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Abstract. We investigate two HIV/AIDS epidemic models. The first model
represents the early San Francisco men having sex with men (MSM) epidemic.

We use data from the San Francisco City Clinic Cohort Study (SFCCC), doc-
umenting the onset of HIV in San Francisco (1978-1984). The second model

is a “what-if” scenario model including testing and treatment in the SFCCC

epidemic. We use compartmental, population-level models, described by sys-
tems of ordinary differential equations. We find the basic reproductive number

R0 for each system, and we prove that if R0 < 1, the system has only the

disease-free equilibrium (DFE) which is locally and globally stable, whereas if
R0 > 1, the DFE is unstable. In addition, when R0 > 1, both systems have

a unique endemic equilibrium (EE). We show that treatment alone would not

have stopped the San Francisco MSM epidemic, but would have significantly
reduced its impact.

1. Introduction. In this paper we develop models for the HIV/AIDS epidemic in
a men having sex with men (MSM) population, described by systems of differen-
tial equations. The first model is based on the MSM-San Francisco HIV epidemic
(1978-1984) [23], which analyzes the longitudinal San Francisco City Clinic Cohort
(SFCCC) data set ([7], [15], [27]). This data set is based on blood samples from
an earlier Hepatitis B Vaccine Clinical trial that took place during the period in
which HIV exploded through the San Francisco MSM population ([7], [8], [15]).
The SFCCC study involved 6875 men, 10% of the San Francisco MSM popula-
tion, in which blood samples and behavioral data were collected. After HIV was
identified, stored blood samples were thawed and tested for the presence of HIV
antibodies. This is a biological data set; it is not dependent on medical diagnosis
or self-reporting [15].

In our second model, we consider how the SFCCC epidemic would have evolved
if there had been testing and treatment available. Until recently, guidelines for the
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developed world suggested that, in the absence of an AIDS-defining illness, treat-
ment should start when CD4 levels are between 200 and 350 cells per microliter [9].
A shift in this strategy is to diagnose all HIV-infected people as soon as possible af-
ter infection and provide them with antiretrovirals (ART) when their levels of CD4
cells are higher [25]. In May of 2011, a multinational study, led by a University
of Carolina-Chapel Hill scientist, gave strong evidence that early treatment dra-
matically reduces the likelihood of transmitting the virus ([6], [17], [21]). Granich
et al. [11] investigated the effect of universal voluntary HIV testing and immedi-
ate treatment with ART in a heterosexual epidemic and examined the conditions
under which the epidemic could be driven towards elimination. In March of 2012,
the United States issued new guidelines for the treatment of HIV-infected patients
stating that regardless of CD4 levels, ART is recommended for all HIV-infected indi-
viduals [19]; accordingly, we have adjusted the SFCCC model to include treatment.
Our data shows a dramatic reduction in the epidemic; combined with a reduction
in the sexual behavior of the population due to awareness of the presence of HIV,
the epidemic would have been prevented. In a subsequent paper [24] we show more
details of this “what-if scenario,” namely, the effect testing and treatment would
have had on this population.

The assumptions made on the coefficients of the model are sufficiently general,
so that our results can be applied to other compartmental models of infectious
diseases.

2. The SFCCC model. The SFCCC data splits the population into six groups,
reflecting their very different sexual activity levels; the more active half averages
more than ten times as many contacts as the lower half. We model interactions
among six activity groups, obtained from published SFCCC survey data, as if all
sexual contacts were casual and promiscuous, such as was typical in gay bathhouses
in San Francisco. SFCCC data gives average contact rates for six different activity
levels, and we assume these specify the average frequency with which persons go to
the bathhouse, but once inside the mating pattern is random. Thus the bathhouse
assumption addresses both the frequency of contacts and the mixing pattern when
contacts occur.

For a typical untreated individual who is infected with HIV-1, his or her infec-
tivity varies with the stage of the infection. The disease can be described as passing
through three stages, primary, latent, and symptomatic. These are characterized by
significantly different blood viral levels and average durations. First comes a period
of primary infection (lasting less than a year). Our “primary infectious stage” is
defined as the time soon after initial infection when infectiousness first rises and
then drops. Seroconversion typically occurs well before the end of our primary
stage. One then enters into an asymptomatic period (averaging 7–8 years without
treatment), in which infectiousness is very low, followed by a symptomatic stage
(averaging three years until death without treatment), where infectiousness rises
again. The symptomatic stage begins while individuals are relatively healthy and
active though it also includes the more severe AIDS phase. The average times of
each stage are based on SFCCC data [1].

The approach in our paper is to divide the population into subgroups with differ-
ent activity level, from a subgroup with uncommonly high activity, to another with
no activity. A different approach, based on age of infection, has been successfully
applied by Brauer (see [5] as well as [26], in which treatment is also studied). In
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those models, infectivity of an individual is assumed to depend on the time since
infection.

In our model, the six groups are ordered according to decreasing sexual activity;
here is a schematic representation of the model for the ith group, i = 1..6 (see
Figure 1).

Figure 1. The SFCCC model.

The variables are as follows:
• Si is the percentage of susceptible individuals in the ith group;
• Pi, the percentage of individuals in the primary stage;
• Li, the percentage of individuals in the latent stage; and
• Ai, the percentage of those who have fully developed AIDS.

Individuals exit the system (they either leave the region, or die) with rate α. We
assume the population in each group is kept constant, by either births or immi-
gration, with the same rate α. This is a standing assumption in several infectious
diseases models, in particular, HIV (see, for example, [14], p. 38 and p. 46, and [2]).
A more realistic approach would be to assume that the population is variable, and
consider the factors that affect its rate of change, as done in [4].

All the terms related to the positive transition coefficients indicated at the corre-
sponding arrows are linear; the interactions between Si and Pi, are not (see system
(1) below).

