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Abstract. Biofilms are heterogeneous matrix enclosed micro-colonies of bac-

teria mostly found on moist surfaces. Biofilm formation is the primary cause
of several persistent infections found in humans. We derive a mathematical

model of biofilm and surrounding fluid dynamics to investigate the effect of a

periodic dose of antibiotic on elimination of microbial population from biofilm.
The growth rate of bacteria in biofilm is taken as Monod type for the limiting

nutrient. The pharmacodynamics function is taken to be dependent both on

limiting nutrient and antibiotic concentration. Assuming that flow rate of fluid
compartment is large enough, we reduce the six dimensional model to a three

dimensional model. Mathematically rigorous results are derived providing suf-
ficient conditions for treatment success. Persistence theory is used to derive

conditions under which the periodic solution for treatment failure is obtained.

We also discuss the phenomenon of bi-stability where both infection-free state
and infection state are locally stable when antibiotic dosing is marginal. In

addition, we derive the optimal antibiotic application protocols for different

scenarios using control theory and show that such treatments ensure bacteria
elimination for a wide variety of cases. The results show that bacteria are

successfully eliminated if the discrete treatment is given at an early stage in

the infection or if the optimal protocol is adopted. Finally, we examine factors
which if changed can result in treatment success of the previously treatment
failure cases for the non-optimal technique.

1. Introduction. Bacteria are mostly found living in micro-colonies known as
biofilms. The biofilm formation is the core reason for many microbial infections
[5], [7], [18] and [13]. The foremost cause of failure of medical implants is bacte-
rial infection, which is due to the formation of biofilms [2], [13] and [40] on the
surfaces of indwelling medical devices and in some cases on the adjacent tissues
as well. This phenomenon has been observed in various devices such as artificial
joints, prosthetic heart valve, urinary catheters and contact lenses [7], [13], [14], [37]
and [39]. Biofilms are heterogenous matrix-enclosed bacterial accumulations that
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may attach to living or non-living surfaces, surrounded by water channels [1] and
[18]. Microbial colonies in biofilms are rooted in a glue-like matrix, which is mainly
composed of exopolysaccharides; however minute amount of proteins and nucleic
acid are also present[1]. The plaque that forms on the surface of teeth, causing
tooth decay, is also a type of biofilm.

Biofilm formation is a growth cycle which initiates as the free-floating bacteria
identify a surface and strongly adhere to it by excreting polymers that aid in attach-
ment and matrix formation [1], [13], [18] and [37]. These attached cells multiply in
number forming micro-colonies of bacteria, leading to maturation of the microbial
cells. The resulting mature biofilm may form a mushroom-like structure, with open
water channels acting as a circulatory system [1] and [18]. The biofilm bacteria
show a change in phenotype with respect to the rate of growth and gene transcrip-
tion [13] [37]; hence bacteria in biofilm have a genetic makeup different from the
individual bacterial cells [37].

It is observed that at times, antibiotic treatment fails to cure the bacterial infec-
tions due to biofilm formation. The reason for this failure of antimicrobial therapy
has been an active research area in the recent years [5],[7] and [14]. Several math-
ematical models explaining this have been developed, which have improved our
understanding of this subject.

Several hypothesis explaining the reduced susceptibility of bacteria growing in
biofilms to antimicrobial therapy have been devised. According to one hypothesis,
the structure of biofilm prevents the antibiotic from penetrating inside the deeply
embedded bacterial community [2], [5] [39]and [40]. Several mechanisms such as
reaction with neutralizing agent, synthesis of antibiotic degrading enzymes and
sorption of antibiotic by exo-polymeric substance leads to limited penetration of
antimicrobial agents in biofilm [5], [6] and [2]. Phenotypic resistance is another ac-
tively researched mechanism that leads to decreased mortality of bacteria in biofilm
[4], [42] and [44]. Genetically homogenous bacterial populations may be differ-
ent phenotypically with respect to their tolerance to antimicrobial agents [6], [12]
and[44]. Exposure of this type of phenotypically heterogenous population to antibi-
otics results in an increase in resistant bacterial population to antibiotic treatment,
as the exposure time of bacteria to medication increases [5] and [44].

Another suggested preventive phenomena to antibiotic treatment in biofilms is
the physiological resistance [5], [4], [6], [8] and [36]. According to this hypothesis,
the slow growing and non-respiring bacteria are protected from antibiotic therapy
because of their inactivity. The decreased growth rate and inadequate nutrient
supply are common features of biofilm. It is suggested [4] and [36] that bacteria
on the surface are killed at a faster rate than the those embedded deep in the
biofilm [8]. It can then be expected that as the bacteria on surface are killed, the
nutrient penetrates into the biofilms, hence rendering those bacteria susceptible to
antibiotic treatment. By this reasoning, one may expect that this would lead to
a complete eradication of bacteria; however this is not the case observed [4] [36].
Nevertheless, studies [5, 10, 36] have shown that nutrient limitation and decreased
growth rate lead to reduced rate of killing of biofilm bacterial population and that
these two factors are major causes of phenotypic tolerance as well [10]. This paper
focuses on the conditions under which antibiotic treatment successfully eradicates
the microbial population from biofilm and surrounding fluid compartment. In order
to understand the working of antibiotic on bacteria, we take into consideration the
pharmacology of the antimicrobial agent.
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The pharmacology of antibiotics can be divided into two branches, pharmacoki-
netics and pharmacodynamics. Pharmacokinetics describes the movement of an-
tibiotics into, through and out of the body whereas pharmacodynamics describes
the relationship between the concentration of antibiotics, its effect on target bacte-
ria (growth or decay)[11] and factors influencing this relationship. The elimination
of the drug either by metabolism or excretion is very important in studying an-
tibiotics, since it determines the frequency (both periodicity and concentration) of
the antibiotic administered. If the metabolization of the antibiotic is very high, it
must be given frequently as compared to that which is broken down slowly. One
of the important objectives of pharmacokinetics is to decide the optimal frequency
of an antibiotic for a successful treatment. On the other hand, pharmacodynam-
ics describes in detail the relationship between concentration and its effects on the
bacterial population in order to achieve the maximum removal of bacteria from the
host.

