(x) consumption rate of mosquito larvae by susceptible and infected fish,
respectively, of size x in physiological class i

ζ bacterial dose within a “typical” mosquito larvae
δ1 encounter rate of planktonic unactivated bacteria with fish

per unit of time
δ2 encounter rate of planktonic activated bacteria with fish

per unit of time

pi` (i, l)-th entry of the selection mutation matrix: probability of the
progeny of fish of type ` being of type i

λ inactivation rate of activated bacteria
cM mosquito larvae consumption rate of bacteria
ε effective number of bacteria necessary to consider a mosquito larvae

a carrier of Mm
ρi(x) per capita shedding rate of fish of type i and size x
µM mortality rate of carrier mosquito larvae
M∗ total mosquito larvae population
H(t) number of unactivated bacteria in the environment due to

human action

The dynamics governing the size of the mosquito larvae population carrying Mm
are given by

dM

dt
= εcM

(
M∗ −M

)
Bu − µMM − S

(
t; c2

)
M − I

(
t; c̃2

)
M,

and we note that it is not necessary to explicitly consider the non-carrier larvae
since we have assumed the total larvae population is always in excess, and therefore,
constant. Mosquito larvae become carriers upon consuming an effective number of
unactivated bacteria at rate εcM (M∗ −M)Bu. That is, the larvae feed on bacteria
(presumably unactivated Mm aggregated in biofilms) at rate cM , the factor ε scales
for the effective number of bacteria necessary to consider a mosquito larvae a carrier
of Mm, and M∗ −M are larvae that are not carriers. These carrier larvae are lost
through consumption by the susceptible and infected fish at (per capita fish) rates
ci2(x) and c̃i2(x), respectively, and are the feeding rates of susceptible and infected
fish of type i on mosquito larvae. The terms S

(
t; c2

)
M and I

(
t; c̃2

)
M are analogous

to the consumption rate of unactivated bacteria by fish, as specified above.
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The model, in summary, is then

∂Si

∂t
+
∂(giSi)

∂x
+ µiSi + (ν1δ1Bu + ν2δ2Ba + ν3ζc

i
2M + ν4c

i
1Bu)Si = 0

∂Ii

∂t
+
∂(g̃iIi)

∂x
+ µ̃iIi − (ν1δ1Bu + ν2δ2Ba + ν3ζc

i
2M + ν4c

i
1Bu)Si = 0

dBa
dt

= I(t; ρ)− δ2BaP − λBa
dBu
dt

= H + λBa − cMM∗Bu − δ1BuP − S
(
t; c1

)
Bu − I

(
t; c̃1

)
Bu

dM

dt
= εcM

(
M∗ −M

)
Bu − µMM − S

(
t; c2

)
M − I

(
t; c̃2

)
M,

(1)

with the boundary conditions (for the susceptible and infected fish equations only)
given by

gi(P, xmin)Si(t, xmin) =

m∑
`=1

pi`
∫ xmax

xmin

[
β`(P, x)S`(t, x) + β̃`(P, x)I`(t, x)

]
dx,

Ii(t, xmin) = 0
(2)

and initial conditions
Si(0, x) = Si,0(x),
Ii(0, x) = Ii,0(x),
Ba(0) = B0

a,
Bu(0) = B0

u,
M(0) = M0,

(3)

for 0 ≤ t ≤ T , x ∈ [xmin, xmax], and for i = 1, ...,m. We note that for simplicity of
notation, we let the function

Zi(t) =

m∑
`=1

pi`
∫ xmax

xmin

[
β`(P, x)S`(t, x) + β̃`(P, x)I`(t, x)

]
dx (4)

throughout the paper.

3. Weak solution. Throughout the discussion we let c > 1 be a sufficiently large
positive constant. We assume that the parameters in (1)–(3) satisfy the following
assumptions for i = 1, ...,m:

(A1) The functions gi(P, x) and g̃i(P, x) are twice continuously dif-
ferentiable with respect to x and P . Also, 0 < gi(P, x) ≤
c, 0 < g̃i(P, x) ≤ c for (P, x) ∈ [0,∞) × [xmin, xmax) and
gi(P, xmax) = g̃i(P, xmax) = 0 for P ∈ [0,∞).

(A2) The functions µi(P, x) and µ̃i(P, x) are continuously differen-
tiable with respect to x and P . Also, 0 ≤ µi(P, x) ≤ c, 0 ≤
µ̃i(P, x) ≤ c for (P, x) ∈ [0,∞)× [xmin, xmax].

(A3) The functions βi(P, x) and β̃i(P, x) are continuously differen-
tiable with respect to x and P . Also, 0 ≤ βi(P, x) ≤ c, 0 ≤
β̃i(P, x) ≤ c for (P, x) ∈ [0,∞)× [xmin, xmax].

(A4) The functions ci1(x), ci2(x), c̃i1(x), c̃i2(x), are continuously dif-
ferentiable and 0 ≤ ci1(x) ≤ c, 0 ≤ ci2(x) ≤ c, 0 ≤ c̃i1(x) ≤
c, 0 ≤ c̃i2(x) ≤ c for x ∈ [xmin, xmax].
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(A5) The functions Si,0(x) and Ii,0(x) are nonnegative functions
having total variation bounded by c, and Ba(0), Bu(0), M(0)
are nonnegative constants less than c.

(A6) The function H(t) is a nonnegative function bounded above
by c for 0 ≤ t ≤ T .

(A7) The parameters ν1, ν2, ν3, ν4, δ1, δ2, ζ, cM , λ, ρ̄
i, ε, M∗, and

µM are nonnegative constants less than c.

We point out that the characteristic curve for the equation for Si, i = 1, . . . ,m,
in (1) passing though the point (t0, x0) is given by

dxi(t; t0, x0)

dt
= gi(P (t), xi(t; t0, x0)), xi(t0; t0, x0) = x0,

and that for equation Ii, i = 1, . . . ,m, in (1) passing through the point (t0, x0) is
given by

dxi(t; t0, x0)

dt
= g̃i(P (t), xi(t; t0, x0)), xi(t0; t0, x0) = x0.

These characteristic curves are nonlinear and their solutions are coupled to the
solution of the model (1) due to the dependency of g and g̃ on the total population
P of susceptible and infected fish. Furthermore, from assumption (A1) it follows
that the characteristic curves are monotone and asymptotically approach x = xmax

as t→∞.
We now proceed to define a weak solution for the model (1). To this end, for

notational convenience, we let

Li(Ba, Bu,M, x) = ν1δ1Bu + ν2δ2Ba + ν3ζc
i
2(x)M + ν4c

i
1(x)Bu, (5)

for the remainder of the paper. We let the vectors ~S = (S1, . . . , Sm)T and ~I =
(I1, . . . , Im)T denote the susceptible and infected fish densities for all m physio-
logical groups. Multiplying the first and second equations of (1) by φ(t, x) and
ψ(t, x), respectively, and formally integrating by parts, we define a weak solution of

our system (1)–(3) as a tuple (~S, ~I,Ba, Bu,M) ∈
∏m
i=1BV ([0, T ]× [xmin, xmax])×∏m

i=1BV ([0, T ]× [xmin, xmax])×C[0, T ]×C[0, T ]×C[0, T ] satisfying (6)–(7) below∫ xmax

xmin
Si(t, x)φ(t, x)dx−

∫ xmax

xmin
Si,0(x)φ(0, x)dx

=
∫ t

0

(∑m
`=1 p

i`
∫ xmax

xmin

[
β`(P (τ), x)S`(τ, x) + β̃`(P (τ), x)I`(τ, x)

]
dx
)
φ(τ, xmin)dτ

+
∫ t

0

∫ xmax

xmin
Si(τ, x)

(
φτ (τ, x) + gi(P (τ), x)φx(τ, x)− µi(P (τ), x)φ(τ, x)

)
dxdτ

−
∫ t

0

∫ xmax

xmin
Si(τ, x)Li(Ba(τ), Bu(τ),M(τ), x)φ(τ, x)dxdτ,∫ xmax

xmin
Ii(t, x)ψ(t, x)dx−

∫ xmax

xmin
Ii,0(x)ψ(0, x)dx

=
∫ t

0

∫ xmax

xmin
Ii(τ, x)

(
ψτ (τ, x) + g̃i(P (τ), x)ψx(τ, x)− µ̃i(P (τ), x)ψ(τ, x)

)
dxdτ

+
∫ t

0

∫ xmax

xmin
ψ(x, τ)Si(τ, x)Li(Ba(τ), Bu(τ),M(τ), x)dxdτ,

(6)
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Ba(t) = Ba(0) +
∫ t

0

[
I(s; ρ)− δ2Ba(s)P (s)− λBa(s)

]
ds,

Bu(t) = Bu(0) +
∫ t

0

[
H(s) + λBa(s)− cMM∗Bu(s)− δ1Bu(s)P (s)

−S
(
s; c1

)
Bu(s)− I

(
s; c̃1

)
Bu(s)

]
ds,

M(t) = M(0) +
∫ t

0

[
εcM (M∗ −M(s))Bu(s)− µMM(s)

−S
(
s; c2

)
M(s)− I

(
s; c̃2

)
M(s)

]
ds,

(7)

for each t ∈ (0, T ), i = 1, ...,m, every φ ∈ C1([0, T ] × [xmin, xmax]) and every
ψ ∈ C1([0, T ]× [xmin, xmax]).

4. Numerical scheme. As described in Section 2, we assume that there is a small-
est size xmin and a largest size xmax (we may assume that xmax ≤ c) for the fish
population(s) considered. We divide this interval into N subintervals of equal length
so the size of the mesh length is given by ∆x = (xmax − xmin)/N and the mesh
points are given by xj = xmin + j∆x, with j = 0, 1, . . . , N (thus, x0 = xmin and
xN = xmax). However, the scheme readily applies to a nonuniform mesh also, as
was done in [9]. We denote by K the number of time steps taken over the finite
interval [0, T ] so the time points are tk = k∆t, for k = 0, 1, . . . ,K and ∆t = T/K.

We denote by Si,kj the numerical approximation of Si(tk, xj) and we use Ii,kj
to represent the approximation of Ii(tk, xj). We use Mk, Bka , and Bku to denote

the approximations of M(tk), Ba(tk), and Bu(tk). We let B0
a, B

0
u, M

0, Si,0j and

Ii,0j represent the initial conditions for the variables Ba, Bu, M , Si, Ii, for i =

1, . . . ,m, respectively. We denote by gi,kj , g̃i,kj , µi,kj , µ̃i,kj , βi,kj , β̃i,kj , ci1,j , c̃
i
1,j , c

i
2,j ,

c̃i2,j , and ρij , the values gi(P k, xj), g̃
i(P k, xj), µ

i(P k, xj), µ̃
i(P k, xj), β

i(P k, xj),

β̃i(P k, xj), c
i
1(xj), c̃

i
1(xj), c

i
2(xj), c̃

i
2(xj) and ρi(xj), respectively.