The corresponding system of differential equations is as follows, where a dot
means derivative with respect to time, and i = 1 . . . 6:

Ṡi = −

[
6∑
k=1

Nik(pPk + `Lk + aAk)

]
Si + αAi ;

Ṗi =

[
6∑
k=1

Nik(pPk + `Lk + aAk)

]
Si − ρPi ;

L̇i = ρPi − λLi ;

Ȧi = λLi − αAi .

(1)

The constants p, `, a are the infectivity coefficients of the stages Pi, Li, and Ai
respectively; we assume that they are the same for each group.

System (1) satisfies d
dt (Si + Pi + Li + Ai) = 0, so that the total population in

each group remains constant. We express all the variables Pi, etc. as fractions of
the total population in each group, which is assumed to be 1, or 100%.

The coefficient Nik represents the average number of encounters of a person of
the ith group having sex with a person of the kth group.
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First, we define the average number ci of yearly contacts of an individual in the
ith group; we assume that groups are organized in decreasing sexual activity, so
that c1 > c2 > · · · > c6; for the San Francisco MSM population we obtained [13]

c1 = 231, c2 = 81, c3 = 33, c4 = 15, c5 = 3, c6 = 0;

we thus range from an extremely active first group down to a group that is sexually
inactive. Next, we determine the fraction fi of the total population in the ith group.
Again, for the San Francisco model we obtained [13]

f1 = 0.10, f2 = 0.15, f3 = 0.25, f4 = 0.25, f5 = 0.15, f6 = 0.10.

The total number of contacts is then calculated as

TotalContacts = C = f1c1 + f2c2 + . . .+ f6c6.

The weighted total contacts gk for the kth group are

gk =
ckfk
C

,

and finally, we set

Nik = cigk. (2)

The units of the variables and the parameters are specified in Section 7.

Main assumptions. All results in this paper will be based on the assumption
that c1 > c2 > · · · > c5 > c6 = 0 plus the generic assumption that the coefficient
matrix Nik has the expression (2); namely, we assume that Nik is the product cigk,
a factor depending only on i and a factor depending only on k. This corresponds
to the assumption of proportionate mixing, using the terminology in [18]. Finally,
all infectivities and transition coefficients introduced are assumed positive.

Reduced model. Since we have Si + Pi + Li + Ai = 1 for all i = 1, . . . , 6, we
can find Si = 1− (Pi +Li +Ai) and eliminate the variables Si. If we introduce the
notation

Zi =

6∑
k=1

Nik(pPk + `Lk + aAk)

to simplify the first equation below, we obtain the following reduced system:
Ṗi = Zi [1− (Pi + Li +Ai)]− ρPi ;

L̇i = ρPi − λLi ;

Ȧi = λLi − αAi .
(3)

Remark. By our assumptions, since c6 = 0, then N6k = Ni6 = 0 for all i and
k. Also, the initial conditions for (1) or (3) will be to start with a single infected
individual in the primary stage of group 1, never on group 6. It is not hard to see
that, in this case, S6(t) = 1 and P6(t) = L6(t) = A6(t) = 0 for all t. Hence, it is
possible to disregard the last group in our system, and assume that i, k range from
1 to 5. Although we will continue to let i range from 1 to 6, we will use this remark
when needed.
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3. Equilibria for the SFCCC model. To find equilibria for system (1) or, equiv-
alently, for system (3), we need to solve the set of algebraic equations obtained from
(3) by setting all rates of change equal to zero: Zi [1− (Pi + Li +Ai)]− ρPi = 0 ;

ρPi − λLi = 0 ;
λLi − αAi = 0 ;

(4)

where

Zi =

6∑
k=1

Nik(pPk + `Lk + aAk). (5)

System (4) always has one clear equilibrium, namely, the disease-free equilibrium
(DFE). That happens when no infected individuals exist to begin with, so that all
the populations in all groups will consist of just susceptibles. This corresponds to
Si = 1; Pi = Li = Ai = 0. Under some circumstances, this is the only equilibrium.
In other cases, we will show that the system has a single additional equilibrium, the
endemic equilibrium (EE). Everything will depend on the reproduction number R0

of the system.
To investigate the equilibria, let us solve the system of the last two linear equa-

tions of (4) in terms of Pi. We get

Li =
ρ

λ
Pi; Ai =

ρ

α
Pi. (6)

Observe that all the coefficients are independent of i.
Equations (6) imply that, if Pi = 0 for some i, then automatically Ai = Li = 0

for that value of i, whereas if Pi > 0 then both Ai, and Li are positive as well.
Therefore, to investigate the possible existence of a non-DFE equilibrium, let us
now assume that at least one of the Pi’s is strictly positive.

If we substitute the values of all the variables in terms of Pi given by (6) into
the expression (5) for Zi, we get

Zi =

6∑
k=1

Nik

(
p+

`ρ

λ
+
aρ

α

)
Pk =

6∑
k=1

Nikγ ρPk, (7)

where we have called

γ =
p

ρ
+
`

λ
+
a

α
. (8)

Next, to express the first equation of (4) in terms of Pi alone, first observe that,
by (6),

Pi + Li +Ai =
(

1 +
ρ

λ
+
ρ

α

)
Pi = β ρPi, (9)

where

β =
1

ρ
+

1

λ
+

1

α
. (10)

Substituting (7) and (9) into the first equation of (4), we obtain

6∑
k=1

NikγρPk(1− βρPi)− ρPi = 0.
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Dividing through by the positive coefficient ρ, and bringing Pi to the right-hand
side, the equation becomes

6∑
k=1

NikγPk(1− βρPi) = Pi. (11)

Now, let us use the proportionate mixing assumption (2) and substitute Nik =
cigk into (11). After dividing through by γ, we get

ci(1− βρPi)

(
6∑
k=1

gkPk

)
=

1

γ
Pi.