Mathematical modelling of the effects of drug treatment has long been used side-
by-side with experimental studies [5], [10], [22], [24], [30], [31], [36] and [42]. Most
mathematical models of the effect of antimicrobial agent on bacterial population
assume that bacteria grows at an exponential rate in the absence of the antimicrobial
agent. The pharmacodynamics function, in our case, has to be determined only for
the agent. So it is a mathematical expression for the decline in growth rate resulting
from a given concentration of the antimicrobial agent.

As mentioned earlier, it is often observed that fast growing and rapidly repro-
ducing bacteria are more prone to antibiotics and biocide treatments as compared
to the bacteria that are reproducing less actively [4], [8], [10], [39], [42] and [43].
A slow growth rate and a restricted availability of nutrients could be the major
contributors towards insensitivity of antibiotics to the kill rate of bacteria. This
leads us to choose a pharmacodynamics function that depends on the concentration
of antibiotic and limiting nutrients level. It has been noted that bacteria multiply
more slowly in an experimental animal than in vitro, suggesting nutrient limitation
in vivo[9] [10]. Therefore, it seems obvious that basic Monod model of microbial
growth under nutrient limitation should be at the core of models that include the
population dynamics of the pathogen [22].

Many other researchers have used the pharmacodynamics function that depends
on the antimicrobial agent and limiting resource level. Corpet et al. [9] introduces
pharmacodynamics function that depends on limiting both nutrient and antimicro-
bial agent. Cogan in [5] does so as well while considering persister cells. Cozen
[10] notes that the restricted availability of iron and other nutrients appears to be
typical of infection states. Robert and Stewart [36] construct a mathematical model
to explore the possibility that the observed antibiotic tolerance of biofilms is due in
part to nutrient limitation reducing bacterial growth and hence killing rates. Even
if resource supply rates are relatively constant, one expects significant depletion in
local resource levels as a bacterial infection progresses and we expect these changes
to play a role in treatment by antimicrobial agent.

In this paper we will give a brief overview on how the antibiotic affects the growth
of bacteria in biofilm and surrounding fluid. Flow of the nutrient, antimicrobial
agent and bacterial population in the biofilm and fluid surrounding it are considered,
taking into account the diffusive transport. The killing rate induced by antibiotic
is built on the model proposed by [22]. The pharmacokinetics function is based on
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[20], [22], [29] and [35]. Briefly described below are the key features of our work
and where it differs from the previous work in this field:

1. We build a two compartment biofilm model based on the plasmid model of
Imran and Smith [23] and include the antibiotic equation used by [3], [21] and
[29]. This work is an extension of the work in [22], where antibiotic treat-
ment was studied for one compartment and two types of bacteria - susceptible
and resistant. We now consider the same kind of bacterial populations in
a biofilm and the surrounding fluid. By making suitable assumptions, this
system effectively reduces to a single compartment model.

2. A periodic antibiotic dosing protocol is initially investigated. We derive sim-
ple models to understand the effects of the killing effect of an antibiotic on
bacterial population. Our model differs from other studied biofilm models by
the consideration of limitation of microbial growth due to limited nutrient and
the removal of antimicrobial agent by association with bacteria [23]. We use
singular perturbation theory to characterize treatment failure, i.e., when the
bacteria is not completely eliminated [22].

3. Overuse of antibiotics can lead to bacterial resistance to antibiotic action [34].
It is therefore imperative to apply them in measured doses while also eradi-
cating bacteria [17]. We study the effects of dose tapering for our bactericidal
model. In addition, we devise optimal dosing strategies that eliminate bacteria
from our system while also minimizing antibiotic usage.

One limitation of our model is that we have treated the biofilm as a single layered
structure. The nutrient and antibiotic are both taken to be present in sufficient
quantities so as to penetrate the biofilm entirely. This allows us to treat all the
bacteria in the biofilm uniformly.

In the next section, we formulate and analyze models of antibiotic treatment of
bacterial populations in fluid and biofilm compartments.

2. Model of bactericidal antibiotic treatment. We consider the effect of an-
tibiotic treatment in a two compartment model, the fluid environment and the wall
growth or biofilm environment. We take the effect of the antibiotic to be bacterici-
dal, that is killing the bacteria. We have assumed that the killing rate of bacteria
is lower in the biofilm as compared to that in the fluid due to the inactivity of bac-
teria in biofilm, as explained in the Introduction. We begin with the basic model
of antibiotic treatment proposed in [22] and suppose that the contents of the fluid
compartment have a high mixing rate with the biofilm compartment. The term
U(t) denotes the bacterial population in fluid and u(t) denotes the population of
the bacteria in biofilm. Let S and A denote the concentrations of limiting nutrient
and antibiotic agent in fluid respectively and let s and a denote the concentrations
of limiting nutrient and antibiotic in biofilm respectively.