We now discretize the model (1)–(3), using the approximation of (5) which is
given by

Li,kj = ν1δ1B
k
u + ν2δ2B

k
a + ν3ζc

i
2,jM

k + ν4c
i
1,jB

k
u, (8)

and we have

Si,k+1
j − Si,kj

∆t
+
gi,kj Si,k+1

j − gi,kj−1S
i,k+1
j−1

∆x
+ µi,kj Si,k+1

j + Li,kj Si,k+1
j = 0, (9)

Ii,k+1
j − Ii,kj

∆t
+
g̃i,kj Ii,k+1

j − g̃i,kj−1I
i,k+1
j−1

∆x
+ µ̃i,kj Ii,k+1

j − Li,kj Si,k+1
j = 0, (10)

Bk+1
a −Bka

∆t
=

m∑
i=1

 N∑
j=1

ρijI
i,k+1
j ∆x

− δ2Bk+1
a P k+1 − λBk+1

a , (11)

Bk+1
u −Bku

∆t
= Hk + λBk+1

a − cMM∗Bk+1
u − δ1Bk+1

u P k+1

−Bk+1
u

m∑
i=1

N∑
j=1

[
ci1,jS

i,k+1
j + c̃i1,jI

i,k+1
j

]
∆x,

(12)
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Mk+1 −Mk

∆t
= εcM (M∗ −Mk+1)Bk+1

u − µMMk+1

−Mk+1
m∑
i=1

N∑
j=1

[
ci2,jS

i,k+1
j + c̃i2,jI

i,k+1
j

]
∆x,

(13)

where 0 ≤ k ≤ K − 1 and 1 ≤ j ≤ N , for i = 1, ...,m.
The boundary conditions for the susceptible and infected fish are approximated

by

gi,k0 Si,k+1
0 =

m∑
`=1

pi`
N∑
j=1

[
β`,kj S`,kj + β̃`,kj I`,kj

]
∆x and Ii,k0 = 0. (14)

We note that from (4) we have gi,k0 Si,k+1
0 = Zi,k. Then one can compute the ap-

proximate solution explicitly in the order specified below. First from (14) compute

Si,k+1
0 =

1

gi,k0

m∑
`=1

pi`
N∑
j=1

[
β`,kj S`,kj + β̃`,kj I`,kj

]
∆x and Ii,k0 = 0. (15)

Then for j = 1, . . . , N , compute the following quantities:

Si,k+1
j =

Si,kj +
∆t

∆x
gi,kj−1S

i,k+1
j−1

1 + ∆t
(

1
∆xg

i,k
j + µi,kj + Li,kj

) , (16)

Ii,k+1
j =

Ii,kj +
∆t

∆x
g̃i,kj−1I

i,k+1
j−1 + ∆tLi,kj Si,k+1

j

1 + ∆t( 1
∆x g̃

i,k
j + µ̃i,kj )

, (17)

Bk+1
a =

Bka + ∆t
∑m
i=1

∑N
j=1 ρ

i
jI
i,k+1
j ∆x

1 + ∆t(δ2P k+1 + λ)
, (18)

Bk+1
u =

Bku + ∆t(Hk + λBk+1
a )

1 + ∆t
[
cMM∗ + δ1P k+1 +

∑m
i=1

∑N
j=1(ci1,jS

i,k+1
j + c̃i1,jI

i,k+1
j )∆x

] ,
(19)

Mk+1 =
Mk + ∆tεcMM

∗Bk+1
u

1 + ∆t
[
εcMB

k+1
u + µM +

∑m
i=1

∑N
j=1(ci2,jS

i,k+1
j + c̃i2,jI

i,k+1
j )∆x

] , (20)

for i = 1, . . . ,m.
The novelty of the approximation above lies in the preservation of positivity and

unconditional stability (no CFL condition) using an implicit form without having
to pay the computational price of matrix inversion (which is common with implicit
schemes). Namely, using a clever mixture of implicit and explicit approximations
for the nonlinear terms in equations (9)–(10) where the coefficients (which may de-
pend on the total population) are evaluated at the current (k) time step while the
unknown functions, S and I, are evaluated at the next (k+ 1) time step, allows one
to solve this implicit scheme in an explicit fashion, resulting in the aforementioned
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benefits. Furthermore, using such an implicit-explicit approximation mixture in the
mortality terms allows for one to incorporate large mortality rates (which are very
common for infected individuals) without affecting the stability of the scheme. We
remark that an explicit-implicit mixture approach has been used for the approxi-
mation of other models (e.g., [6, 7]).

5. Convergence of finite difference approximation. We begin this section by
defining the difference operator

D−∆x(ui,kj ) =
ui,kj − u

i,k
j−1

∆x
, 1 ≤ j ≤ N,

and we let the `1 and `∞ norms be given by

||ui,k||1 =

N∑
j=1

|ui,kj |∆x, and ||ui,k||∞ = max
0≤j≤N

|ui,kj |.

We establish several results to prove that the above finite difference approxima-
tion converges to the weak solution of the model (1). For convenience, we include
the proofs of these results in Appendix A. We begin by establishing the fact that
our system has a unique nonnegative solution.

Lemma 5.1. The system (9)–(14) has a unique nonnegative solution.

Next, we establish a bound on the `1 norm of the approximations Si,kj and Ii,kj .

Lemma 5.2. There exists a positive constant C1 such that
m∑
i=1

(
‖Si,k‖1 + ‖Ii,k‖1

)
≤ C1.

As a consequence of Lemma 5.2, we now have that 0 ≤ P k ≤ C1 for k =
0, 1, . . . ,K. For the remainder of the paper we will define D = [0, C1]× [xmin, xmax].
We now establish the boundedness of Ba, Bu, and M .

Lemma 5.3. There exists a positive constant C2 such that

|Bka |+ |Bku|+ |Mk| ≤ C2.

In the next two lemmas we establish the boundedness of Li,kj , D−∆x(Li,kj ), and
the boundedness of the approximations of the susceptible and infected fish in each
physiological group i ∈ {1, ...,m}, and at any time tk, k ∈ {0, 1, ...,K} in the infinity
norm.

Lemma 5.4. There exist positive constants C3 and C4 such that for i = 1, . . . ,m,

0 ≤ Li,kj ≤ C3 and |D−∆x(Li,kj )| ≤ C4.

Lemma 5.5. There exists a positive constant C5 such that for i = 1, . . . ,m,

‖Si,k‖∞ + ‖Ii,k‖∞ ≤ C5.

The next two lemmas are necessary to show that the approximations for Si and
Ii have bounded total variation.
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Lemma 5.6. There is a positive constant C6 such that for k = 0, 1, . . . ,K − 1,∣∣∣∣P k+1 − P k

∆t

∣∣∣∣ < C6.

Lemma 5.7. There is a positive constant C7 such that for k = 0, 1 . . . ,K − 1,∣∣∣∣∣Si,k+1
0 − Si,k0

∆t

∣∣∣∣∣ ≤ C7.

In Lemma 5.8, we show that the approximations Si,kj and Ii,kj have bounded total
variation.

Lemma 5.8. There exists a positive constant C8 such that for i = 1, . . . ,m,

||D−∆x(Si,kj )||1 + ||D−∆x(Ii,kj )||1 ≤ C8.

The next result shows that the difference approximations satisfy a Lipschitz-type
condition in time t.

Lemma 5.9. There are positive constants C9, C10, C11, C12 and C13 such that for
any r > q the following hold.

N∑
j=1

∣∣∣∣∣S
i,r
j − S

i,q
j

∆t

∣∣∣∣∣∆x ≤ C9(r − q),
N∑
j=1

∣∣∣∣∣I
i,r
j − I

i,q
j

∆t

∣∣∣∣∣∆x ≤ C10(r − q),

∣∣∣∣Bru −Bqu∆t

∣∣∣∣ ≤ C11(r − q),
∣∣∣∣Bra −Bqa∆t

∣∣∣∣ ≤ C12(r − q),
∣∣∣∣Mr −Mq

∆t

∣∣∣∣ ≤ C13(r − q).

Following [40], we define a family of functions {Si∆t,∆x}, {Ii∆t,∆x}, {Ba∆t
}, {Bu∆t

},
and {M∆t} by

Si∆t,∆x(t, x) = Si,kj , Ii∆t,∆x(t, x) = Ii,kj ,

Ba∆t
(t) = Bka +

Bk+1
a −Bka

∆t
(t− tk), Bu∆t

(t) = Bku +
Bk+1
u −Bku

∆t
(t− tk),

M∆t(t) = Mk +
Mk+1 −Mk

∆t
(t− tk),

for x ∈ [xj , xj+1), t ∈ [tk, tk+1), where j = 0, . . . , N − 1 and k = 0, . . . ,K − 1.
Then the sets of functions {Si∆t,∆x}, and {Ii∆t,∆x} are compact in the topology of

L1
(
(0, T )× (xmin, xmax)

)
for each i = 1, . . . ,m and {Ba∆t}, {Bu∆t}, and {M∆t} are

compact in the topology of C(0, T ). We now have the following result.

Theorem 5.10. There exist sequences {Si∆tl,∆xl
} ⊂ {Si∆t,∆x} and {Ii∆tl,∆xl

} ⊂
{Ii∆t,∆x} which converge to BV

(
[0, T ]× [xmin, xmax]

)
functions Si(t, x) and Ii(t, x)

for each i = 1, . . . ,m. There are also sequences {Ba∆tl
} ⊂ {Ba∆t}, {Bu∆tl

} ⊂
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{Bu∆t}, and {M∆tl} ⊂ {M∆t} that converge to functions Ba(t), Bu(t), M(t) ∈
C[0, T ]. This happens in the sense that for all t > 0,∫ xmax

xmin

∣∣∣Si∆tl,∆xl
(t, x)− Si(t, x)

∣∣∣dx→ 0,∫ xmax

xmin

∣∣∣Ii∆tl,∆xl
(t, x)− Ii(t, x)

∣∣∣dx→ 0,∫ T

0

∫ xmax

xmin

∣∣∣Si∆tl,∆xl
(t, x)− Si(t, x)

∣∣∣dxdt→ 0,∫ T

0

∫ xmax

xmin

∣∣∣Ii∆tl,∆xl
(t, x)− Ii(t, x)

∣∣∣dxdt→ 0,

and

maxt∈[0,T ]

∣∣∣Ba∆tl
(t)−Ba(t)

∣∣∣→ 0, maxt∈[0,T ]

∣∣∣Bu∆tl
(t)−Bu(t)

∣∣∣→ 0,

maxt∈[0,T ]

∣∣∣M∆tl(t)−M(t)
∣∣∣→ 0,

for each i and as l → ∞. Furthermore, there exists a positive constant C14 such
that the limit functions satisfy

‖S‖
BV
(

[0,T ]×[xmin,xmax]
) + ‖I‖

BV
(

[0,T ]×[xmin,xmax]
)

+‖Ba‖C[0,T ] + ‖Bu‖C[0,T ] + ‖M‖C[0,T ] ≤ C14.

The next theorem shows that the set of limit functions Si(t, x), Ii(t, x), Ba(t),
Bu(t), and M(t) constructed using our difference scheme is a weak solution of (1)–
(3).

Theorem 5.11. The set of limit functions Si(t, x), Ii(t, x), Ba(t), Bu(t), and M(t)
defined in Theorem 5.10 is a weak solution of (1)–(3) and satisfies

‖Si(t, ·)‖1 + ‖Ii(t, ·)‖1 + |Ba(t)|+ |Bu(t)|+ |M(t)| ≤ C15,

and

‖Si‖L∞((0,T )×(xmin,xmax)) + ‖Ii‖L∞((0,T )×(xmin,xmax))

+‖Ba‖C[0,T ] + ‖Bu‖C[0,T ] + ‖M‖C[0,T ] ≤ C16,

for some positive constants C15 and C16.

The following theorem shows the continuous dependency of the solution set

{Si,kj , Ii,kj , Bka Bku, M
k} to (9)–(13) with respect to the initial conditions {Si,0j ,

Ii,0j , B0
a, B0

u, M0}.