If we multiply both sides by gi and make the change of variables

giPi = xi, i = 1, . . . , 6, (12)

we obtain

ci(gi − βρxi)

(
6∑
k=1

xk

)
=

1

γ
xi. (13)

Let us call for a moment

y =

6∑
k=1

xk. (14)

Then (13) becomes

ci(gi − βρxi)y =
1

γ
xi. (15)

If for some i we had xi = gi
βρ (and hence positive), then (15) would imply that

xi = 0 for the same i. This contradiction shows that xi = gi
βρ is impossible. Also,

since the right-hand side of (15) is positive, we must have

xi <
gi
βρ
, i = 1, . . . 6. (16)

Finally, since we are assuming that at least one Pi is positive, then the corresponding
xi will also be positive and, therefore, y will be strictly positive. It now follows from
(15) that xi > 0 if, and only if, ci > 0. We conclude that x1, . . . , x5 are strictly
positive, whereas x6 = 0. For the remainder of this section, since c6 = x6 = 0, we
will consider that i varies from 1 to 5. In particular, in (14), we have y =

∑5
k=1 xk.

Note. Observe that, by (16) and (12),

Pi =
xi
gi
<

1

ρβ
.

Hence, by (9),

Pi + Li +Ai = ρβPi < 1,

whence 0 < Pi + Li +Ai < 1, and the solution makes sense for our model.
Equation (15) may be rewritten as

cigiy − ciρβxiy =
1

γ
xi.

If we add these equations term-by-term, from i = 1 to i = 5, we get

y

5∑
i=1

cigi − yβρ
5∑
i=1

cixi =
1

γ

5∑
i=1

xi
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Recalling (14), this can be written as

y

[
5∑
i=1

cigi − βρ
5∑
i=1

cixi

]
=

1

γ
y. (17)

Since we are seeking a non-DFE equilibrium and therefore y is strictly positive,
we can divide both sides of (17) by y, and obtain the following equivalent equation
for any EE (endemic equilibrium):

ρβ

5∑
i=1

cixi =

5∑
i=1

cigi −
1

γ
. (18)

This equation has the advantage that the right-hand side is a constant. Moreover,
as we will show, this constant is closely related to the reproduction number R0 of
the system.

All possible non-DFE equilibria will be solutions of (18) for which all xi (i =
1, . . . , 5) are strictly positive.

In order to further simplify the study of (18), let us eliminate all variables, except
for x1. To do this, let us re-write (15) as

cigi
xi
− ρβci =

1

γy
.

The right-hand side is independent of i. Hence, so is the left-hand side. This
means that

c1g1
x1
− ρβc1 =

c2g2
x2
− ρβc2 = · · · = c5g5

x5
− ρβc5 =

1

γy
. (19)

We can use the first four equalities in (19) to find

cigi
xi
− ρβci =

c1g1
x1
− ρβc1, i = 2, . . . , 5.

It follows that
cigi
xi

=
c1g1
x1
− ρβ(c1 − ci),

whence

xi =
cigix1

c1g1 − ρβ(c1 − ci)x1
, i = 2, . . . , 5. (20)

Substituting (20) into (18), we get the following non-linear equation for x1:

x1ρβ

[
c1 +

5∑
i=2

c2i gi
c1g1 − ρβ(c1 − ci)x1

]
=

5∑
i=1

cigi −
1

γ
. (21)

Proposition 1. If the right-hand side of (21) is positive, the equation has a unique
positive solution x1 for which x2, . . . x5 are also positive. If the right-hand side is
negative, or zero, the equation has no such positive solutions.

Proof. Recall that we assume c1 > c2 > · · · > c5 > c6 = 0. Therefore,

0 < c1 − c2 < c1 − c3 < c1 − c4 < c1 − c5.

The denominators in (21) vanish when x1 = θi, where

θi
def
=

c1g1
ρβ(c1 − ci)

, i = 2, . . . , 5. (22)

The above inequalities imply that 0 < θ5 < θ4 < θ3 < θ2.
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Now let us look at the left-hand side of (21) as a function of x1, namely, consider
the function

F (x) = ρβx

[
c1 +

5∑
i=2

c2i gi
c1g1 − ρβ(c1 − ci)x

]
,

on the interval [0, θ5). This function is non-negative and strictly increasing. Indeed,
each term in the sum increases with x, so that F (x) is the product of two non-
negative increasing functions. Also, F (x) is continuous on [0, θ5), with F (0) = 0,
and limx→θ−5

= +∞. Thus, if the right-hand side of (21) is positive, the equation

will have exactly one positive solution x1 on the interval [0, θ5), while if the right-
hand side is negative, or zero, there will be no positive solutions on that interval.
Moreover, if x1 is such a solution, 0 < x1 < θ5, then (20) implies that x2, . . . , x5
will be positive as well. On the other hand, if x1 is positive, but x1 > θ5, then (20)
shows that x5 would be negative, whence also P5 would be negative, which is not a
valid solution.

4. Stability for the SFCCC system. Recall that system (3) always has the
disease-free equilibrium, or DFE: Pi = Li = Ai = 0 for all i = 1, . . . , 6 (and hence
all Si = 1). Let us compute the Jacobian matrix of (3) at the DFE. If we name the
right-hand sides of (3) as

fi = Zi [1− (Pi + Li +Ai)]− ρPi ;

gi = ρPi − λLi ;

hi = λLi − αAi ;

where

Zi =

6∑
k=1

Nik(pPk + `Lk + aAk),

we find that

∂fi
∂Pi

= pNii[1− (Pi + Li +Ai)]−
6∑
k=1

Nik(pPk + `Lk + aAk)− ρ;

and, when k 6= i,
∂fi
∂Pk

= pNik[1− (Pi + Li +Ai)].