The population of the bacteria changes due to growth, death due to antibiotic
action, loss due to wash out and loss because of diffusion from one compartment to
the other. Thus, the equations governing the dynamics of the bacteria in fluid and
biofilm are based on

U ′ = growth− washout− antibiotic-killing− biofilm attachment

+ biofilm sloughing

u′ = growth− antibiotic-killing + biofilm attachment− biofilm sloughing.
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The disinfection term is directly linked to the growth as well as to the type
of antimicrobial agent used. It is shown that the slow growing bacteria are more
resistant to antibiotic agent as compared to the fast growing species. Our model
assumes that the rate of the killing by the antibiotic is directly proportional to
the growth rate. Moreover, some antibiotics are effective for growing and some are
effective for non-growing bacteria. The bactericidal antibiotics are mostly effective
against cells that are growing and dividing [33]. Slower growth rate weakens the
effect of bactericidal antibiotic. We use f1(S,A) and f1u(s, a) respectively as the
pharmacodynamics functions for the fluid and biofilm compartments.

2.1. The model and preliminary results. We take the model based on the in
vivo model of antibiotic treatment. The equations are:

V S′ = F (S0 − S)− γ−1V Uf(S)− rs(S − s)
V A′ = F (A0(t)−A)− V Ug(A)− ra(A− a)

V U ′ = (f(S)− F/V − f1(S,A))V U − ru(U − u) (1)

vs′ = rs(S − s)− γ−1vufu(s)

va′ = ra(A− a)− vugu(a)

vu′ = (fu(s)− f1u(s, a))vu+ ru(U − u)

where V denotes the volume of fluid compartment, v the volume of biofilm com-
partment and F the mixing rate of the contents of the fluid compartment to the
biofilm compartment. The terms rs,ru and ra are the flow rates of nutrient,bacteria
and antibiotic respectively from one compartment to the other. We define ε = V

F ;
assuming that F has a large value, implying that the fluid compartment has a very
high mixing rate with the biofilm compartment, we infer that ε is small. Such a
situation arises where the contents of the biofilm environment are stagnant while
the surrounding fluid is moving very fast.

Since flow rate/volume of the compartment gives the dilution rate, we ma-
nipulate the above equations and replace the terms ri/V and ri/v by Di and di
respectively, for i = s, a, u, to obtain the following set of equations:

εS′ = (S0 − S)− ε
[
γ−1Uf(S) +Ds(S − s)

]
εA′ = (A0(t)−A)− ε [Ug(A) +Da(A− a)]

εU ′ = −U + ε [(f(S)− f1(S,A))U −Du(U − u)] (2)

s′ = ds(S − s)− γ−1ufu(s)

a′ = da(A− a)− ugu(a)

u′ = (fu(s)− f1u(s, a))u+ du(U − u)

where Ds, Da and Du give the dilution rates of nutrient, antibiotic and bacteria
respectively in the fluid compartment and ds, da and du are the dilution rates of
nutrient, antibiotic and bacteria respectively in the biofilm compartment.

We take the fresh nutrient at constant concentration S0 as input and antibiotic
concentration at time t, A0(t), as the input. The yield constant γ gives the conver-
sion of nutrients to organism. The functions f(S) and fu(s) are the growth rate of
bacteria at nutrient concentration S and s in fluid and biofilm compartment respec-
tively. Classically, we take f to be Monod type but our results hold more generally.
The only requirement for the growth function is to be monotonically increasing in



552 MUDASSAR IMRAN AND HAL SMITH

S:

f(0) = 0, f ′(S) ≥ 0

and the same holds for fu(s).
Most of the models of antibiotic treatment [3] are based on the assumption that

bacteria has no effect on antibiotic concentration; its concentration at the infection
site is dependent only on the input to the model. However, here we take antimi-
crobial concentration at the site of infection as a dynamic variable with periodic
dosing as input to the model. In this case of oscillatory antibiotic concentration, the
critical parameter is the “invasion eigenvalue” which establishes whether pathogens
can infect an environment in which the antimicrobial level have reached their as-
ymptotic periodic pharmacodynamics regime a∗(t): classically, a recurring cycle of
exponential decay and rise following a discrete dose, as shown in Figure 1.
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Figure 1. Left figure shows periodic discrete dosing of an antibi-
otic. Right figure shows resulting pharmacokinetics a∗(t).

Characteristically, antibiotics are administered either as a constant dose A0(t) =
A0 = or periodically A0(t) = A0(t+ T ) ≥ 0 with T as the dosing period. Although
our model allows a general non-negative periodic dosing function A0(t), in reality
it is typically a sequence of discrete doses which might be approximated by:

A0(t) =
∑
i

dδ(t− iT ).

Parameter d measures dose and δ is the Dirac impulse function [22]. The simulations
in Figure (1) take the dosing period as T = 6hrs.

The function f1 = f1(S,A) is the pharmacodynamics function for the fluid com-
partment and f1u = f1u(s, a) is the pharmacodynamics function for the biofilm
compartment, which describes the kill rate induced by the antimicrobial agent per
unit of bacteria. In general, the killing rate depends on the bacteria and the antibi-
otic used as well as the nutrient levels.

Qualitative assumptions are made regarding the pharmacodynamic functions
f1(S,A) and f1u(s, a). They should vanish if there is no antibiotic and increase
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as the antibiotic concentration is increasing:

f1(S, 0) = 0,
∂f1
∂A
≥ 0

f1u(s, 0) = 0,
∂f1u
∂a
≥ 0.