Theorem 5.12. Let {Si,kj , Ii,kj , Bka , B
k
u, M

k} and {Ŝi,kj , Îi,kj , B̂ka , B̂
k
u, M̂

k} be the

solutions to (9)–(13) corresponding to the initial conditions {Si,0j , Ii,0j , B0
a, B

0
u, M

0}
and {Ŝi,0j , Îi,0j , B̂0

a, B̂0
u, M̂

0}, respectively. Then there exist constants h1 and h2

such that

(1− h1∆t)Êk+1 ≤ (1 + h2∆t)Êk,

where

Êi,k = ‖Si,k − Ŝi,k‖1 + ‖Ii,k − Îi,k‖1 + |Bka − B̂ka |+ |Bku − B̂ku|+ |Mk − M̂k|.
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We now give an argument for uniqueness of the weak BV solution of (1). Suppose
for i = 1, . . . ,m, P (t), Zi(t), I(t; ρ), S

(
t; c1

)
, S
(
t; c2

)
, I
(
t; c̃1

)
, and I

(
t; c̃2

)
are given

Lipschitz continuous functions, where we are not imposing the conditions P (t) =∑m
i=1

∫ xmax

xmin

(
Si(t, x)+Ii(t, x)

)
dx, Zi(t) as in (4), or the previous integral definitions

of S
(
t; c1

)
, S
(
t; c2

)
, I
(
t; c̃1

)
, and I

(
t; c̃2

)
. Then the initial value problems

dBa(t)

dt
= I(t; ρ)− δ2Ba(t)P (t)− λBa(t), Ba(0) = B0

a, (21)

dBu(t)

dt
= H(t) + λBa(t)− cMM∗Bu(t)− δ1Bu(t)P (t)

−S
(
t; c1

)
Bu(t)− I

(
t; c̃1

)
Bu(t), Bu(0) = B0

u,
(22)

dM(t)

dt
= εcM (M∗ −M(t))Bu(t)− µMM(t)

−S
(
t; c2

)
M(t)− I

(
t; c̃2

)
M(t), M(0) = M0,

(23)

where 0 ≤ t ≤ T , have unique solutions when calculated in the given order. Now,
consider the initial-boundary value problem with the unique solutions Ba(t), Bu(t)
and M(t),

∂Si(t, x)

∂t
+
∂
(
gi(P, x)Si(t, x)

)
∂x

+ µi(P, x)Si(t, x) + Li(Ba, Bu,M, x)Si(t, x) = 0,

0 < t < T, xmin < x < xmax,
gi(P, xmin)Si(t, xmin) = Zi(t), 0 < t < T,
Si(0, x) = Si,0(x), xmin ≤ x ≤ xmax,

(24)
where Li(Ba, Bu,M, x) is defined in (5). Then one can easily show that (24) has a
unique solution Si(t, x) (note that this is a nonlinear equation with a local boundary
condition). In fact, a weak solution can be defined as a limit of the difference
approximation (9)–(14) with the given numbers Bka = Ba(tk), Bku = Bu(tk), Mk =
M(tk), and uniqueness can be established using a similar technique as in [40] (p.282).
With the unique solution Si(t, x) of (24) now known, we can argue in a similar
manner that the problem

∂Ii(t, x)

∂t
+
∂
(
g̃i(P, x)Ii(t, x)

)
∂x

+ µ̃i(P, x)Ii(t, x)− Li(Ba, Bu,M, x)Si(t, x) = 0,

0 < t < T, xmin < x < xmax,
Ii(t, xmin) = 0, 0 < t < T,
Ii(0, x) = 0, xmin ≤ x ≤ xmax,

(25)

has a unique solution. Let (Si,kj , Ii,kj , Bka , B
k
u,M

k) and (Ŝi,kj , Îi,kj , B̂ka , B̂
k
u, M̂

k) be

solutions to (9)–(14) corresponding to the given functions (P k, Zi,k, Ik(ρ),Sk(c1),

Ik(c̃1),Sk(c2), Ik(c̃2)) and (P̂ k, Ẑi,k, Îk(ρ), Ŝk(c1), Îk(c̃1), Ŝk(c2), Îk(c̃2)) respecti-
vely, where we denote by Ik(ρ), Sk(c1), Sk(c2), Ik(c̃1), and Ik(c̃2) the values of

I(tk; ρ), S(tk; c1), S(tk; c2), I(tk; c̃1) and I(tk; c̃2). Also, let ui,kj = Si,kj −Ŝ
i,k
j , vi,kj =

Ii,kj − Î
i,k
j , wk = Bka − B̂ka , yk = Bku− B̂ku, and zk = Mk−M̂k. Then from the proof
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of Theorem 5.12, we refer to (43),(47),(49), (50), and (51) to obtain

‖ui,k+1‖1 − ‖ui,k‖1
∆t

≤ ω6‖ui,k+1‖1 + ω7(|wk|+ |yk|+ |zk|) + ω8|P k − P̂ k|
+|Zi,k − Ẑi,k|

‖vi,k+1‖1 − ‖vi,k‖1
∆t

≤ ω11‖ui,k+1‖1 + ω12‖vi,k+1‖1
+ω7(|wk|+ |yk|+ |zk|) + ω10|P k − P̂ k|

|wk+1| − |wk|
∆t

≤ |Ik+1(ρ)− Îk+1(ρ)|+ ω24|P k+1 − P̂ k+1|+ ω15|wk+1|,
|yk+1| − |yk|

∆t
≤ ω18|wk+1|+ ω19|yk+1|+ ω25|P k+1 − P̂ k+1|

+ω26|Sk+1(c1)− Ŝk+1(c1)|+ ω26|Ik+1(c̃1)− Îk+1(c̃1)|,
|zk+1| − |zk|

∆t
≤ ω22|yk+1|+ ω23|zk+1|

+ω26|Sk+1(c2)− Ŝk+1(c2)|+ ω26|Ik+1(c̃2)− Îk+1(c̃2)|.

The conclusion of Theorem 5.12 becomes

Êi,k+1 ≤ 1
1−h3∆t Ê

i,k + h4

1−h3∆t

(
|wk|+ |yk|+ |zk|+ |P k − P̂ k|+ |Zi,k − Ẑi,k|

+|P k+1 − P̂ k+1|+ |Sk+1(c1)− Ŝk+1(c1)|+ |Sk+1(c2)− Ŝk+1(c2)|
+|Ik+1(c̃1)− Îk+1(c̃1)|+ |Ik+1(c̃2)− Îk+1(c̃2)|

)
∆t,

where Êi,k is the same as in Theorem 5.12 and

h3 = max{ω6 + ω11, ω12, ω15 + ω18, ω19 + ω22, ω23}

h4 = max{ω7, ω8 + ω10 + ω24 + ω25, ω26}.
Equivalently,

Êi,k ≤
( 1

1− h3∆t

)k
Êi,0 +

h4∆t

1− h3∆t

k−1∑
n=0

( 1

1− h3∆t

)k−1−n(
|wn|+ |yn|

+|zn|+ |Pn − P̂n|+ |Zi,n − Ẑi,n|+ |Pn+1 − P̂n+1|
+|Sn+1(c1)− Ŝn+1(c1)|+ |Sn+1(c2)− Ŝn+1(c2)|
+|In+1(c̃1)− În+1(c̃1)|+ |In+1(c̃2)− În+1(c̃2)|

)
.

(26)

Using Theorem 5.10, we can take the limit in (26) to obtain

Êi(t) ≤ eh3tÊi(0) + h4e
h3t

∫ t

0

(
|Ba(τ)− B̂a(τ)|+ |Bu(τ)− B̂u(τ)|

+ |M(τ)− M̂(τ)|+ 2|P (τ)− P̂ (τ)|+ |Zi(τ)− Ẑi(τ)|

+ |S(τ ; c1)− Ŝ(τ ; c1)|+ |S(τ ; c2)− Ŝ(τ ; c2)|

+ |I(τ ; c̃1)− Î(τ ; c̃1)|+ |I(τ ; c̃2)− Î(τ ; c̃2)|
)
dτ,

where (Si, Ii, Ba, Bu,M), (Ŝi, Îi, B̂a, B̂u, M̂) are the unique solutions to (21)–(25)

with the given functions (P k, Zi,k, Ik(ρ),Sk(c1), Ik(c̃1),Sk(c2), Ik(c̃2)) and (P̂ k,

Ẑi,k, Îk(ρ), Ŝk(c1), Îk(c̃1), Ŝk(c2), Îk(c̃2)), respectively, and

Êi(t) = ‖Si(t, ·)− Ŝi(t, ·)‖1 + ‖Ii(t, ·)− Îi(t, ·)‖1 + |Ba(t)− B̂a(t)|
+|Bu(t)− B̂u(t)|+ |M(t)− M̂(t)|.
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Then applying the estimate given in (26) to the corresponding solutions of (21)–
(25), where for any continuous function α(x),

P (t) =
∑m
i=1

∫ xmax

xmin

(
Si(t, x) + Ii(t, x)

)
dx,

P̂ (t) =
∑m
i=1

∫ xmax

xmin

(
Ŝi(t, x) + Îi(t, x)

)
dx,

Zi(t) = 1
gi(P,xmin)

∑m
`=1 p

i`
∫ xmax

xmin

(
β`(P, x)S`(t, x) + β̃`(P, x)I`(t, x)

)
dx,

Ẑi(t) = 1
gi(P̂ ,xmin)

∑m
`=1 p

i`
∫ xmax

xmin

(
β`(P̂ , x)Ŝ`(t, x) + β̃`(P̂ , x)Î`(t, x)

)
dx,

S(t;α) =
∑m
i=1

∫ xmax

xmin
α(x)Si(t, x)dx

Ŝ(t;α) =
∑m
i=1

∫ xmax

xmin
α(x)Ŝi(t, x)dx

I(t;α) =
∑m
i=1

∫ xmax

xmin
α(x)Ii(t, x)dx

Î(t;α) =
∑m
i=1

∫ xmax

xmin
α(x)Îi(t, x)dx

are defined in Theorem 5.10, we obtain the following result.

Theorem 5.13. Suppose that (Si, Ii, Ba, Bu,M), and (Ŝi, Îi, B̂a, B̂u, M̂) are two
weak solutions of (1)–(3) corresponding to the initial conditions Si,0(x), Ii,0(x), B0

a,

B0
u,M

0 and Ŝi,0(x), Îi,0(x), B̂0
a, B̂

0
u, M̂

0, respectively. Then we have

‖Si(t, ·)− Ŝi(t, ·)‖1 + ‖Ii(t, ·)− Îi(t, ·)‖1 + |Ba(t)− B̂a(t)|+ |Bu(t)− B̂u(t)|
+|M(t)− M̂(t)| ≤ h4e

h3T exp(h4e
h3T t)

{
‖Si,0j − Ŝ

i,0
j ‖1 + ‖Ii,0j − Î

i,0
j ‖1

+|B0
a − B̂0

a|+ |B0
u − B̂0

u|+ |M0 − M̂0|
}
,

which implies that the weak solution of (1)–(3) is unique.

Hence, from Theorem 5.13 it follows that the finite difference solution converges
to the unique bounded variation solution of (1)–(3).

6. Numerical simulations. We begin this section by demonstrating that the con-
vergence of the numerical scheme presented here (in Section 4) is indeed of first
order. In Section 6.1, we first demonstrate convergence through direct computation
of errors made from approximating the solution to a simplified version of the model
with the numerical scheme. We also demonstrate, in Section 6.2 that convergence
is maintained for the full model when we compute errors using an approximated
solution with very small time and mesh sizes in place of the exact solution. We
then, in Section 6.3 examine the effects of different forms of growth functions on
the population dynamics. Lastly, in Section 6.4 we conduct preliminary studies on
reproductive fitness and conditions for competitive exclusion within the context of
our model as determined by the fecundity kernel as well as the selection-permutation
matrix p. Throughout the remainder of these discussions, we will allow xmin = 0
and xmax = 1, which can always be achieved by a simple transformation.

6.1. Convergence for a simplified model. In order to illustrate the first order
convergence of this approximation scheme (presented in Section 4) we calculate the
error between solutions computed with this scheme and an exact solution. Since we
cannot analytically obtain a solution to the full model, we make some simplifications,
essentially by eliminating all nonlinear terms, so that we can. We then use this exact
solution for comparison with our approximated solution to the simplified model.

Without loss of generality, we take m = 1 to consider only one physiological
class and for simplicity, we denote S1(t, x) by S(t, x) and use similar notation for
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the other functions that have dependence on physiological class. We choose simple
growth, death, and fecundity kernels,

g(P, x) = 1− x, g̃(P, x) =
1

2
(1− x),

µ(P, x) = µ̃(P, x) = 1, β(P, x) =
1

e− 1
, β̃(P, x) = 0,

and we add the nonhomogeneous terms

f1(t, x) = −xex−t + S(t, x)
(
ν1δ1Bu(t) + ν2δ2Ba(t) + ν3ζc2M(t) + ν4c1Bu(t)

)
,

f2(t, x) = − 1
4xe

x−t + 1
4e
x−t − 1

4x
2ex−t

−S(t, x)
(
ν1δ1Bu(t) + ν2δ2Ba(t) + ν3ζc2M(t) + ν4c1Bu(t)

)
,

to the righthand sides of the equations for the dynamics of the susceptible, and
infected fish, respectively (first and second equations of (1)). Then the pde system
governing the fish dynamics is linear, and simplifies to

∂S

∂t
+
∂(gS)

∂x
+ µS = −xex−t,

∂I

∂t
+
∂(g̃I)

∂x
+ µ̃I = −1

4
xex−t +

1

4
ex−t − 1

4
x2ex−t.