Hence,
∂fi
∂Pi

∣∣∣∣
DFE

= pNii − ρ ;
∂fi
∂Pk

= pNik

∣∣∣∣
DFE

(k 6= i).

Similarly, we find

∂fi
∂Li

∣∣∣∣
DFE

= `Nii ;
∂fi
∂Lk

= `Nik

∣∣∣∣
DFE

(k 6= i);

and
∂fi
∂Ai

∣∣∣∣
DFE

= aNii ;
∂fi
∂Ak

= aNik

∣∣∣∣
DFE

(k 6= i).

The other equations are linear, so we have, everywhere:

∂gi
∂Pi

= ρ ;
∂gi
∂Li

= −λ ;
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and all other partial derivatives of gi vanish; and

∂hi
∂Li

= λ ;
∂hi
∂Ai

= −α ;

and all other partial derivatives of hi are zero.
Now let us recall that the matrix N splits as Nik = cigk, and let us organize the

Jacobian at the DFE as

J =
∂(f1, g1, h1, . . . , f6, g6, h6)

∂(P1, L1, A1, . . . , P6, L6, A6)

∣∣∣∣
DFE

. (23)

Then we can write J = F − V , where V is the block-diagonal matrix

V =


V0 0 . . . 0
0 V0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . V0

 , (24)

in which V0 is defined by:

V0 =

 ρ 0 0
−ρ λ 0
0 −λ α

 ,

and

F =



c1g1p c1g1` c1g1a c1g2p c1g2` c1g2a . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .

c2g1p c2g1` c2g1a c2g2p c2g2` c2g2a . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


. (25)

Observe that V is invertible, and is also block-diagonal, with blocks

V0
−1 =

 1
ρ 0 0
1
λ

1
λ 0

1
α

1
α

1
α

 .

Hence, V −1 is non-negative. As in [22] and [10], we now use the results of non-
singular M -matrices (see, for example, [3], p. 25) to define the reproduction number
R0 for our system. Namely, let us define the reproduction number of system (1), or,
equivalently, system (3), as

R0 = ρ(FV −1), (26)

where ρ(FV −1) means the spectral radius of the product FV −1.
In [10], p. 33, it is explained how the (i, k) entry of FV −1 can be regarded

as the expected number of new infections in group i produced by one infected
individual originally introduced into compartment k. Thus, (26) can be related to
the usual interpretation of the reproduction number R0 of an infectious disease. (R0

represents the average number of infected individuals created by a single infected
person over the entire infection period.)
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Connection with the reproduction numbers of each subsystem. We can
analogously define the reproduction number R0i for the ith group in the SFCCC
system as

R0i = ρ(FiV0
−1), (27)

where Ji = Fi − V0, and

Ji =
∂(fi, gi, hi)

∂(Pi, Li, Ai)

∣∣∣∣
DFE

i = 1, . . . , 6.

Proposition 2. The reproduction number of system (1) is equal to the sum of the

reproduction numbers of each group, that is, R0 =
∑6
i=1R0i. Moreover, R0i =

cigiγ, where γ is given by (8), so that R0 = (c1g1 + · · ·+ c6g6)γ.

Proof. The matrix F has rank 1. Indeed, it can be written as the product F = u·vT ,
where u and v are the column vectors

u = (c1, 0, 0, c2, 0, 0, . . . , c6, 0, 0); (28)

v = (g1p, g1`, g1a, g2p, g2`, g2a, . . . , g6p, g6`, g6a). (29)

Hence, the product matrix W = FV −1 also has rank 1, and can be written as
W = u ·wT , where w is the column vector (V −1)T v. Thus, W has only one nonzero
eigenvalue, which is simple, and is equal to wT ·u (see [20]). Now, wT ·u = vTV −1u,
and V −1u is the column vector

V −1u = col

(
c1
ρ
,
c1
λ
,
c1
α
, . . .

c6
ρ
,
c6
λ
,
c6
α

)
.

Hence, the nonzero eigenvalue of W is equal to

vTV −1u = (g1c1 + · · ·+ g6c6)

(
p

ρ
+
`

λ
+
a

α

)
.

Since this eigenvalue is positive, and the rest are zero, this is also the spectral radius
of W . Thus,

R0 = ρ(W ) = (g1c1 + · · ·+ g6c6)γ. (30)

Finally, a similar argument, or a direct computation using the definition (27),
shows that R0i = ρ(FiV0

−1) = cigiγ.

Note. As was observed earlier, since we assume c6 = 0, in all computations
above one can assume that i ranges from 1 to 5.

Theorem 4.1. If R0 ≤ 1, then system (3) has only the disease-free equilibrium
(DFE); and if R0 < 1 then the DFE is locally asymptotically stable. If R0 > 1
then, in addition to the DFE, system (3) has a unique equilibrium for which all the
variables are strictly positive, the endemic equilibrium (EE). Moreover, if R0 > 1,
then the DFE is unstable.

Proof. First of all, observe that, by (30), the right-hand side of (21) can be written
as

5∑
i=1

cigi −
1

γ
=

1

γ

(
γ

5∑
i=1

cigi − 1

)
=
R0 − 1

γ
,

and (21) can now be re-written as

x1ρβ

[
c1 +

5∑
i=2

c2i gi
c1g1 − ρβ(c1 − ci)x1

]
=
R0 − 1

γ
. (31)
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Hence, if R0 > 1 then the right-hand side of (21), or equivalently (31), is positive,
and therefore, by Proposition 1, system (3) has a unique equilibrium for which all
variables are positive (a unique EE). On the other hand, if R0 ≤ 1, the right-hand
side of (31) is negative, or zero, and the system has no positive equilibria.