Moreover, adding nutrient should not decrease the net bacterial growth rate:

f(S)− f1(S,A) is non decreasing for 0 ≤ S ≤ S0.

The same holds for f1u(s).
Finally, equation (1) includes a removal rate of antibiotic due to its association

with bacteria, modeled by the term −g(A)U for the fluid compartment and −gu(a)u
for the biofilm compartment [21], [29] and [32]. This function g can be taken in ac-
cordance with the Michaelis-Menten kinetics or simply as g(A) = cA. Many authors
neglect the factor g(A) which results in the decoupling of the pharmacokinetics from
the rest of the model. We assume that g vanishes with A and is nondecreasing in
A:

g(0) = 0, g′(A) ≥ 0.

The same assumptions hold for gu(a).
A list of appropriate pharmacodynamic functions appears in [22]. In the work

that follows, we have used the following forms for these functions:

fu(s) =
ms

b+ s
, gu(a) =

m1a

L1 + a
and f1u(s, a) = ku

s

b+ s

a

L+ a

where m, b, b1, ku, L and L1 are constants.
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Figure 2. Left figure shows treatment success when λ =
−0.1826 < 0. Right figure shows the treatment failure when
λ = 0.1662 > 0.
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Table 1: Descriptions and values of the parameters used

Description Symbol Value
Substrate feed concentration in fluid S0 0.2
Maximum antibiotic dosage concentration Am 8
Substrate dilution rate bifilm (fluid) ds(DS) 0.23
Antibiotic dilution rate bifilm (fluid) da(DA) 0.23
Bacteria dilution Rate bifilm (fluid) du(DU ) 0.23
Yield constant γ 0.8
Maximum growth rate for bacteria in biofilm m 0.417
Maximum antibiotic uptake in biofilm m1 0.345
Maximum killing rate for bacteria in biofilm ku 0.96
Half saturation constant for bacteria growth b 0.1
Half saturation constant for bacteria removal L 0.1
Half Saturation constant for antibiotic uptake L1 0.1
Antibiotic cost sensitivity W 0.001
Susceptible bacteria cost sensitivity Wu 1
Period of dosing regimen T 6

3. Bacteria-free states, infection states, and their stability. In this section
we will discuss the existence of periodic solutions and their stability properties.

For ε = 0, (2) reduces to S = S0, A = A0(t), U = 0 and

s′ = ds(S
0 − s)− γ−1ufu(s)

a′ = da(A0(t)− a)− ugu(a) (3)

u′ = (fu(s)− f1u(s, a)− du)u.

where dsS0 is a flux of nutrient into the infected region, supplied by surrounding
tissues or the blood, and ds the removal rate of nutrient which might also include
uptake by host cells. daA0 is now interpreted as flux of antibiotic into the infected
region and da its removal rate.

System (3) has a periodic bounded bacteria-free solution

E0(t) = (S0, A0(t), 0, S0, a∗(t), 0).

The existence and uniqueness of the latter solution follows from Theorem 2.1 of [22].
This is the “sterile state” or “disease-free state”, which has no bacteria present and
the nutrient level matches the feed level. The term a∗(t) is the unique periodic
solution of

a′ = da(A0(t)− a)

where a∗(t) can be called the asymptotic pharmacokinetics since every solution of
the above differential equation is asymptotic to it as t becomes large.

The infection-free state can be taken as the desired target state, so that successful
treatments must drive the system state to it.

Furthermore, there may or may not be one or more “disease states” or “infection
states” of the form

Eu(t) = (S̄(t), Ā(t), Ū(t), s̄(t), ā(t), ū(t))

where Ū(t) > 0, ū(t) > 0 and all other components are positive periodic functions.
Such states correspond to treatment failure.
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The local stability of the infection-free state can be determined using the Floquet
exponent of the variational equation about E0(t). It turns out that two of these
are negative: the third, the ‘invasion exponent’ for the fluid and biofilm model
respectively, is given by:

λ = fu(S0)− [f1u(S0, a∗)]m − du
where [.]m gives the time-averaged value of a time-dependent function. Thus, in the
above case, λ depends on the net time-averaged bacterial kill rate in the asymptotic
pharmacokinetic state, involving the pharmacodynamics function, the nutrient level
and the bacterial growth rate.

Theorem 3.1. 1. There exist ε0,ρ0 and ρ1 with 0 ≤ ρ1 ≤ ρ0 such that for
each ε satisfying 0 ≤ ε ≤ ε0, (2) has a unique disease-free periodic solution
E0(t, ε) = (E?0 (t, ε), E◦0 (t, ε)) where

E?0 (t, ε) = Ē0(t) + εO(M(ε))

E◦0 (t, ε) = Ẽ0(t) +O(M(ε)), as ε→ 0

satisfying ‖ O(M(ε)) ‖≤ ρ1, ‖ εO(M(ε)) ‖≤ ρ1 and where M(ε) is a nonde-
creasing function with lim

ε→0
M(ε) = 0. This solution is continuous in ε uni-

formly in t ∈ R.
2. The T periodic solution E0(t, ε) of (2) is asymptotically stable if fu(S0) −

[f1u(S0, a∗(t))]m−du < 0 and is unstable if fu(S0)−[f1u(S0, a∗(t))]m−du > 0.
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Figure 3. Left figure shows the effect of increasing the Antibiotic
dose by a factor of 1.5, on bacterial population for treatment suc-
cess. Right Bacteria eliminated at a higher rate as compared to
Figure 2.