If we also then choose the initial conditions S(0, x) = ex, I(0, x) = 1
2xe

x, and
boundary conditions S(t, 0) = e−t, I(t, 0) = 0, then the linear system is readily
solved to give the simple solutions

S(t, x) = ex−t, I(t, x) =
1

2
xex−t.

The activated Mm, unactivated Mm, carrier mosquito larvae equations, and total
population equations can then be solved to obtain

Ba(t) = B0
a exp

(δ2
2

(1− 2e)(et − 1)e−t
)
,

Bu(t) = B0
u exp

(1

2
(δ1 − 2δ1e+ δ1e

−t(2e− 1)− 2cMM
∗t)
)
,

M(t) = M0 exp(−µM t), P (t) = e1−t − 1

2
e−t.

We use the parameter values given in Table 2 and note that these parameters are
chosen merely to demonstrate the achievement of the designed order of accuracy
and are not biologically realistic.

We compute several solutions using the finite difference scheme (15)–(20), suc-
cessively halving the time ∆t and mesh ∆x step (with a uniform mesh). The cor-
responding error and order of convergence, in the L1 norm, calculated from those
approximations are presented in Table 3. The computed solutions with the numer-
ical scheme clearly converge to the exact solution with order one, as anticipated.

6.2. Convergence for the full model. To demonstrate that first order conver-
gence is maintained with the introduction of the nonlinearities in the model, we
approximate the error of computed solutions for the full model by using a solution
with very small time ∆t = 3.90625 × 10−5 and mesh ∆x = 7.8125 × 10−4 steps,
which we refer to as the ‘reference solution’, in place of an exact solution to calculate
the error. Again, we compute several solutions using the finite difference scheme
(15)–(20) (with uniform mesh), successively halving the time and mesh steps. We
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Table 2. Parameter values for the simplified (linear) model. Ini-
tial conditions are Ba(0) = 5, Bu(0) = 3, and M(0) = 10.

Parameter Value Parameter Value
ν1 1.0× 10−7 ν2 0.125× 10−4

δ1 1/500 δ2 1/500
cM 0.45 µM 1/60
ρ̄ 0 M∗ 20

c1(x) 0 c̃1(x) 0
c2(x) 0 c̃2(x) 0
H(t) 0 λ 0
ε 0

Table 3. Convergence of the method for the simplified linear model

∆t ∆x S(2, x) I(2, x)
L1 Error Order L1 Error Order

(×10−3) (×10−3) (×10−3) (×10−5)
6.25 3.125 4.5859 3.1818
3.125 1.5625 2.2905 1.0015 1.5413 1.0457
1.5625 0.78125 1.1447 1.0008 0.7582 1.0234
0.78125 0.39063 0.5722 1.0004 0.3760 1.0119
0.39063 0.19531 0.2861 1.0002 0.1872 1.0060

∆t ∆x Ba(t) Bu(t)
Max Error Order Max Error Order

(×10−3) (×10−3) (×10−3) (×10−7)
6.25 3.125 5.7287 2.8648
3.125 1.5625 2.8636 1.0004 1.2844 1.1573
1.5625 0.78125 1.4316 1.0002 0.6083 1.0783
0.78125 0.39063 0.7158 1.0001 0.2960 1.0390
0.39063 0.19531 0.3579 1.0000 0.1460 1.0195

∆t ∆x M(t)
Max Error Order

(×10−3) (×10−3) (×10−4)
6.25 3.125 1.6791
3.125 1.5625 0.8396 1.0000
1.5625 0.78125 0.4198 1.0000
0.78125 0.39063 0.2099 1.0000
0.39063 0.19531 0.1049 1.0000

use model parameters and auxiliary functions as displayed in Table 4. These were
chosen in accordance with those used in [9], the focus of which, we reiterate, was
primarily to study the Mm-medaka animal model, and produce biologically reason-
able solutions for that scenario. There was no birth rate, however, in the solutions
considered in [9] since the goal in that work was to achieve agreement with biologi-
cal experiments, which were on a much shorter timescale (2–3 weeks). We continue
to consider only one physiological class m = 1 here. We note that the initial condi-
tion for the susceptible fish does not satisfy the boundary compatibility condition,
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and therefore one does not expect solutions to be smooth; in fact a discontinuity is
evident along the characteristic curve starting at the point (0, xmin). Yet, the first
order accuracy is still conserved, as can be seen in Table 5.

Table 4. Parameter values and forms of the rate functions for the
full (nonlinear) model. Initial conditions are S(0, x) = exp(−(5x−
2)2), I(0, x) = 0, Ba(0) = 1 × 104, Bu(0) = 1 × 104, and M(0) =
1× 104.

Parameter Value Parameter Value
ν1 0.125× 10−4 ν2 0.125× 10−4

ν3 2.5× 10−5 ν4 2.5× 10−5

δ1 1/500 δ2 1/500
ζ 2.4× 103 ε 0.05
cM 0.5 M∗ 2× 1030

µM 7/60 λ 2.0
ρ̄i 3× 104

Function Form Function Form
g(P, x) (x− 1) ln(0.34)/13 g̃(P, x) (x− 1) ln(0.34)/26
µ(P, x) 1/156 µ̃(P, x) 2/156

β(P, x) 2x β̃(P, x) x
ci1(x) 0.5 c̃i1(x) 0.5
ci2(x) 0.5 c̃i2(x) 0.5

We again note that because of the clever choice of mixed explicit and implicit
approximations, the scheme is stable without a CFL condition. This is corroborated
by the results in Tables 3 and 5.

6.3. Effects of different growth rates. We turn our focus to the preliminary
implications of the model presented in this work, and specifically, to the exploration
of features that are distinct from the model in [9]. Therefore, we are particularly
interested in the role of size in the model. Again, we use parameters that have
given biologically reasonable solutions in [9] (where possible), and are relevant for
the Mm-medaka animal model, although we remind the reader that the model
applies to more general situations as well.

To study the role of size in the dynamics of the model, it is natural to turn to
the growth functions, as these determine how the fish size changes with time. Sim-
ple variations in the magnitude of the growth (for example, scaling by a constant
multiple) would not be necessarily instructive as the resulting dynamics would be
merely accelerated or decelerated. Rather, the manner in which a fish grows is of
interest to us, as there is variability in the growth cycles between species, and in
many cases, their rate of growth or development is unknown. Additionally, the
growth function of the medaka is measurable in an experimental setting. For this
discussion, we neglect crowding, or dependence of the growth functions on popula-
tion size. We choose three different growth functions, all of which are potentially
reasonable biologically, although we impose the condition∫ xmax

xmin

g1(s)ds =

∫ xmax

xmin

g2(s)ds =

∫ xmax

xmin

g3(s)ds,
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Table 5. Convergence of the method for the full (nonlinear) model

∆t ∆x S(7, x) I(7, x)
L1 Error Order L1 Error Order

0.05 0.05 0.0781 0.4612
0.025 0.025 0.0318 1.2962 0.2852 0.6935
0.0125 0.0125 0.0177 0.8456 0.1873 0.6063
0.00625 0.00625 0.0096 0.8848 0.1132 0.7270
0.00313 0.00313 0.0048 1.0281 0.0588 0.9450

∆t ∆x Ba(t) Bu(t)
Max Error Order Max Error Order
(×103) (×10−27)

0.05 0.05 1.2654 2.5309
0.025 0.025 0.5796 1.1264 1.1593 1.1264
0.0125 0.0125 0.2711 1.0963 0.5421 1.0965
0.00625 0.00625 0.1247 1.1205 0.2493 1.1205
0.00313 0.00313 0.0534 1.2244 0.1067 1.2244

∆t ∆x M(t)
Max Error Order

0.05 0.05 20.8145
0.025 0.025 9.0261 1.2054
0.0125 0.0125 4.1063 1.1363
0.00625 0.00625 1.8831 1.1247
0.00313 0.00313 0.8312 1.1798

in an attempt to maintain the total growth on the same scale, for the sake of
comparing results. The three growth functions chosen can be found in Figure 1.

The first function, g1(x) = ln(0.34)
13 (x − 1), is the simplest representation of the

observation that smaller (hatchling and juvenile) fish likely grow at much faster rates
than larger (adult) fish. We take a simple decreasing linear function, and we use the
information that they are approximately 66% of their maximum size [27, 33, 34] at
the time at which fish are able to reproduce. At that size, fish are usually around
13 weeks old, and we therefore use 13 weeks as the generation time throughout the
remainder of the paper. The second function, g2(x) = −0.2398(x + 0.01)(x − 1)
is consistent with the first in that large fish grow very slowly. But, if we consider
that very small fish may grow slowly also, with an optimal period of growth in
the middle (or juvenile) period, then this parabolic form is more appropriate. The
third function, g3(x) = −0.0519(x − 0.5)1/3 + 0.0412 is a modification of the first
function to incorporate the idea from ecology that animals have finite energy and
resources. Therefore there is a drastic shift in energy and resource expenditures
from growth to reproduction as animals reach sexual maturity. Therefore, many
animals of various species notably grow much slower, if at all, upon reaching sexual
maturation. To emulate something similar, this function was chosen so that the
growth rate would be high for small sizes, decreasing only slightly. For the mid-
range sizes, the growth rate drops drastically, and remains low for all larger sizes.
We take the growth rate functions for the infected fish to be half that of their
uninfected counterparts, so g̃i(P, x) = 1

2g
i(P, x) for i = 1, 2, 3. Parameter values
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Figure 1. Growth rate functions for each class, i = 1, 2, 3 as a

function of size. These are: g1(P, x) = ln(0.34)
13 (x − 1), g2(P, x) =

−0.2398(x+ 0.01)(x− 1), g3(P, x) = −0.0519(x− 0.5)1/3 + 0.0412.

and functions are the same as in Table 4 with the exception of the initial condition
for susceptible fish Si,0(x) = 106 · exp(−(5x− 2)2), for i = 1, 2, 3, and the fecundity

kernels β(P, x) =
bx

1 + νP
and β̃(P, x) = 1

2β(P, x) for the susceptible and infected

fish, respectively. For the solutions shown in Figures 2 and 3, b = 5 × 107 and
ν = 5× 10−7.

In Figure 2, we see the size distributions of each group after three generations
(t ≈ 39 weeks). This gives us a sense of the size composition of each subpopulation
(the proportion of the population that will be of the smaller, medium, larger, etc.,
sizes). Both strictly decreasing growth functions, g1(x), g3(x), result in a relatively
large proportion of the population being centered at large sizes (x ≈ 0.6 and x ≈ 0.9,
respectively). In both of these cases, the fish experience very low growth rates
around these sizes, so it is reasonable that they grow past the smaller sizes quickly
and do not progress past these larger sizes rapidly. Further, the sharp decrease in
growth rate around x = 0.5 in g3(x), as opposed to the linearly decreasing g1(x),
results in the sharper peak of that size distribution in both the susceptible and
infected populations. Also, it agrees with our intuition that the peak observed
in the first subpopulation i = 1 occurs at a larger size than that of the third
subpopulation, since that group grows at a faster rate for larger sizes x > 0.5.
The infected population of the third group appears to follow the same trend, in
that there is a concentration of individuals around a large size as the growth rate
decreases to very small values. Similar behavior is not obvious in the susceptible
population of the second group; however, the (hatchling) fish at the boundary grow
from there very slowly, and thus, a comparatively large concentration is evident at
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Figure 2. The densities of susceptible and infected fish as a func-
tion of size after 3 generations (t = 39) using the growth functions
shown in Figure 1.
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(b) 900 generations

Figure 3. The total population size for each class where each class
grows according to the growth functions shown in Figure 1 over a
(a) shorter and (b) longer time interval.

the smallest size xmin = 0. While these plots show the overall size composition
of the subpopulations under the growth functions g1(x), g2(x), g3(x), we cannot,
however, deduce which of these result in larger or smaller population sizes for each
subpopulation. That is, we cannot immediately discern whether the subpopulation
will flourish or languish under each growth scenario.