As regards the stability of the equilibria, observe that we can write −J = V −F ,
where both V −1 and F are non-negative. Observe also that, by the structure of
V , the matrix −J is a so-called Z-matrix, that is, all its off-diagonal entries are
non-positive. Hence [3], the real parts of all eigenvalues of −J have positive real
parts if, and only if, the spectral radius of V −1F is strictly less than one. Since
the eigenvalues of V −1F are the same as those of FV −1, we conclude that the real
parts of all eigenvalues of J have negative real parts if, and only if, the spectral
radius R0 of FV −1 is less than one.

This means that when R0 < 1 all eigenvalues of J have negative real parts.
Hence, by Hartman’s linearization theorem [12], the DFE is locally asymptotically
stable.

Assume now that R0 = ρ(FV −1) = ρ(V −1F ) > 1. This implies that at least one
eigenvalue of −J = V −F has negative, or zero, real part. Arguing by contradiction,
assume that no eigenvalue of −J has negative real part. Then the smallest one will
have zero real part. But then, for small positive ε, all eigenvalues of −J + εI =
(V + εI) − F would be positive. This implies [3] that ρ(F (V + εI)−1) < 1. By
continuity of eigenvalues, we conclude that ρ(FV −1) ≤ 1, which contradicts the
assumption that R0 = ρ(FV −1) > 1.

This contradiction proves that some eigenvalue of −J must have strictly negative
real part. Since J is the Jacobian of system (3) at the DFE, it follows by linearization
that the DFE is unstable.

Global stability of the disease-free equilibrium. We have shown that when
R0 < 1, system (3) has only the disease free equilibrium, DFE, which is locally
asymptotically stable. We now show this equilibrium is also globally stable.

Theorem 4.2. If R0 < 1, then the DFE is globally stable.

Proof. As in [14], p. 51, or in [16], we will prove global stability using a suitable
Lyapunov function. To this end, let us call X = (P1, L1, A1, . . . , P5, L5, A5) the
column vector of all variables of affected individuals, except those of the inactive
Group 6, for which P6 = L6 = A6 = 0 all the time. Then system (4) for the first

five groups (that is, i = 1, . . . 5) can be rewritten as Ẋ = JX − Q(X), where J is
the Jacobian (23) of the system at the DFE, restricted to the first five groups, and
Q(X) is the column vector Q(X) = (Q1(X), 0, 0, . . . Q5(X), 0, 0), with Qi(X) being
the non-negative quadratic form

Qi(X) =

5∑
k=1

Nik(pPk + `Lk + aAk)(Pi + Li +Ai), i = 1, . . . , 5.

Then we can write J = F − V , where F and V are the restrictions of (25) and (24)
to the first five groups. Finally F = u · vT , where u and v are the corresponding
restrictions of the column vectors (28) and (29), that is,

u = (c1, 0, 0, c2, 0, 0, . . . , c5, 0, 0);

and

v = (g1p, g1`, g1a, g2p, g2`, g2a, . . . , g5p, g5`, g5a).
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Let us define the Lyapunov function

V(X) = vTV −1X.

Then, since all entries of v are positive, we conclude that on the non-negative
orthant X ≥ 0, the function V(X) vanishes if, and only if, X = 0.

The derivative V̇ of V along the trajectories of (3) is

V̇(X) = vTV −1Ẋ = vTV −1 [JX −Q(X)] = vTV −1 [(F − V )X −Q(X)] ,

or

V̇(X) = vTV −1FX − vTX − vTV −1Q(X).

Here V −1F = (V −1u)·vT , so that the nonzero eigenvalue is vT ·V −1u. This nonzero
eigenvalue is also the spectral radius ρ(V −1F ) = ρ(FV −1) = R0; recall definition
(26). Moreover, vT is a left eigenvector for this eigenvalue; hence, vT (V −1F ) =
R0v

T . Thus,

V̇(X) = R0v
TX − vTX − vTV −1Q(X) = (R0 − 1)X − vTV −1Q(X).

If R0 < 1, V̇ is strictly negative for X ≥ 0, X 6= 0. Notice, finally, that the
convex set determined by X ≥ 0, Pi + Li + Ai ≤ 1 for i = 1, . . . 5, is invariant for
the trajectories of system (3). Indeed, on the boundary, say Pi = 0, the velocity
vector points inward, and the same happens on all other boundaries.

We conclude that all solutions that start on this set tend to the origin.

5. The SFCCC model with testing and treatment. We modified the original
SFCCC model to study the effect that testing and treatment would have had on
the San Francisco HIV epidemic. A schematic representation of our model is given
in Fig. 2.

Figure 2. The SFCCC model with testing and treatment.

We have added new population groups LTi and ATi; those are the individuals
from groups Li and Ai respectively, who have decided to undergo treatment, after
having tested HIV positive.

Individuals exit the system (they either leave the region, or die) with rates α
(for the HIV-AIDS group) and µ (for the treated HIV-AIDS group). As in the first
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model, we add balancing population input, to keep the total population in each
group constant.

Again, all equations, except those for Ṡi, are linear. Individuals opt into testing
and treatment with rate τ ; we also consider the case of individuals opting out of
treatment (with rate ω), and re-entering the corresponding non-treated populations
groups.

Here is the corresponding system of differential equations, which includes indi-
viduals undergoing treatment; again i = 1, . . . , 6:

Ṡi = −

[
6∑
k=1

Nik(pPk + `Lk + `TLTk + aAk + aTATk

]
Si + αAi + µATi ;

Ṗi =
[∑6

k=1Nik(pPk + `Lk + `TLTk + aAk + aTATk

]
Si − ρPi ;

L̇i = ρPi − λLi − τLi + ωLTi ;

Ȧi = λLi − αAi − τAi + ωATi ;

L̇T i = τLi − ωLTi − νLTi ;

ȦT i = τAi − ωATi + νLTi − µATi .
(32)

We have added infectivity coefficients `T , aT for the groups undergoing treatment,
which are assumed to be the same for all groups.