The above theorem asserts that the sign of the invasion exponent λ is critical
in determining stability of sterile state and non-sterile state. This result is illus-
trated in Figure 2. For the purpose of our simulations, we use the growth rate,
pharmacodynamics and antibiotic uptake functions defined at the end of Section 2.

The left side of Figure 2 shows that treatment is successful when λ < 0 and
treatment failure results when λ > 0 , since in this case bacteria can grow when
rare. All the functions and parameter values are the same in both figures except
the killing rate ku. This is chosen such that λ < 0 in the left figure and λ > 0
in the right figure. Output is scaled by s/b, u/(bγ), a/L. Time t is scaled by
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Figure 4. Left New dose given without the complete washout of
the previous dose. Right The treatment failure case is converted
into treatment success for the right side of Figure 2.

1/ds, S0 is scaled by 1/(b), A0 is scaled by 1/L and da, du, m and k are all scaled
by 1/ds. Parameter values are chosen as in [22] and [36]. Particularly, the yield
constant γ = 0.8, maximum specific growth rate m = 0.417, m1 = 0.28; removal
rate ds = 0.23; half saturation constants b = 0.1, L = .1 and L1 = .1; maximum
disinfection rate ku = 0.529 for the figure on the left and ku = 0.25 for that on
the right; concentration of the substrate feed has been taken as S0 = 0.2. Figure 3
shows the effect of increasing the antibiotic concentration on the treatment success
case. For a stronger dose of antibiotic the bacteria are eliminated at a greater rate.

Figure 4 shows the effect of giving a new dose of antibiotic without the complete
washout of the previous dose. This shows a treatment success for the previously
treatment failure case Figure 2. Note that the dose is administered in a periodic
fashion, but the new dose is given before the complete time period T , hence the
quantity of antibiotic is increasing with time.

Figure 5 (upper left) demonstrates that λ < 0 leads to treatment success when the
initial population of bacteria is small except for some special cases. Plots of bacterial
population versus time are given for a small initial population (u(0) = 0.45) and a
large initial population (u(0) = 0.76). The solution for the former shows treatment
success whereas solution for the latter shows unsuccessful treatment. Both E0(t)
and Eu(t) are simultaneously locally stable. Except for S0 = 0.5 and ku = 0.529,
the values of all parameters are the same as for previous figures. This implies
that early antibiotic treatment, before bacterial population becomes large, is more
effective.

However, the case of treatment failure for Figure 5 (upper left) can be converted
to treatment success by changing the values of certain parameters. In the simula-
tions shown in Figure 5 (upper right) by increasing the antibiotic dose(as shown
in Figure 3), the bacteria for the large initial population is eliminated. Similarly,
simulations in Figure 5 (lower left) shows that if the killing rate is increased, the
complete eradication of bacteria can be achieved even for a higher initial microbial
populations. Moreover Figure 5 (lower right) demonstrates the effect of reducing
the interval between antibiotic dose. As the time period of dosing is reduced from
T = 6hrs (as in Figure 5 upper left) to T = 4hrs (Figure 5 lower right), the bacteria
are successfully eliminated for the treatment failure case.
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Figure 5. Initial Conditions can generate different outcomes when
λ < 0: treatment success and failure results from the same system
but different initial values upper left. Changing certain parameter
values can result in eradication of bacteria for the higher initial
population other three figures.

The following theorem gives the conditions for existence of a treatment failure
periodic solution by using persistence theory. The proof is contained in Appendix
A.

Theorem 3.2. 1. If fu(S0)−[f1u(S0, a∗(t))]m−du > 0 then bacterial population
of the biofilm compartment uniformly strongly persists. More precisely there
exists ε > 0, independent of initial data, such that for all solutions of the above
model satisfying u(0) > 0, we have

u(nT ) > ε

for all sufficiently large n. In this case, there exists a T periodic “disease”
solution

Eu(t) = (E∗u(t), E◦u(t))

of (3), where E∗u(t) is the same as Ē0(t) and E◦u = (s, a, u) caters to the biofilm
part.

2. For each T periodic solution Eu(t) of (3), there exists ε0 such that for 0 < ε <
ε0, there exists a T periodic “disease” solution

Eu(t, ε) = (E∗u(t, ε), E◦u(t, ε))
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of system (2) with

E∗u(t, ε) = E∗u(t) + εO(M(ε))

E◦u(t, ε) = E◦u(t) +O(M(ε))

where M(ε) is a nondecreasing function with lim
ε→0

M(ε) = 0.

3. There is ε0 such that for 0 < ε < ε0 the T periodic solution Eu(t, ε) is asymp-
totically stable if and only if the linear system z′1 = A(t, 0)z1 is asymptotically
stable where

A(t, 0) :=

 −ds − γ−1w̄f ′u(s̄) 0 −γ−1fu(s̄)
0 −da − ūg′u(ā) −gu(ā)

−(fu(s̄)− f ′1u(s̄, ā))ū −f1u(s̄, ā) fu(s̄)− f1u(s̄, ā)− du

 .
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Figure 6. Dose decreasing with time, the quantity of dose admin-
istered is higher, such that bacteria decreases but decreases slowly
as compared to treatment success case.

Treatment failure is thus guaranteed when λ > 0, since bacteria can grow when
rare. Furthermore, by using persistence theory, we showed that there exists at least
one (periodic) infection state Eu(t) when λ > 0. Generalizing it, this solution may
be non-unique and we do not know its global stability properties or its Floquet
exponent for local stability.