From the solutions shown in Figure 3, we see the differences in population sizes
of each subgroup resulting from the different growth functions. We stress that the
initial condition for each subgroup is the same, and also that they gave rise to
progeny of the same subgroup. Therefore, any differences observed are simply due
to the differences in growth and consequently, any subsequent effects of growth-
dependent dynamics in this model. It appears that the third growth function g3(x)
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gives that subgroup a slight advantage over the first subgroup (linearly decreasing
growth rate g1(x)) after only three generations, as suggested by the trajectories in
Figure 3a. Interestingly, we see that after an initial period (shown in Figure 3b),
the first subgroup’s population size actually increases substantially more than the
third. During this first period in which the third group’s population size is bigger,
more of this subpopulation is at larger sizes (and hence reproducing faster), and
fewer at smaller sizes as compared with the first group. This is due to g3(x) > g1(x)
for small x, thereby growing faster to larger sizes. However, individuals in the first
subpopulation overall grow faster (as can be seen by comparison of the two groups’
peaks in Figure 2), and eventually, after several generations, this effect makes up for
the differences in the size composition of the two populations in the earlier times.
The second subgroup’s population size is markedly lower as these individuals spend
a substantially longer time at the lower sizes, and thus, the slower reproducing sizes.

6.4. Spread of Genetic heterogeneity. Another key feature of our model, that
we explore here, is the ability to study reproductive fitness, and genetic spread
throughout several generations. From the principal of competitive exclusion, we
anticipate that when all other rates and parameters amongst the m classes are
equal, that eventually, the only type remaining will be that which reproduces the
most during its lifetime. For this model, there are competitive or crowding effects
in the form of the birth rate, and limitless growth is not possible. Generally a
physiological class would have a reproductive advantage if the largest proportion of
progeny from each generation of any type is of that type. That is, if qi for i = 1, ..,m
represents the proportion of the total new fish of type i for a fixed generation, then
the subtype with the reproductive advantage is that with the largest qi. If the
growth rates are fixed, then this is determined by the fecundity kernels, and the
selection-mutation matrix p.
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Figure 4. Competitive exclusion between classes with different
birth rates.
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In this section, all parameters and functions are equal within the three classes
by using g1(x) for the growth rate (as in Section 6.3) and the values and functions
in Table 4. As in Section 6.3, we are using the modified initial condition, Si,0(x) =
106 · exp(−(5x − 2)2), for i = 1, 2, 3. To study the effect of changes in values of
parameter in the fecundity kernel, we choose

βi(P, x) =
bix

1 + νP
, where bi = 5× 107, 5.3× 107, 5.6× 107 and ν = 5× 10−7.

(27)
For this example, we use the identity matrix for p, so all progeny is of the same
type as the progenitor to remove any genetic spread; each adult fish gives rise to
individuals of the same type. With these values, the third class reproduces at the
fastest rate, and therefore enjoys an advantage over the other two classes. The first
class is the slowest to reproduce. The total population sizes of all three classes
over 900 generations (t = 11, 700) are shown in Figure 4. As expected, the first
physiological class is able to reproduce much faster, achieving and maintaining a
high population size, while the other two classes go extinct. The second class is
slower to go extinct than the first. So, not surprisingly, in the absence of genetic
spread, the reproductive fitness of the individuals belonging to a physiological class
is determined entirely by the birth rate. Thus, the principle of competitive exclusion
holds, and the only surviving class is that with the highest birth rate.

If genetic spread occurs, or in other words, if a proportion of a fish’s clutch
(batches of eggs) are eggs of different type(s), then reproductive fitness of one sub-
type cannot be determined by birth rate alone. Further, it may be possible for this
effect to counteract the dominant birth rate of one subgroup, which would other-
wise result in that subgroup being the only one remaining, as seen in Figure 4. To
examine the extent to which this spread, or mutation, may affect the simultane-
ous persistence of each type, we consider model solutions with different choices of
the matrix p. In some instances, genetic spread may actually be the probability
of mutations (although not exclusively so), and therefore, may be relatively rare.
Therefore, the off-diagonal elements of the matrices considered here are small in
comparison to the diagonal elements. The first three p matrices considered are
reducible and the fourth one p is irreducible; these are given by

p1 =

 0.90 0.00 0.00
0.05 0.90 0.00
0.05 0.10 1.00

 p2 =

 1.00 0.15 0.10
0.00 0.85 0.10
0.00 0.00 0.80


p3 =

 1.00 0.15 0.02
0.00 0.85 0.02
0.00 0.00 0.96

 p4 =

 0.70 0.10 0.10
0.25 0.70 0.20
0.05 0.20 0.70

 . (28)

We note that:

• By the first choice p1, the offspring of individuals in the third class (with
the largest birth rate) belong to that class only (pure selection). However,
individuals in the second class can produce individuals of the second and
third types, and individuals of the first type give rise to individuals of all
three types.

• By the second choice p2, the individuals in the third class with the highest
birth rate produce individuals that belong to all three classes. Individuals in
the second class give rise to individuals in the first (lowest birth rate) and
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second classes. Individuals in class 1 produce individuals within their class
only (pure selection for this class).

• The matrix p3 is similar to p2 but with reduced mutation rates for the third
class, i.e., the fraction of offspring from individuals in class 3 being of the
other two classes, is smaller in this case; the genetic spread of class 3 is less.

• The matrix p4 is irreducible, with all fish able to produce individuals belonging
to any of the three classes, but with most progeny belonging to the same class
as the progenitor.
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Figure 5. The susceptible (a) and infected fish (b) in each sub-
group at t = 39 (three generations), and the long term behavior of
the subgroup total population (c) sizes with birth rates as in equa-
tion (27) and with the selection-mutation matrix p1 as in equation
(28).

In Figure 5, we have the model solutions with p1 as the matrix p. Being that
the third class, with the highest birth rate only produces progeny of its own kind,
it is not surprising that the mutations, or genetic spread allowed between the first
and second classes, with lower birth rates, are not able to compete effectively and
go extinct. The model solutions using p2, shown in Figure 6 in which the slowest
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reproducing class (the first class) not only does not produce offspring of other types,
but its population growth is enhanced by fish of the other types begetting fish of
this type, albeit at lower rates. So, this is a clear case in which genetic spread can
counteract the reproductive disadvantage of a low birth rate.
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Figure 6. The susceptible (a) and infected fish (b) in each sub-
group at t = 39 (three generations), and the long term behavior of
the subgroup total population (c) sizes with birth rates as in equa-
tion (27) and with the selection-mutation matrix p2 as in equation
(28).

In Figure 7, we see the model solutions with p3, which is only different from p2 in
that there is less mutation by the fastest reproducing class. Here, class three again
enjoys a reproductive advantage, as its genetic spread is less. This suggests that
the determining factor of the first class’ competitive advantage in Figure 6 was that
the third class was disadvantaged, by allowing a higher proportion of its offspring
than in p3 to be of the other classes. Thus, there appears to be a delicate balance
between birth rate and genetic spread in determining reproductive fitness between
the three subgroups.

While we see examples of competitive exclusion in Figures 5 – 7, we see coexis-
tence of all three subgroups in Figure 8c with the use of p4 for the selection-mutation
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Figure 7. The susceptible (a) and infected fish (b) in each sub-
group at t = 39 (three generations), and the long term behavior of
the subgroup total population (c) sizes with birth rates as in equa-
tion (27) and with the selection-mutation matrix p3 as in equation
(28).

matrix. This is the only irreducible, and indeed the only positive matrix p consid-
ered. In this case, the extinction of any of the three subgroups is not a possibility,
since the survival of either of the other two classes would result in new offspring of
all the subgroups. Of the scenarios considered here, this matrix is the only one that
does not involve pure selection of any of the three classes, and indeed, is the scenario
in which genetic spread occurs to the greatest extent. This suggests that genetic
spread can result in a situation in which the competitive exclusion principle does
not hold, and can diminish reproductive advantages that would otherwise benefit
fish of faster reproducing classes.

Note that the infection dynamics do not appear to play a key role here, as the
susceptible populations at t = 39 (Figures 5a, 6a, 7a, and 8a), and the infected
populations (Figures 5b, 6b, 7b, and 8b) are qualitatively similar, with the only
differences being the relative size of each subpopulation, which is likely simply due
to the reproduction scenarios considered in each case. We would expect this to
change if there are other differences between the subgroups’ parameter values, such
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Figure 8. The susceptible (a) and infected fish (b) in each sub-
group at t = 39 (three generations), and the long term behavior of
the subgroup total population (c) sizes with birth rates as in equa-
tion (27) and with the selection-mutation matrix p4 as in equation
(28).

as those governing the Mm transmission, feeding behavior, etc. However, that is
not the case in the examples presented here.

7. Conclusion. We developed a first attempt at a size-structured mathematical
model to describe the spread of Mycobacterium marinum between aquatic animals.
Our model consists of 2m partial differential equations and three ordinary differen-
tial equations with nonlinear parameter functions, initial conditions, and boundary
conditions. The scheme is designed as implicit, but can be solved explicitly in the
order presented in (15)–(20) and is therefore numerically efficient. Convergence of
the numerical approximation to the weak solution with bounded total variation was
presented in Section 5. In Section 6 we demonstrated the convergence as time and
mesh sizes decrease. We also illustrated some of the key features of the model that
distinguish it from others. We explored the size composition under different forms
of the growth function, and also the implications of that size composition on the
population size of each physiological subgroup. Additionally, we explored questions
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of reproductive fitness and genetic spread throughout generations and determined
conditions under which the competitive exclusion principle would hold. Also, in this
model, the reproductive advantage afforded one subpopulation via a high birth rate
can be counteracted by sufficient permutation probability. We demonstrated that
coexistence is possible when the permutation-selection matrix is irreducible, which
amounts to each subpopulation eventually producing offspring of all other subpop-
ulation types, so that long-term extinction of any subpopulation is not possible.

As the model developed here is complex, as a first attempt, we resorted to a
first-order finite difference scheme. In the future, we plan to develop second-order
high-resolution minmod based MUSCL schemes [23, 38]. Establishing convergence
of such schemes will require significantly more complicated analysis because of the
nonlocal nonlinearities and quadratic nonlinearities in the model (1). Future work
will also include the design of higher order WENO schemes (e.g., see [39, 46] for
fifth-order schemes) with suitable treatment for the boundary conditions and the
quadratic terms modeling the disease transmission. Establishing stability (let alone
convergence) results for such WENO schemes is in general very difficult. In fact,
within the framework of size-structured models we only know of the result in [46],
where the authors proved that the finite-volume scheme they developed is positivity-
preserving and L1 stable.

Appendix A. Proofs.

A.1. Proof of Lemma 5.1. Uniqueness is obvious from (15)–(20). Note that
Si,0, Ii,0, B0

a, B
0
u, M

0 are nonnegative by assumption (A5). Now assume for some

k > 0, Si,kj , Ii,kj ≥ 0 for i = 1, . . . ,m, j = 1, . . . , N and Bka , B
k
u, M

k ≥ 0. By

assumption (A3) and by (15) we have that Si,k+1
0 ≥ 0 and Ii,k+1

0 = 0. Then it is

clear from (16) and (17) that Si,k+1
j , Ii,k+1

j ≥ 0 for j = 1, . . . , N , which ensures

Bk+1
a , Bk+1

u , Mk+1 ≥ 0. This establishes the result.

A.2. Proof of Lemma 5.2. By multiplying (9) by ∆x∆t, summing over j =
1, . . . , N and i = 1, . . . ,m, we have

m∑
i=1

N∑
j=1

(Si,k+1
j − Si,kj )∆x+ ∆t

m∑
i=1

N∑
j=1

(gi,kj Si,k+1
j − gi,kj−1S

i,k+1
j−1 )

+

m∑
i=1

N∑
j=1

µi,kj Si,k+1
j ∆x∆t+

m∑
i=1

N∑
j=1

Li,kj Si,k+1
j ∆x∆t = 0.

Collapsing the telescoping sequence, incorporating the boundary condition from

(14), and using the facts that gi,kN = 0, and
∑m
i=1 p

i` = 1 we arrive at

m∑
i=1

N∑
j=1

Si,k+1
j ∆x

=

m∑
i=1

N∑
j=1

Si,kj ∆x+ ∆t

m∑
`=1

N∑
j=1

[
β`,kj S`,kj + β̃`,kj I`,kj

]
∆x
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−
m∑
i=1

N∑
j=1

(µi,kj + Li,kj )Si,k+1
j ∆x∆t.