Again, for system (32) we have d
dt (Si+Pi+Li+Ai+LTi+ATi) = 0, so that the

total population in each group remains constant (and equal to 1). The transition
matrix N = (Nik) is defined as in the SFCCC system (1).

Since we have Si + Pi + Li + Ai + LTi + ATi = 1 for all i = 1, . . . , 6, as in the
SFCCC system we can find Si = 1− (Pi + Li +Ai + LTi +ATi) and eliminate the
variable Si. If we now call

Zi =

6∑
k=1

Nik(pPk + `Lk + `TLTk + aAk + aTATk)

we obtain the following reduced system with treatment:
Ṗi = Zi [1− (Pi + Li +Ai + LTi +ATi)]− ρPi ;

L̇i = ρPi − λLi − τLi + ωLTi ;

Ȧi = λLi − αAi − τAi + ωATi ;

L̇T i = τLi − ωLTi − νLTi ;

ȦT i = τAi − ωATi + νLTi − µATi .

(33)

6. Equilibria and stability for the SFCCC system with treatment. The
equilibria for system (32), or (33), are the solutions of the following algebraic system:

Zi [1− (Pi + Li +Ai + LTi +ATi)]− ρPi = 0 ;
ρPi − λLi − τLi + ωLTi = 0 ;
λLi − αAi − τAi + ωATi = 0 ;
τLi − ωLTi − νLTi = 0 ;
τAi − ωATi + νLTi − µATi = 0 ;

(34)

where

Zi =

6∑
k=1

Nik(pPk + `Lk + `TLTk + aAk + aTATk). (35)

System (34) has always the DFE (disease-free equilibrium), for which Si = 1;
Pi = Li = Ai = LTi = ATi = 0, for all i = 1, . . . , 6. As for the regular SFCCC
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model, depending on the reproduction number R0, system (34) will either only have
the DFE, or an additional equilibrium with all positive variables, the EE (endemic
equilibrium).

Proceeding as for the SFCCC case, let us solve the system of the last four equa-
tions of (34), which are linear, with respect to Pi. This system can be re-written
as 

(λ+ τ)Li − ωLTi = ρPi ;
λLi − (α+ τ)Ai + ωATi = 0 ;
τLi − (ω + ν)LTi = 0 ;
τAi + νLTi − (ω + µ)ATi = 0 .

(36)

If we call 
m = λω + λν + τν;
n = αω + αµ+ τµ;
r = λω2 + λωµ+ των + λων + λµν

= ωm+ µλ(ω + ν);
s = να+ ντ + λω + λν = να+m;

(37)

then the solution is

Ai =
ρr

mn
Pi; ATi =

τρs

mn
Pi; Li =

ρ(ω + ν)

m
Pi; LTi =

τρ

m
Pi, (38)

where all the coefficients are independent of i.
As before, observe that if Pi = 0 then all other variables will be 0 as well, and

we get the DFE for that i. On the other hand, if Pi > 0, then all other variables
will be positive as well, and we get the EE.

Substituting (38) into (35), we obtain

Zi =

6∑
k=1

Nik

[
p+

`ρ(ω + ν)

m
+
aρr

mn
+
`T τρ

m
+
aT τρs

mn

]
Pk. (39)

Let us call

γ =
p

ρ
+ `

ω + ν

m
+ a

r

mn
+ `T

τ

m
+ aT

τs

mn
. (40)

Then Zi can be rewritten as

Zi =

6∑
k=1

NikργPk. (41)

Next, using (38),

Pi + Li +Ai + LTi +ATi =

[
1 +

ρ(ω + ν)

m
+

ρr

mn
+
τρ

m
+
τρs

mn

]
Pi.

If we call

β =
1

ρ
+
ω + ν

m
+

r

mn
+
τ

m
+

τs

mn
, (42)

then we can write

Pi + Li +Ai + LTi +ATi = ρβPi. (43)

Substituting (41) and (43) into the first equation of (3), we obtain

6∑
k=1

NikργPk(1− ρβPi)− ρPi = 0,
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or

6∑
k=1

NikγPk(1− ρβPi) = Pi. (44)

This equation is formally identical to (11), although the positive constants γ and
β are now significantly more involved. This motivates the following definition.

Definition 6.1. The reproduction number R0i for the ith group of the SFCCC
system with treatment is R0i = cigiγ, where

γ =
p

ρ
+ `

ω + ν

m
+ a

r

mn
+ `T

τ

m
+ aT

τs

mn
,

and m,n, r, s are given by (37). The reproduction number R0 for system (32), or

(33), is R0 =
∑6
i=1R0i = γ

(∑6
i=1 cigi

)
.

We now prove the following result.

Theorem 6.2. If R0 ≤ 1, then system (33) has only the disease-free equilibrium
(DFE); if R0 < 1, then the DFE is locally asymptotically stable, and it is also
globally stable. If R0 > 1 then, in addition to the DFE, system (33) has a unique
equilibrium for which all the variables are strictly positive, the endemic equilibrium
(EE). Moreover, if R0 > 1, then the DFE is unstable.

Proof. After introducing new coefficients γ and β given by (40) and (42) respec-
tively, equation (44) coincides with (11). The same algebraic manipulations done
for the previous case will then lead to equation (21), which can be rewritten as
(31), for R0 given by Definition 6.1. Hence, by Proposition 1, we conclude that if
R0 ≤ 1 then (33) has only one equilibrium, the DFE, and if R0 > 1, in addition to
the DFE, the system has a unique equilibrium for which all variables are positive,
the EE.