In the next sections we will discuss about the optimizing the amount of dose
administered. First we will talk about dose tapering and then optimal control
strategy.

4. Dose tapering. Dose tapering technique has been effective in antibiotic treat-
ments [34]. Prolonged treatment by using high doses of antibiotic might result in
harmful side effects and stopping the treatment at an early stage might result in
re-emergence of the disease. It has therefore been suggested that antibiotic doses
should be reduced with time. However one should be careful with this since if the
dose is reduced below a certain level, the bacteria might start to increase. We have
used our model to show the simulations of this effect.

We take A0(t) as a function whose peaks are decreasing with time. Dose ta-
pering can result in successful elimination of the disease and but it might lead to
re-emergence of the disease in case of reducing dose below a certain level. The sim-
ulations for this are given in Figure 6 and 7. It is evident from Figure 7 that as the
dose is reduced, compared to Figure 6, the bacterial population starts increasing
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after 54 hours. Dosing should therefore be appropriately decreased such that the
bacteria is completely eliminated. The following section considers this problem in
more depth.

5. Optimal antibiotic treatments. In this section, we address the problem of
finding a course of antibiotic treatment which kills the active bacteria while also
minimizing the amount of total antibiotic applied. Several studies have indicated
the counter-productive effects of over-deployment of antibiotics [46]. Indeed, it has
also been suggested that this may even increase the susceptibility to infection by
increasing the effective resistance [34]. The high costs of antibiotics are another
factor in our motivation to minimize the quantity of antibiotic applied over the
course of the treatment.
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Figure 7. Results with dose tapering. Reducing dose with time,
results in first decrease in bacteria and then it shows an increase.
This signifies that if the complete dose is not given then the infec-
tion could prolong.

At the same time, application of antibiotics is imperative because the dilution
rate is not sufficiently high to flush out the bacteria on its own. However, the
paucity of development of newer and better antibiotics to combat microbial strains
implies that we have to work with the available antibiotics more effectively [17].
Our work focuses on coming up with an optimal strategy of antibiotic application
that eliminates bacteria while at the same time ensuring that antibiotic deployment
is at a minimum.

As in [8], we use optimal control theory to suggest the best strategy for our model.
The results suggest that a regimen of cycling between application and withdrawal of
antibiotic is the optimal treatment course, with a gradual reduction in the strength
of applied dosages.

Based on this, we derive optimal dosing strategies for different initial conditions
and parameter values. We observe that these strategies preclude the bi-stability
that appeared in the non-optimal antibiotic application scenario, i.e., bacteria free
state is stable for a wide range of initial bacterial concentrations. Under our model
thus, employing such a course of treatment ensures bacteria eradication and by
implication disease treatment.
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5.1. Finding the optimal control function. We now come to the problem of
finding dosing strategies that minimize the total antibiotic deployment while also
eliminating bacteria of both types. We rely on theory of constrained optimization
to achieve our objective of finding an optimal strategy. We assign costs to antibiotic
usage and to surviving active bacteria. To minimize the amount of antibiotic applied
while also eliminating bacteria population, we look to reduce the sum of these costs.

Let A0(t) = Amδ(t), where Am gives the maximum concentration of antibiotic
that can be applied and δ(t) is a function that controls the precise timing of the
dosing protocol by determining the amount of antibiotic being let through at time
t, δ(t) ∈ [0, 1] ∀ t ≥ 0. This can be expressed mathematically by assigning costs
to all dosing protocols depending on their killing efficacy and antibiotic usage. In
particular, we assign costs to bacterial concentration. For instance, greater antibi-
otic deployment would lead to a higher antibiotic cost while a higher density of
surviving bacteria at the end of the treatment would give a higher bacterial cost.
The problem now is to find the form of δ(t) that minimizes the functional

C(δ(t), u(tf )) =
1

2

∫ tf

0

Wδ(t)2dt+Wuu(tf ) (4)

where W and Wu are suitable cost sensitivity parameters and tf is the time at the
end of the treatment. This cost functional is defined for each dosing strategy δ(t)
and the surviving bacterial populations at time tf .

The integral term in (4) is a measure of the total antibiotic applied over the course
of the treatment. The other term is due to the bacterial concentration present
at time tf . This functional C(δ(t), u(tf )) sums the two factors that determine
the penalty incurred by employing a particular regimen and hence its total cost.
Depending on the sensitivity parameters, the relative penalty of antibiotic usage
and bacterial survival may be adjusted. The problem is thus reduced to minimizing
(4) by finding the optimal δ∗(t). Similar functionals appear extensively in literature
and have been used to great effect in [8], [15], [25], [26] and [45].

We first present the following result. The proof is contained in Appendix B.

Theorem 5.1. There exists a unique control function δ∗(t) that minimizes the cost
functional defined in (4).

The above result thus guarantees the existence of a unique course of treatment
that minimizes (4). An instance of what this optimal treatment may look like is
shown in Figure 8. Appendix B contains the details of the procedure used to find
it. In the following section, we present the results that we obtained for different
scenarios.

5.2. Results and variations. The recommended strategy and the resulting chang-
es in antibiotic and bacteria levels are illustrated in Figure 8. The sensitivity pa-
rameters are set to W = 0.1 and Wu = 100 and the maximum antibiotic dosage
concentration is Am = 8. The values of initial conditions are set at s(0) = 2.9,
a(0) = Am and u(0) = 2.5. The optimal treatment is applied over cycles of 6 hours.
Observe the gradual decrease in dosage strength and the corresponding steady de-
cline in bacterial and antibiotic concentration levels.