Then by using (A2) and (A3), we determine

m∑
i=1

‖Si,k+1‖1 ≤
m∑
i=1

‖Si,k‖1 + c∆t

m∑
i=1

(‖Si,k‖1 + ‖Ii,k‖1)

−
m∑
i=1

N∑
j=1

Li,kj Si,k+1
j ∆x∆t.

(29)

Following similar arguments to those we used above for Si,+k+1
j we have

m∑
i=1

‖Ii,k+1‖1 ≤
m∑
i=1

‖Ii,k‖1 +
m∑
i=1

N∑
j=1

Li,kj Si,k+1
j ∆x∆t. (30)

Adding (29) and (30) we have

m∑
i=1

(
‖Si,k+1‖1 + ‖Ii,k+1‖1

)
≤ (1 + c∆t)

m∑
i=1

(‖Si,k‖1 + ‖Ii,k‖1)

≤ ecT
m∑
i=1

(
‖Si,0‖1 + ‖Ii,0‖1

)
and the result follows.

A.3. Proof of Lemma 5.3. From equation (18), we determine

|Bk+1
a | ≤

∣∣∣Bka + ∆t
∑m
i=1

∑N
j=1 ρ

i
jI
i,k+1
j ∆x

∣∣∣
≤ |Bka |+ c∆t

∑m
i=1 ‖Ii,k+1‖1

≤ |Bka |+ c∆tC1

≤ |B0
a|+ c(k + 1)∆tC1.

Then,

|Bka | ≤ |B0
a|+ cK∆tC1

≤ |B0
a|+ cTC1 ≡ C2,Ba

.

Treating (19) similarly, we have

|Bk+1
u | ≤ |B0

u|+ cT (1 + C2,Ba
) ≡ C2,Bu

.

Now, treating (20) similarly we have

|Mk+1| ≤ |M0|+ c3TC2,Bu ≡ C2,M .

Thus, letting C2 = C2,Ba
+ C2,Bu

+ C2,M we have our result.

A.4. Proof of Lemma 5.4. Clearly, Li,kj ≥ 0. Considering (8) and using (A4),

(A7), and Lemma 5.3, we have

Li,kj = ν1δ1B
k
u + ν2δ2B

k
a + ν3ζc

i
2,jM

k + ν4c
i
1,jB

k
u

≤ 2c2Bku + c2Bka + c3Mk

≤ (3c2 + c3)C2 ≡ C3.
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Using (A4), (A7), and Lemma 5.3, we obtain

|D−∆x(Li,kj )| =
∣∣∣Li,kj − Li,kj−1

∆x

∣∣∣
≤
∣∣∣c2Mk

(ci2,j − ci2,j−1

∆x

)
+ cBku

(ci1,j − ci1,j−1

∆x

)∣∣∣
≤c3C2 + c2C2 ≡ C4.

A.5. Proof of Lemma 5.5. If Si,k+1
0 = ‖Si,k+1‖∞, then from the boundary con-

dition (15), the assumption (A3), and using the fact that pi` ≤ 1, we have

Si,k+1
0 ≤ c

gi,k0

m∑
`=1

N∑
j=1

[
S`,kj + I`,kj

]
∆x.

Since 0 ≤ P k ≤ C1 for k = 0, . . . ,K, we let α ≤ min gi(P, x0) for P ∈ [0, C1] and
1 ≤ i ≤ m. Then

Si,k+1
0 ≤ c

α

m∑
`=1

[
‖S`,k‖1 + ‖I`,k‖1

]
.

Using Lemma 5.2 we get

‖Si,k+1‖∞ ≤
c

α
C1.

If ‖Si,k+1‖∞ is not obtained from the boundary, then there exists an integer, j0,
1 ≤ j0 ≤ N such that

Si,k+1
j0

= ‖Si,k+1‖∞.
From (9) we have

Si,k+1
j0

− Si,kj0
∆t

+
gi,kj0 S

i,k+1
j0

− gi,kj0−1S
i,k+1
j0−1

∆x
+ µi,kj0 S

i,k+1
j0

+ Li,kj0 S
i,k+1
j0

= 0.

Multiplying by ∆t, combining like terms, and using the fact that Si,k+1
j0−1 ≤ Si,k+1

j0
we obtain

Si,k+1
j0

(1 + ∆tµi,kj0 + ∆tLi,kj0 ) + ∆t
gi,kj0 − g

i,k
j0−1

∆x
Si,k+1
j0

≤ Si,kj0 .

By (A1), (A2) and Lemma 5.4,

(1−c∆t)‖Si,k+1‖∞ ≤
(

1+∆tµi,kj0 +∆tLj0 +∆t
gi,kj0 − g

i,k
j0−1

∆x

)
‖Si,k+1‖∞ ≤ ‖Si,k‖∞.

Thus,

‖Si,k+1‖∞ ≤
( 1

1− c∆t

)
‖Si,k‖∞

≤
( 1

1− c∆t

)k+1

‖Si,0‖∞.

So we obtain

‖Si,k+1‖∞ ≤ max

{
c

α
C1

(
1

1− c∆t

)k
,

(
1

1− c∆t

)k+1

‖Si,0‖∞

}
< C5,S .
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If ‖Ii,k+1‖∞ is obtained at the left boundary, then ‖Ii,k+1‖∞ = 0. Thus, using
arguments similar to those made above, we have

‖Ii,k+1‖∞ ≤
( 1

1− c∆t

)k+1

‖Ii,0‖∞ +

k+1∑
l=1

( 1

1− c∆t

)k+1−l
∆tC3C5,S < C5,I .

Letting C5 = C5,S + C5,I we obtain the result.

A.6. Proof of Lemma 5.6. From the definition of P (t) we arrive at

P k+1 − P k

∆t
=

m∑
i=1

N∑
j=1

Si,k+1
j − Si,kj

∆t
∆x+

m∑
i=1

N∑
j=1

Ii,k+1
j − Ii,kj

∆t
∆x.

Incorporating (9) and (10) into the above, then collapsing the telescoping sums we
acquire

P k+1 − P k

∆t
=

m∑
i=1

[
gi,k0 Si,k+1

0 − gi,kN Si,k+1
N −

N∑
j=1

µi,kj Si,k+1
j ∆x

+ g̃i,k0 Ii,k+1
0 − g̃i,kN Ii,k+1

N −
N∑
j=1

µ̃i,kj Ii,k+1
j ∆x

]
.

Since gi,kN , g̃i,kN , Ii,k+1
0 = 0 we obtain

P k+1 − P k

∆t
=

m∑
i=1

[
gi,k0 Si,k+1

0 −
N∑
j=1

µi,kj Si,k+1
j ∆x−

N∑
j=1

µ̃i,kj Ii,k+1
j ∆x

]
.

Incorporating the boundary condition (14) into the above we have

P k+1 − P k

∆t
=

m∑
i=1

[ m∑
`=1

pi`
N∑
j=1

[β`,kj S`,kj + β̃`,kj I`,kj ]∆x−
N∑
j=1

µi,kj Si,k+1
j ∆x

−
N∑
j=1

µ̃i,kj Ii,k+1
j ∆x

]
P k+1 − P k

∆t
=

m∑
`=1

N∑
j=1

[β`,kj S`,kj + β̃`,kj I`,kj ]∆x−
m∑
i=1

N∑
j=1

µi,kj Si,k+1
j ∆x

−
m∑
i=1

N∑
j=1

µ̃i,kj Ii,k+1
j ∆x.

Thus, applying absolute value, and using (A2), (A3), and Lemma 5.2 we have∣∣∣∣P k+1 − P k

∆t

∣∣∣∣ ≤ 2cC1.
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A.7. Proof of Lemma 5.7. Observe that

gi,k0 Si,k+1
0 − gi,k−1

0 Si,k0

∆t
= gi,k0

Si,k+1
0 − Si,k0

∆t
+
gi,k0 − g

i,k−1
0

∆t
Si,k0 .

Incorporating the boundary condition (14) into the left-hand side of the above
equation, we have

gi,k0

Si,k+1
0 − Si,k0

∆t
+
gi,k0 − g

i,k−1
0

∆t
Si,k0

=

m∑
`=1

pi`
N∑
j=1

[
β`,kj

S`,kj − S
`,k−1
j

∆t
+
β`,kj − β

`,k−1
j

∆t
S`,k−1
j

+ β̃`,kj
I`,kj − I

`,k−1
j

∆t
+
β̃`,kj − β̃

`,k−1
j

∆t
I`,k−1
j

]
∆x.

Using (9), (10) and the mean value theorem, we obtain

gi,k0

Si,k+1
0 − Si,k0

∆t
+
gi,k0 − g

i,k−1
0

∆t
Si,k0

=

m∑
`=1

pi`
N∑
j=1

[
− β`,kj

(
D−∆x(g`,k−1

j S`,kj ) + µ`,k−1
j S`,kj + L`,k−1

j S`,kj

)
+ β`P (P̄1, xj)

P k − P k−1

∆t
S`,k−1
j + β̃`P (P̄2, xj)

P k − P k−1

∆t
I`,k−1
j

]
∆x

− β̃`kj
(
D−∆x(g̃`,k−1

j I`,kj ) + µ̃`,k−1
j I`,kj − L

`,k−1
j S`,kj

)
.

where P̄1 and P̄2 are values (dependent on `) between P k and P k−1.
Summing from i = 1, . . . ,m then applying absolute value we have

∣∣∣∣∣
m∑
i=1

[
gi,k0

Si,k+1
0 − Si,k0

∆t
+
gi,k0 − g

i,k−1
0

∆t
Si,k0

]∣∣∣∣∣
≤

∣∣∣∣∣
m∑
`=1

N∑
j=1

β`,kj D−∆x(g`,k−1
j S`,kj )

∣∣∣∣∣∆x+

∣∣∣∣∣
m∑
`=1

N∑
j=1

β̃`,kj D−∆x(g̃`,k−1
j I`,kj )

∣∣∣∣∣∆x
+

∣∣∣∣∣
m∑
`=1

N∑
j=1

{
β`,kj

[
µ`,k−1
j S`,kj + L`,k−1

j S`,kj

]
+ β`P (P̄1, xj)

P k − P k−1

∆t
S`,k−1
j

}∣∣∣∣∣∆x
+

∣∣∣∣∣
m∑
`=1

N∑
j=1

{
β̃`,kj

[
µ̃`,k−1
j I`,kj − L

`,k−1
j S`,kj

]
+ β̃`P (P̄2, xj)

P k − P k−1

∆t
I`,k−1
j

}∣∣∣∣∣∆x.
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Using summation by parts and the facts that gi,kN , g̃i,kN , I`,k0 = 0 we obtain∣∣∣∣∣
m∑
i=1

[
gi,k0

Si,k+1
0 − Si,k0

∆t
+
gi,k0 − g

i,k−1
0

∆t
Si,k0

]∣∣∣∣∣
≤

m∑
`=1

∣∣∣β`,k0 g`,k−1
0 S`,k0 |+

m∑
`=1

N∑
j=1

∣∣∣D−∆x(β`,kj )g`,k−1
j−1 S`,kj−1

∣∣∣∆x
+

m∑
`=1

N∑
j=1

∣∣∣D−∆x(β̃`,kj )g̃`,k−1
j−1 I`,kj−1

∣∣∣∆x
+

m∑
`=1

N∑
j=1

∣∣∣∣∣β`,kj [µ`,k−1
j S`,kj + L`,k−1

j S`,kj

]
+ β`P (P̄1, xj)

P k − P k−1

∆t
S`,k−1
j

∣∣∣∣∣∆x
+

m∑
`=1

N∑
j=1

∣∣∣∣∣β̃`,kj [µ̃`,k−1
j I`,kj − L

`,k−1
j S`,kj

]
+ β̃`P (P̄2, xj)

P k − P k−1

∆t
I`,k−1
j

∣∣∣∣∣∆x.
Hence,∣∣∣ m∑

i=1

[
gi,k0

Si,k+1
0 − Si,k0

∆t
+
gi,k0 − g

i,k−1
0

∆t
Si,k0

]∣∣∣
≤ mc2C5 + max

1≤`≤m
1≤j≤N

|D−∆x(β`,kj )g`,k−1
j−1

m∑
`=1

(
‖S`,k‖1 + ‖S`,k‖∞

)
+ max

1≤`≤m
1≤j≤N

|D−∆x(β̃`,kj )g̃`,k−1
j−1 |

m∑
`=1

(
‖I`,k‖1 + ‖I`,k‖∞

)
+ max

1≤`≤m
1≤j≤N

|β̃`,kj µ̃`,k−1
j |

m∑
`=1

‖I`,k‖1

+ max
1≤`≤m
1≤j≤N

(
|β`,kj µ`,k−1

j |+ |β`,kj L`,k−1
j |+ |β̃`,kj L`,k−1

j |
) m∑
`=1

‖S`,k‖1

+ C6 max
1≤`≤m
(P,x)∈D

|β`P |
m∑
`=1

‖S`,k−1‖1 + C6 max
1≤`≤m
(P,x)∈D

|β̃`P |
m∑
`=1

‖I`,k−1‖1.