To determine stability, we will look at the Jacobian J of the system at the DFE.
The computations will follow those that were done for the SFCCC system without
treatment, only now the algebraic computations will be significantly more involved.
The Jacobian of system (33) at the DFE can now be written as J = F − V , where
V is the block diagonal matrix

V =


V0 0 . . . 0
0 V0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . V0

 , (45)

with

V0 =


ρ 0 0 0 0
−ρ λ+ τ 0 −ω 0
0 −λ α+ τ 0 −ω
0 −τ 0 ω + ν 0
0 0 −τ −ν ω + µ

 , (46)
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and

F =



c1g1p c1g1` c1g1a c1g1`T c1g1aT c1g2p c1g2` . . .
0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .

c2g1p c2g1` c2g1a c2g1`T c2g1aT c2g2p c2g2` . . .
0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Then V is invertible and block-diagonal, with blocks

V0
−1 =



1
ρ 0 0 0 0

ω+ν
m

ω+ν
m 0 ω

m 0

r
mn

r
mn

ω+µ
n

ω(m+λµ)
mn

ω
n

τ
m

τ
m 0 τ+λ

m 0

sτ
mn

sτ
mn

τ
n

αν(τ+λ)+τm
mn

α+τ
n


,

so that V −1 is non-negative. Here m,n, r, s are given by (37).
We write the rank-1 matrix F as F = u · vT , where u and v are the column

vectors

u = (c1, 0, 0, 0, 0, . . . , c6, 0, 0, 0, 0);

v = (g1p, g1`, g1a, g1`T , g1aT , . . . , g6p, g6`, g6a, g6`T , g6aT ). (47)

Then the product matrix W = FV −1 is W = u · wT , where wT is the row vector
vTV −1. It follows that the (only) nonzero eigenvalue of W is wT · u. But wT · u =
vTV −1u, and

V −1u = col

(
c1
ρ
,
c1(ω + ν)

m
,
c1r

mn
,
c1τ

m
,
c1sτ

mn
, . . .

c6
ρ
,
c6(ω + ν)

m
,
c6r

mn
,
c6τ

m
,
c6sτ

mn

)
.

Thus the nonzero eigenvalue of W is positive, and equal to

vTV −1u = (g1c1 + · · ·+ g6c6)

(
p

ρ
+
`(ω + ν)

m
+

ar

mn
+
`T τ

m
+
aT sτ

mn

)
.

But the second factor in the last expression is precisely our γ, defined in (40), so
that the spectral radius of W = FV −1 is equal to ρ(FV −1) = (g1c1 + · · ·+ g6c6)γ.
An analogous (and simpler) computation shows that ρ(FiV0

−1) = cigiγ, where
Ji is the Jacobian for the ith group, split as Ji = V0 − Fi. Since the values of
these spectral radii agree with the ones in Definition 6.1, we have established that
R0 = R01 + · · ·+R06 also holds true when the reproduction numbers are regarded
as spectral radii of the corresponding matrices FV −1 and FiV0

−1.
The local stability of the DFE for R0 < 1 and its unstability when R0 > 1 follow

now from the properties of M -matrices, repeating the arguments for the SFCCC
system with no treatment.
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The global stability of the DFE, when R0 < 1, is established using the same
arguments as for the case withouth treatment, with the Lyapunov function

V(X) = vTV −1X,

where now X = (P1, L1, A1, LT1, AT1, . . . , P5, L5, A5, LT5, AT5);
Q(X) = (Q1(X), 0, 0, 0, 0, . . . , Q5(X), 0, 0, 0, 0), with

Qi(X) =

5∑
k=1

Nik(pPk + `Lk + aAk + `TLTk + atATk)(Pi + Li +Ai + LTi +ATi);

v is given by

v = (g1p, g1`, g1a, g1`T , g1aT , . . . , g5p, g5`, g5a, g5`T , g5aT ), (48)

and V is the matrix (45)-(46), except that now V consists of five diagonal blocks
V0, instead of six.

7. Numerical results. For the SFCCC system without testing and treatment, the
following values were adopted for the coefficients [7], [23], [13]:

ρ = 6, λ =
1

7
, α = 0.5;

c1 = 231, c2 = 81, c3 = 33, c4 = 15, c5 = 3, c6 = 0;

f1 = 0.10, f2 = 0.15, f3 = 0.25, f4 = 0.25, f5 = 0.15, f6 = 0.10.

The units of the variables, and the coefficients, are as follows. The variables
Si, Pi, Li, and Ai represent fractions of the total population in the ith group, and
are therefore dimensionless. Time is measured in years, and the units of ρ, λ, α are
1

year . The ci are measured in encounters
year ; consequently, the gk are dimensionless, and

the Nik have dimension encounters
year .

Figure 3. Comparing the model output with the SFCCC data.



616 BRANDY RAPATSKI AND JUAN TOLOSA

Estimates of average infectiousness for each of the three stages are obtained using
the Figure 1 model based on Figure 3 data as done in [23]. The model can be run for
any choice of the three infectivities, and an epidemic is produced. We have seven
data points (for each of the seven years 1978 − 1984). We use the most reliable
data points ([27], [7], [15]). These points correspond to the years 1978, 1979, 1980
and 1984. We compute the square of the difference between this model epidemic
and the actual SFCCC epidemic at these four data points. Let RMS (root mean
square) denote the square root of the average of those four numbers. We use a
minimization technique (Newton’s Method applied to the gradients of E = RMS
errors in SFCCC fit to data for the four years) to select the choice of infectivities
for which the RMS is minimized. The minimum is obtained for stage infectivity
rates

p = 0.00198, ` = 0.0000456; a = 0.15449588

with an RMS of 0.00034. We call these infectivity estimates the best fit infectivi-
ties. The model solution displayed in Figure 3 reproduces the cumulative SFCCC
epidemic using these best fit infectivities. We take the output closest to 4.5% to
be the year 1978. Working backwards we can determine the starting year of the
epidemic (when one person was infected).