Figure 9 illustrates the strategy and bacterial decay when the values of initial
conditions and parameters are the same as in Figure 2 (left); this allows a com-
parison to be made. Observe that in this case, the optimal treatment is just as
efficacious in combating bacteria as the non-optimal treatment discussed earlier. In
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Figure 8. The optimal strategy along with the resulting changes
in antibiotic and bacterial concentrations, for s(0) = 2.9, a(0) =
Am and u(0) = 2.5.

fact, both treatments take the bacterial concentration to zero in almost the same
time.
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Figure 9. The optimal strategy and the resulting change in bac-
terial concentration, for s(0)=1.9, a(0)=0.01 and u(0)=1.4. The
parameter values are the same as those for the case in Figure 2(a),
which has also been shown.

Figure 2 (right) illustrates a treatment failure case under the discrete protocol.
The new optimal treatment, however, eliminates the disease for the same initial
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Figure 10. The treatment failure case from Figure 2(b) can be
treated successfully under the optimal strategy.

conditions and parameter values; this is shown in Figure 10, along with the bacteria
curve of the original failed treatment. This indicates one advantage of the newly
developed strategy over the discrete protocol. Thus, the optimal strategy has been
shown to work successfully in cases where the discrete treatment may or may not
succeed.

Moreover, applying the optimal treatment removes the bi-stability that is exhib-
ited in Figure 5 (upper left), for S0 = 0.5. Figure 11 indicates that the bacteria
free state is locally stable for several initial bacteria concentrations. In all cases,
the optimal treatment is shown to reduce bacteria concentration substantially. The
optimal strategy hence ensures the eventual near-eradication of bacteria over time
which was not guaranteed as a result of the previously discussed strategy.

It can be seen on close observation that while bacteria is severely minimized in
all of these cases, it may not be completely eliminated for higher values of antibiotic
sensitivity parameter W . This is a trade-off of minimizing the antibiotic load during
the treatment and has to be borne. Due to the higher antibiotic cost, the system
reduces the emphasis on bactericide in favour of reduced antibiotic application. If
such a bacteria level is still harmful, we can generate the optimal strategy which
takes into account higher costs associated with end-of-treatment bacteria, i.e., in-
crease Wu. This will then cause an even greater diminishing of bacteria population
in the biofilm as the penalty associated with bacteria survival would then be higher.

This leads us to investigating the effect of varying the sensitivity parameters.
With only two of those, our interest lies only in their relative values. We hold
Wu constant at a value of 100 and vary W over a wide range of values. The
suggested strategies and the resultant bactericide are shown in Figure 12. As would
be expected, increasing the cost associated with antibiotic application tends to
reduce its deployment. For W=100 and 1000, the quantity of antibiotic applied
is substantially lower than that for W = 0.00001. The corresponding reduction in
bacterial concentration is then negatively correlated with the value of W .

We make some relevant observations at this point. Firstly, the bacterial concen-
trations for for W = 0.1 and W = 0.00001 clearly go to zero while those for W = 100
and W = 1000 approach non-zero values. This is the point we made earlier while
discussing the stability of the low-bacteria state. Secondly, all optimal treatments
advocate a gradual decrease in antibiotic application over successive cycles. This is
a contrast to the non-optimal treatments previously used, which applied the same
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Figure 11. Different initial levels of bacteria are treated success-
fully by the optimal treatment for each case with S0 = 0.5. Note
in particular the bacteria reduction for u(0) = 0.76 that was used
in Figure 5(upper left) to illustrate bi-stability.
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Figure 12. Varying the values of W yields these suggested treat-
ments and the corresponding bacteria decays.

quantity of antibiotic in each cycle, and is in agreement with the dose tapering
technique.

6. Discussion. Microbial biofilms have several detrimental effects on the host sur-
face on which they are formed. A few of these are the contamination of food
products, dental plaque, cystic fibrosis and failure of medical implants [5], [4], [7],
[13], [14], [37], [39] and [40]. In this paper we have presented a mathematical model
of antibiotic treatment for microbial population in biofilm and fluid compartment.

In the model described here, we used the theory of singularly perturbed non-
autonomous systems given in [38] to analyze the model. Assuming that the antibi-
otic is bactericidal in nature, the biological results we obtain in this paper are based
on the supposition that the flow rate F , of fluid compartment is very high. Hence,
we reduce the six dimensional system to a three dimensional system, i.e., only the
biofilm system. We have used the results proved in [22] to investigate the dynamics
of this reduced model.

We first investigate a periodic dosing regimen. Under such a strategy, we show
that periodic solutions exist for our model and that there are solutions corresponding
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to sterile and infection states. Theorem 3.1 establishes that the sign of invasion
exponent λ characterizes the local stability of the sterile state or treatment success.
It provides a concise criterion for the stability of the periodic solutions and hence
for treatment success or treatment failure. Simulations in Figure 2 show that the
bacteria population is eliminated in the case of λ < 0 but bacteria persists in the
case of λ > 0.

We have further used the model to illustrate the phenomenon of bi-stability. For
different initial bacterial populations with all the other parameter values same and
λ < 0, Figure 5 (upper left) shows that we can get vastly different outcomes. The
simulation results show that a higher population results in treatment failure whereas
a lower initial microbial population results in treatment success. The former case
can, however, be converted to a success by various methods. Figure 5 (upper right)
shows the effect of increasing the antibiotic dose, Figure 5 (lower left) gives the effect
of increased killing rate for bacterial biofilm and Figure 5 (lower right) illustrates the
impact of reducing the dosing period. In all of these cases, the bacterial population
is eliminated for the higher initial population. These results suggest that if the
treatment is started late, appropriate adjustments should be made to the dosing
strategy, such as increasing the dosing strength or reducing the dosing period.