The result follows from (A1), (A2), (A3), Lemma 5.2, Lemma 5.4, and Lemma
5.6.

A.8. Proof of Lemma 5.8. Set ηi,kj = D−∆x(Si,kj ) and apply the operator D−∆x to

(9) to get for 2 ≤ j ≤ N

ηi,k+1
j − ηi,kj

∆t
+D−∆x

[gi,kj Si,k+1
j − gi,kj−1S

i,k+1
j−1

∆x

]
+D−∆x[µi,kj Si,k+1

j ]

+D−∆x[Li,kj Si,k+1
j ] = 0.

Multiplying the above by sgn(ηi,k+1
j )∆x and noting that −ηi,kj sgn(ηi,k+1

j ) ≥ −|ηi,kj |
we have

|ηi,k+1
j | − |ηi,kj |

∆t
∆x+

{
D−∆x

[
D−∆x(gi,kj Si,k+1

j )
]

+D−∆x(µi,kj Si,k+1
j ) +D−∆x(Li,kj Si,k+1

j )
}

sgn(ηi,k+1
j )∆x ≤ 0,

(31)
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for 2 ≤ j ≤ N . When j = 1 we have that

ηi,k+1
1 − ηi,k1

∆t
=

1

∆x

(Si,k+1
1 − Si,k1

∆t
− Si,k+1

0 − Si,k0

∆t

)
.

Incorporating (9) into the above, we have

ηi,k+1
1 − ηi,k1

∆t
=
−1

∆x

(Si,k+1
0 − Si,k0

∆t
+
gi,k1 Si,k+1

1 − gi,k0 Si,k+1
0

∆x
+ µi,k1 Si,k+1

1

+Li,k1 Si,k+1
1

)
.

We set for notational convenience D−∆x(gi,k0 Si,k+1
0 ) = −S

i,k+1
0 − Si,k0

∆t
and multiply

the above by sgn(ηi,k+1
1 )∆x to obtain

|ηi,k+1
1 | − |ηi,k+1

1 |
∆t

∆x+
{
D−∆x

[
D−∆x(gi,k1 Si,k+1

1 )
]

+D−∆x(µi1S
i,k+1
1 )

+
µi,k0 Si,k+1

0

∆x
+D−∆x(Li,k1 Si,k+1

1 )− Li,k0 Si,k+1
0

∆x

}
sgn(ηi,k+1

1 )∆x ≤ 0.

(32)

Adding (31) and (32), then summing over the indices j = 1, 2, . . . , N we obtain

‖ηi,k+1‖1 − ‖ηi,k‖1
∆t

+

N∑
j=1

{
D−∆x

[
D−∆x(gi,kj Si,k+1

j )
]

+D−∆x(µi,kj Si,k+1
j )

+D−∆x(Li,kj Si,k+1
j )

}
sgn(ηi,k+1

j )∆x− 1

∆x
(Li,k0 Si,k+1

0

−µi,k0 Si,k+1
0 ) sgn(ηi,k+1

j )∆x ≤ 0.

(33)

We consider the first term in the summation and find

N∑
j=1

D−∆x

[
D−∆x(gi,kj Si,k+1

j )
]

sgn(ηi,k+1
j )∆x

=

N∑
j=2

D−∆x

[
gi,kj

Si,k+1
j − Si,k+1

j−1

∆x
+
gi,kj − g

i,k
j−1

∆x
Si,k+1
j−1

]
sgn(ηi,k+1

j )∆x

+D−∆x

[
D−∆x(gi,k1 Si,k+1

1 )
]

sgn(ηi,k+1
1 )∆x

=

N∑
j=2

D−∆x(gi,kj ηi,k+1
j ) sgn(ηi,k+1

j )∆x (34)

+

N∑
j=2

D−∆x

[gi,kj − gi,kj−1

∆x
Si,k+1
j−1

]
sgn(ηi,k+1

j )∆x

+D−∆x

[
D−∆x(gi,k1 Si,k+1

1 )
]

sgn(ηi,k+1
1 )∆x.
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Using methods similar to those presented in [7], we obtain

N∑
j=2

D−∆x

[
D−∆x(gi,kj Si,k+1

j )
]

sgn(ηi,k+1
j )∆x

+D−∆x

[
D−∆x(gi,k1 Si,k+1

1 )
]

sgn(ηi,k+1
1 )∆x

≥
N∑
j=2

D−∆x

[
D−∆x(gi,kj )Si,k+1

j−1

]
sgn(ηi,k+1

j )∆x

+D−∆x(gi,k1 )Si,k+1
0 sgn(ηi,k+1

1 ) +
Si,k+1

0 − Si,k0

∆t
sgn(ηi,k+1

1 ),

where Jump = {j : ηi,k+1
j ηi,k+1

j+1 < 0}. Thus (33) becomes

‖ηi,k+1‖1 − ‖ηi,k‖1
∆t

≤
(

max
1≤i≤m
1≤j≤N

|D−∆x(gi,kj )|+ max
1≤i≤m
0≤j≤N

(µij + Li,kj )
)
‖ηi,k+1‖1

+
(

max
1≤i≤m
2≤j≤N

|D−∆x[D−∆x(gi,kj )]|+ max
1≤i≤m
1≤j≤N

(
|D−∆x(µi,kj )|+ |D−∆x(Li,kj )|

))
‖Si,k+1‖1

+
(

max
1≤i≤m
1≤j≤N

|D−∆x(gi,kj )|+ max
1≤i≤m
0≤j≤N

(Li,kj + µi,kj )
)
‖Si,k+1‖∞ +

∣∣∣Si,k+1
0 − Si,k0

∆t

∣∣∣.
Incorporating (A1), (A2), and Lemmas 5.2, 5.4, 5.5, and 5.7, we see that there are
positive constants ω1 and ω2 such that

‖ηi,k+1‖1 − ‖ηi,k‖1
∆t

≤ ω1‖ηi,k‖1 + ω2. (35)

Setting ξi,kj = D−∆x(Ii,kj ), using similar arguments as above, and setting for no-

tational convenience D−∆x(g̃i,k0 Ii,k+1
0 ) = −I

i,k+1
0 − Ii,k0

∆t
, we obtain

‖ξi,k+1‖1 − ‖ξi,k‖1
∆t

+

N∑
j=1

(
D−∆x

(
D−∆x(g̃i,kj Ii,k+1

j )
)

+D−∆x(µ̃ijI
i,k+1
j )+

−D−∆x(Li,kj Si,k+1
j )

)
sgn(ξi,k+1

j )∆x− Li,k0 Si,k+1
0 sgn(ξi,k+1

1 ) ≤ 0.

(36)

Straightforward computations give

N∑
j=1

D−∆x

(
D−∆x(g̃i,kj Ii,k+1

j )
)

sgn(ξi,k+1
j )∆x

≥
N∑
j=2

(
D−∆x(D−∆x(g̃i,kj ))Ii,k+1

j−1

)
sgn(ξi,k+1

j )∆x.
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Thus, (36) becomes

‖ξi,k+1‖1 − ‖ξi,k‖1
∆t

≤
(

max
1≤i≤m
1≤j≤N

|D−∆x(µ̃i,kj )|+ max
1≤i≤m
2≤j≤N

|D−∆x(D−∆x(g̃i,kj ))|
)
‖Ii,k+1‖1

+ max
1≤i≤m
0≤j≤N

(µ̃i,kj )‖ξi,k+1‖1 + max
1≤i≤m
0≤j≤N

(Li,kj )
(
‖ηi,k+1‖1 + ‖Si,k+1‖∞

)
+ max

1≤i≤m
1≤j≤N

|D−∆x(Li,kj )|‖Si,k+1‖1.

Using (A1), (A2), and Lemmas 5.2, 5.4, and 5.5, we see that there are positive
constants ω3, ω4, and ω5 such that

‖ξi,k+1‖1 − ‖ξi,k‖1
∆t

≤ ω3‖ξi,k+1‖1 + ω4‖ηi,k+1‖1 + ω5. (37)

The result now easily follows from (35) and (37) .

A.9. Proof of Lemma 5.9. Multiplying (9) by ∆x, summing over j, then using
Lemmas 5.2, 5.4, 5.8, and assumptions (A1) and (A2), we obtain

N∑
j=1

∣∣∣∣∣S
i,k+1
j − Si,kj

∆t

∣∣∣∣∣∆x =

N∑
j=1

∣∣∣∣∣−g
i,k
j Si,kj − g

i,k
j−1S

i,k
j−1

∆x
− µi,kj Si,k+1

j − Li,kj Si,k+1
j

∣∣∣∣∣∆x
≤

N∑
j=1

∣∣∣∣∣g
i,k
j − g

i,k
j−1

∆x
Si,kj + gi,kj−1

Si,kj − S
i,k
j−1

∆x

∣∣∣∣∣∆x
+ c||Si,k+1||1 + C5||Si,k+1||1
≤ C1 max

1≤i≤m
1≤j≤N

|D−∆x(gi,kj )|+ cC8 + cC1 + C5C1 ≡ C9.

Thus,
N∑
j=1

∣∣∣∣∣S
i,r
j − S

i,q
j

∆t

∣∣∣∣∣∆x ≤
r−1∑
k=q

N∑
j=1

∣∣∣∣∣S
i,k+1
j − Si,kj

∆t

∣∣∣∣∣∆x ≤ C9(r − q).

The result for I can be established similarly.
Applying absolute value to (12), and using Lemmas 5.2, 5.3, 5.6, and assumptions

(A4), (A6), (A7) we get∣∣∣∣Bk+1
u −Bku

∆t

∣∣∣∣ ≤ |Hk|+ |λBka |+ |cMM∗Bk+1
u |+ |δ1Bk+1

u P k+1|

+

m∑
i=1

N∑
j=1

|ci1,jBk+1
u Si,k+1

j |∆x+

m∑
i=1

N∑
j=1

|c̃i1,jBk+1
u Ii,k+1

j |∆x

≤ c+ cC2 + (c2 + 2cC1)C2 ≡ C11.

Thus, ∣∣∣∣Bru −Bqu∆t

∣∣∣∣ ≤ r−1∑
k=q

∣∣∣∣Bk+1
u −Bku

∆t

∣∣∣∣ ≤ C11(r − q).

The results for Ba and M can be established similarly.



716 A. S. ACKLEH, M. L. DELCAMBRE, K. L. SUTTON AND D. G. ENNIS

A.10. Proof of Theorem 5.10. The results for Si(t, x) and Ii(t, x) follow from
Lemmas 5.2–5.9 and the proof of Lemma 16.7 (p. 276) in [40]. The results for
Ba(t), Bu(t), and M(t) follow from the Ascoli-Arzela Theorem (p. 74) in [45].

A.11. Proof of Theorem 5.11. Let ϕi ∈ C1
(
[0, T ], [xmin, xmax]

)
and ςi ∈ C1

(
[0,

T ], [xmin, xmax]
)

for i = 1, . . . ,m. We denote the finite difference approximations of

ϕi(tk, xj) by ϕi,kj and ςi(tk, xj) by ςi,kj . Multiplying (9) by ϕi,k+1
j ∆x, rearranging

terms, then summing over j = 1, . . . , N , and over k = 0, . . . ,K − 1 we get

N∑
j=1

(
Si,Kj ϕi,Kj − Si,0j ϕi,0j

)
∆x

=
K−1∑
k=0

N∑
j=1

(
Si,kj (ϕi,k+1

j − ϕi,kj )∆x+ gi,kj−1S
i,k+1
j−1 (ϕi,k+1

j − ϕi,k+1
j−1 )∆t

−ϕi,k+1
j µi,kj Si,k+1

j ∆t∆x− ϕi,k+1
j Li,kj Si,k+1

j ∆t∆x
)

+

K−1∑
k=0

ϕi,k+1
0

( m∑
`=1

pi`
N∑
j=1

[β`,kj S`,kj + β̃`,kj I`,kj ]∆x
)

∆t.