The corresponding numerical value for the coefficient γ given by (8) is γ =
0.301918. The rounded-off reproduction numbers R0i = γcigi for each subsystem
are

R01 = 33.7745, R02 = 6.2292, R03 = 1.7232,

R04 = 0.3560, R05 = 0.0085, R06 = 0.

The reproduction number R0 for the entire system is the sum of these, which yields
R0 = 42.0919. Since R0 > 1, our results imply that the system has precisely two
equilibria: the disease-free equilibrium (DFE), which is unstable, and an endemic
equilibrium (EE).

Although so far we haven’t succeeded in proving, for the general case, that the
EE is stable when R0 > 1, a numerical analysis of the 18 × 18-Jacobian of system
(3) at the EE shows that all its eigenvalues have negative real parts, and is hence
(at least locally) stable. The total infected population at the EE is 74.018%. On
the other hand, the numerical solution of the total infected population for system
(3) at t = 25 is about 74%, and at t = 100 practically coincides with the value at
the EE.

We have explored several treatment options for the model with treatment. For
all of them we picked the same parameter values as for the untreated model, plus
µ = 0.2, ν = 0.05,

`T = 0.04 · ` = 0.00000912; aT = 0.04 · a = 0.00599984.

For τ = 0.5 (50% of the population being tested and, if tested positive, imme-
diately put on antiretroviral treatment), ω = 0.03 (the rate of withdrawal from
treatment), the total infected population approaches its EE value of 56.18%. For
τ = 1.0 and ω = 0, the asymptotic value for the total infected is 40.79%. If we
assume that the number of contacts was drastically reduced—by a factor of ten—
around 1986, when the San Francisco MSM population became aware of the HIV
threat, then for the untreated model the total infected will still approach 33.37%,
whereas for the model with treatment, for ω = 0.03 and τ = 0.75 or larger, this
limit value will be zero, that is, the infection will be totally eradicated.

For more details, see our upcoming paper [24].



MODELING OF THE SFCCC HIV-EPIDEMIC INCLUDING TREATMENT 617

Sensitivity and genericity. The stability of the disease-free equilibrium DFE
when R0 < 1, and its instability when R0 > 1, were proved under very general
assumptions on the parameters—namely, that they are all positive, and the ci are
strictly decreasing (i = 1, . . . 6), with c6 = 0. Therefore, they are generic, and a
small change in the data will not influence their long-term behavior. The only result
that is pending for now is the stability of the endemic equilibrium EE for the case
when R0 > 1. To investigate the stability of the EE under small perturbations, as
well as to measure the effect produced in the data by a variation in the parameters,
we conducted sensitivity analysis. Due to the lengthy computations required for
each run, we used the OFAT (one factor at a time) method. The parameters inves-
tigated were the three chosen infectivities p, `, and a, which, as we have explained
in this section, were chosen to minimize the difference between the model output
and most reliable available data. We sampled 10 variations for each parameter.

We found that up to a 50% variation in the infectivity p produced insignificant
change in the total infected population (less than 0.001%), and a very small change
in the reproduction number R0 (about 0.005%). The same variation in the infectiv-
ity ` produced a change of less than 0.008% in the total infected, and about 0.05%
in R0. For the infectivity a, which is larger than either p or ` by a thousandfold,
we computed a variation of up to 5%. The result was a change of less than 0.8% in
the total infected, and less than 5% in R0 (always from its original value of about
43.12).

Finally, we found that the largest real part of the eigenvalues of the Jacobian
matrix at the EE was always the same, namely, − 1

7 , which corresponds to −ρ. This
implies that in all the runs, the EE is in fact stable. Incidentally, it is not hard to
show that −ρ, −α, and −λ are always eigenvalues for the Jacobian at the EE, for
any values of the infectivities a, `, p (this is due to the fact that c6 = 0).

8. Discussion. We offer two models for the development of the HIV-AIDS epi-
demic in a MSM population, described by systems of differential equations. The
first model is based on data obtained for the MSM-San Francisco HIV epidemic
(1978-1984), the longitudinal San Francisco City Clinic Cohort (SFCCC) data set
[7], [15],([27]); we have shown that this model agrees quite well with the data.

The second model represents a “what if” scenario: how the SFCCC epidemic
would have evolved if there had been testing and treatment available. We show
how treatment would have dramatically reduced the likelihood of transmitting the
virus, in agreement with the conclusions of recent studies ([6], [17], [21]). More
details are in our upcoming paper [24].

Each system assumes that the population is divided into six groups, with decreas-
ing sexual activity levels ci. In each group, the population consists of susceptible
individuals Si, and sick individuals which, in turn, are either in the primary stage
Pi, latent stage Li, or AIDS stage Ai, for i = 1, . . . 6.

We analyze the properties of the two SFCCC systems, under fairly general as-
sumptions; namely, that the average encounter matrix Nik splits as Nik = cigk
(proportionate mixing).

For a dynamical system describing an infection, a crucial role is played by the
reproduction number R0, which represents the number of individuals infected by
a single sick individual during his/her lifetime. We deduce the expression of the
reproduction number R0 for each system and prove that, for each one, if R0 < 1,
then the system has only the disease-free equilibrium (DFE), for which there are no



618 BRANDY RAPATSKI AND JUAN TOLOSA

sick individuals; and if R0 > 1 then, in addition to the DFE, the system has a single
endemic equilibrium (EE), with a positive number of sick individuals. Moreover,
we show that when R0 < 1, the DFE is locally, as well as globally, stable, while if
R0 > 1, the DFE is unstable. Numerical evidence shows that in this case the EE is
stable, but for the moment this remains to be proved for the general case.
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