In a similar manner, we multiply (10) by ςi,k+1
j ∆x, rearrange terms, then sum over

j = 1, . . . , N , and over k = 0, . . . ,K − 1, to obtain

N∑
j=1

(
Ii,Kj ςi,Kj − Ii,0j ςi,0j

)
∆x =

K−1∑
k=0

N∑
j=1

(
Ii,kj (ςi,k+1

j − ςi,kj )∆x

+ g̃i,kj−1I
i,k+1
j−1 (ςi,k+1

j − ςi,k+1
j−1 )∆t

− ςi,k+1
j µ̃i,kj Ii,k+1

j ∆t∆x+ ςi,k+1
j Li,kj Si,k+1

j ∆t∆x
)
.

Using the above and then by a similar argument to those in the proof of Lemma
16.9 (p. 279) in [40], it can be shown that the limit of the difference approximations
defined in Theorem 5.10 is a weak solution to (1)–(3) by allowing N,K →∞. The
bounds on the functions are found by taking the limit in the bounds of the difference
approximations in Lemmas 5.2, 5.3, and 5.5.

A.12. Proof of Theorem 5.12. Recall that we let ui,kj = Si,kj − Ŝi,kj , vi,kj =

Ii,kj − Îi,kj , wk = Bka − B̂ka , y
k = Bku − B̂ku, and zk = Mk − M̂k. Denote the

corresponding approximations of the total fish population by P k and P̂ k and let

gi,kj = gi(P k, xj) and ĝi,kj = gi(P̂ k, xj). Similar notation is used for the other model

parameters. Also, we let Sk(α) and Ik(α) to denote the approximation at tk of
S(tk;α) and I(tk;α), respectively. Then we have from (9)–(13)

ui,k+1
j − ui,kj

∆t
+D−∆x(gi,kj Si,k+1

j − ĝi,kj Ŝi,k+1
j ) + µi,kj ui,k+1

j

+(µi,kj − µ̂
i,k
j )Ŝi,k+1

j + Li,kj ui,k+1
j + (Li,kj − L̂

i,k
j )Ŝi,k+1

j = 0,

vi,k+1
j − vi,kj

∆t
+D−∆x(g̃i,kj Ii,k+1

j − ˆ̃gi,kj Îi,k+1
j ) + µ̃i,kj vi,k+1

j

+(µ̃i,kj − ˆ̃µi,kj )Îi,k+1
j − Li,kj ui,k+1

j − (Li,kj − L̂
i,k
j )Ŝi,k+1

j = 0,

(38)
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wk+1 − wk

∆t
=
(
Ik+1(ρ)− Îk+1(ρ)

)
− δ2Bk+1

a (P k+1 − P̂ k+1)

−δ2P̂ k+1wk+1 − λwk+1,
yk+1 − yk

∆t
= −λwk+1 − cMM∗yk+1 − δ1Bk+1

u (P k+1 − P̂ k+1)

−δ1P̂ k+1yk+1 −Bk+1
u

(
Sk+1(c1)− Ŝk+1(c1)

)
−Ŝk+1(c1)yk+1 −Bk+1

u

(
Ik+1(c̃1)− Îk+1(c̃1)

)
−Îk+1(c̃1)yk+1,

zk+1 − zk

∆t
= εcMM

∗yk+1 − εcM (M̂k+1yk+1 +Bk+1
u zk+1)− µMzk+1

−Mk+1
(
Sk+1(c2)− Ŝk+1(c2)

)
− Ŝk+1(c2)zk+1

−Mk+1
(
Ik+1(c̃2)− Îk+1(c̃2)

)
− Îk+1(c̃2)zk+1.

Multiplying the first equation of (A.12) by sgn(ui,k+1
j )∆x, and summing over

j = 1, . . . , N , we get

‖ui,k+1‖1 − ‖ui,k‖1
∆t

+

N∑
j=1

D−∆x(gi,kj Si,k+1
j − ĝi,kj Ŝi,k+1

j ) sgn(ui,k+1
j )∆x

+

N∑
j=1

(
(µi,kj − µ̂

i,k
j )Ŝi,k+1

j + (Li,kj − L̂
i,k
j )Ŝi,k+1

j

)
sgn(ui,k+1

j )∆x

+

N∑
j=1

µi,kj |u
i,k+1
j |∆x+

N∑
j=1

|Li,kj ui,k+1
j |∆x ≤ 0.

Using methods similar to those found in [7] we obtain

N∑
j=1

D−∆x(gi,kj Si,k+1
j − ĝi,kj Ŝi,k+1

j ) sgn(ui,k+1
j )∆x

≥ −gi,k0 ui,k+1
0 sgn(ui,k+1

1 ) +

N∑
j=1

D−∆x
(
Ŝi,k+1
j (gi,kj − ĝ

i,k
j )
)

sgn(ui,k+1
j )∆x.

Thus,

‖ui,k+1‖1 − ‖ui,k‖1
∆t

≤ gi,k0 ui,k+1
0 sgn(ui,k+1

1 ) +−
N∑
j=1

D−∆x
(
Ŝi,k+1
j (gi,kj − ĝ

i,k
j )
)

sgn(ui,k+1
j )∆x

−
N∑
j=1

(
(µi,kj − µ̂

i,k
j )Ŝi,k+1

j + (Li,kj − L̂
i,k
j )Ŝi,k+1

j

)
sgn(ui,k+1

j )∆x

+

N∑
j=1

µi,kj |u
i,k+1
j |∆x+

N∑
j=1

|Li,kj ui,k+1
j |∆x.

(39)

We next establish a bound on the terms on the right of (39), beginning with the

first. Using the definition of ui,kj and (15) we realize

gi,k0 ui,k+1
0 sgn(ui,k+1

1 ) = (Zi,k − Ẑi,k − Ŝi,k+1
0 (gi,k0 − ĝ

i,k
0 )) sgn(ui,k+1

1 )

≤ |Zi,k − Ẑi,k|+ Ŝi,k+1
0 |gi,k0 − ĝ

i,k
0 |

≤ |Zi,k − Ẑi,k|+ C5

(
max

1≤i≤m
(P,x)∈D

|giP |
)
|P k − P̂ k|.

(40)
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Using (A1), (A2), Lemmas 5.2, 5.4, 5.8, and the mean value theorem for the
second term in (39), we obtain

−
N∑
j=1

D−∆x
(
Ŝi,k+1
j (gi,kj − ĝ

i,k
j )
)

sgn(ui,k+1
j )∆x

≤
(
C8 max

1≤i≤m
(P,x)∈D

|giP |+ C1 max
1≤i≤m
(P,x)∈D

|giPx|
)
|P k − P̂ k|,

(41)

and for the third term

−
N∑
j=1

(
(µi,kj − µ̂

i,k
j )Ŝi,k+1

j + (Li,kj − L̂
i,k
j )Ŝi,k+1

j

)
sgn(ui,k+1

j )∆x

≤ C1 max
1≤i≤m
(P,x)∈D

|µiP ||P k − P̂ k|+ c3C1(|yk|+ |wk|+ |zk|).
(42)

Incorporating (40), (41), and (42) into (39) we see that there are positive con-
stants ω6, ω7, and ω8 such that

‖ui,k+1‖1 − ‖ui,k‖1
∆t

≤ ω6‖ui,k+1‖1 + ω7(|yk|+ |wk|+ |zk|) + ω8|P k − P̂ k|
+|Zi,k − Ẑi,k|.

(43)

We note here that

|Zi,k − Ẑi,k| ≤
m∑
`=1

(
c(‖u`,k‖1 + ‖v`,k‖1) + 2cC1|P k − P̂ k|

)
, (44)

|P k − P̂ k| ≤
m∑
i=1

(‖ui,k‖1 + ‖vi,k‖1). (45)

Incorporating (44) and (45) into (43), we see that there is a positive constant ω9

such that

‖ui,k+1‖1 − ‖ui,k‖1
∆t

≤ ω9‖ui,k‖1 + ω9‖vi,k‖1 + ω6‖ui,k+1‖1
+ω7(|yk|+ |wk|+ |zk|).

(46)

Using similar arguments as above, we determine

‖vi,k+1‖1 − ‖vi,k‖1
∆t

≤
(
C8 max

1≤i≤m
(P,x)∈D

|g̃iP |+ C1 max
1≤i≤m
(P,x)∈D

|g̃iPx|+ C1 max
1≤i≤m
(P,x)∈D

|µ̃iP |
)
|P k − P̂ k|

+c3C1(|yk|+ |wk|+ |zk|) + C3‖ui,k+1‖1 + c‖vi,k+1‖1.

(47)

Hence, there are positive constants ω10, ω11, and ω12, such that

‖vi,k+1‖1 − ‖vi,k‖1
∆t

≤ ω10‖ui,k‖1 + ω10‖vi,k‖1 + ω11‖ui,k+1‖1
+ω12‖vi,k+1‖1 + ω7(|yk|+ |wk|+ |zk|).

(48)

We now multiply the third, fourth, and fifth equations of (A.12) by sgn(wk+1),
sgn(yk+1), and sgn(zk+1), respectively, to get

|wk+1| − |wk|
∆t

≤ |Ik+1(ρ)− Îk+1(ρ)|+ δ2B
k+1
a |P k+1 − P̂ k+1|

+δ2P̂
k+1|wk+1|+ λ|wk+1|,

(49)
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|yk+1| − |yk|
∆t

≤ λ|wk+1|+ cMM
∗|yk+1|+ δ1B

k+1
u |P k+1 − P̂ k+1|

+δ1P̂
k+1|yk+1|+Bk+1

u |Sk+1(c1)− Ŝk+1(c1)|
+Ŝk+1(c1)|yk+1|+Bk+1

u |Ik+1(c̃1)− Îk+1(c̃1)|
+Îk+1(c̃1)|yk+1|

(50)

|zk+1| − |zk|
∆t

≤ εcMM
∗|yk+1|+ εcMM

k+1|yk+1|+ εcM B̂
k+1
u |zk+1|

+µM |zk+1|+Mk+1|Sk+1(c2)− Ŝk+1(c2)|
+Ŝk+1(c2)|zk+1|+Mk+1|Ik+1(c̃2)− Îk+1(c̃2)|
+Îk+1(c̃2)|zk+1|.

(51)

We note here that for any continuous α,

|Sk(α)− Ŝk(α)| ≤
∑m
i=1 c‖ui,k+1‖1,

|Ik(α)− Îk(α)| ≤
∑m
i=1 c‖vi,k+1‖1,

(52)

Incorporating (45) and (52) into the above equations, along with (A7), Lemma
5.2, and Lemma 5.3 we see that there are positive constants ω13, ω14, ω15, ω16, ω17,
ω18, ω19, ω20, ω21, ω22, and ω23 such that

|wk+1| − |wk|
∆t

≤ ω13‖ui,k+1‖1 + ω14‖vi,k+1‖1 + ω15|wk+1|, (53)

|yk+1| − |yk|
∆t

≤ ω16‖ui,k+1‖1 + ω17‖vi,k+1‖1 + ω18|wk+1|+ ω19|yk+1|, (54)

|zk+1| − |zk|
∆t

≤ ω20‖ui,k+1‖1 + ω21‖vi,k+1‖1 + ω22|yk+1|+ ω23|zk+1|. (55)

Multiplying (46), (48), (53), (54), and (55) by ∆t and then adding the resulting
inequalities, we have

(1− h1∆t)Êi,k+1 ≤ (1 + h2∆t)Êi,k,

for each i = 1, . . . ,m and where

h1 = max{ω6 +ω11 +ω13 +ω16 +ω20, ω11 +ω14 +ω17 +ω21, ω15 +ω18, ω19 +ω22, ω23},

h2 = max{ω9, ω10, ω7},
and the result is established.
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