Managing antibiotic load is essential due to the development of bacterial resis-
tance and the high financial cost incurred by their application. Control theory has
been used to come up with optimal antibiotic strategies that minimize antibiotic
deployment while at the same time eliminate bacteria in section 5. We devise the
best treatments while keeping in mind the relative costs of both these factors. The
results show that optimal treatments are vastly more successful than the previously
used discrete ones. Under the optimal protocol, several treatment failure cases are
converted to successful treatment ones. It is also shown that the bacteria-free state
is stable for a wide range of starting bacterial concentrations, implying that the bi-
stability observed previously now disappears. We note that the optimal treatments
advocate periodic application and withdrawal of antibiotic with a gradual decline
in dosage strength, similar to that recommended in [8] for the persisting bacteria
case.

In conclusion to our study, we have described a model that takes into account
the antibiotic treatment in biofilm and surrounding fluid environment. Successful
treatment requires that bacteria is eradicated in both the biofilm and fluid; this is
given as the “sterile state” solution. The pharmacodynamics function is formulated
such that it takes into consideration the slow growth rate and limited supply of
nutrients, which are the major attributes of biofilm bacterial population. There
are several mechanisms that result in antibiotic treatment failure in biofilms. We
have presented conditions under which antibiotic therapy may result in success-
ful elimination of microbial population from the biofilm environment. Finally, we
have formulated the optimal antibiotic application strategies that take into account
bacterial elimination as well as the amount of antibiotic applied.

Appendix A. Proof of Theorem 3.1 and Theorem 3.2. Proofs of Theorem
3.1 and Theorem 3.2 are given in this appendix.

Let us define

y =
(
S A U

)T
and

x =
(
s a u

)T
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Let

y1 = y − Ē0(t)

x1 = x− Ẽ0(t),

then expanding (2) about the trivial solution and renaming x1 and y1 as x and y
gives

εy′ = C(t, ε)x+D(t, ε)y + h2(t, x, y, ε)

(5)

x′ = A(t, ε)x+B(t, ε)y + h1(t, x, y, ε)

where

C(t, ε) :=

 εDs 0 0
0 εDa 0
0 0 εDu

 ,

D(t, ε) :=

 −1− εDs 0 −εγ−1f(S0)
0 −1− εDu −εg(A0(t))
0 0 −1 + εf(S0)− εf1(S0, A0(t))− εDu

 ,

A(t, ε) :=

 −ds 0 −γ−1fu(S0)
0 −da −gu(a∗(t))
0 0 fu(S0)− f1u(S0, a∗(t))− du

 ,

and

B(t, ε) :=

 ds 0 0
0 da 0
0 0 du

 .

The following hypotheses hold for the above system (5).
(H1) A(t, ε), B(t, ε), C(t, ε), D(t, ε) are continuous and bounded matrix functions

defined on R × [0, ε0]. Moreover, they are continuous in ε, uniformly in t ∈ R.
We let M̄ denote a common bound for the norm of each of these matrices for
(t, ε) ∈ R× [0, ε0].

(H2) D(t, 0) = D0 a constant matrix having no eigenvalues on the imaginary
axis; C(t, 0) ≡ 0.

(H3) The system z′ = A(t, 0)z is noncritical.
(H4) h1, h2 are continuous functions of all four arguments (t, x, y, ε) such that

t ∈ R, |x|, |y| ≤ ρ0, 0 ≤ ε ≤ ε0 and both functions are continuous in (x, y, ε)
uniformly in t ∈ R. Furthermore, there exists nondecreasing functions M(ε) and
η(ρ, ε), 0 ≤ ε ≤ ε0, 0 ≤ ρ ≤ ρ0 satisfying lim

ε→0
M(ε) = 0, lim

(ρ,ε)→(0,0)
η(ρ, ε) = 0, such

that |h2(t, 0, 0, ε)| ≤ M(ε), |h1(t, 0, 0, ε)| ≤M(ε), t ∈ R, 0 ≤ ε ≤ ε0, and

|h2(t, x, y, ε)− h2(t, x̄, ȳ, ε)| ≤ η(ρ, ε)[|x− x̄|+ |y − ȳ|]

|h1(t, x, y, ε)− h1(t, x̄, ȳ, ε)| ≤ η(ρ, ε)[|x− x̄|+ |y − ȳ|]
holds for all t ∈ R, |x|, |x̄|, |y|, |ȳ| ≤ ρ, 0 ≤ ε ≤ ε0, 0 ≤ ρ ≤ ρ0.

For system (5) we have C(t, ε) = εC(t, ε), |C(t, ε)| ≤ M̄ and h2(t, x, y, ε) =
εh2(t, x, y, ε) where both h2(t, x, y, ε) and h1(t, x, y, ε) satisfy the estimates of (H4).

Proof. Proof for Theorem 3.1 is given first.
(1) For the proof of the this part of the theorem see [38].
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(2) It follows from [38] that the T periodic solution (x∗(t, ε), y∗(t, ε)) of (5) is
asymptotically stable provided

z′1 = A(t, 0)z1 (6)

and

z′2 = D0z2 (7)

are asymptotically stable where

D0 :=

 −1 0 0
0 −1 0
0 0 −1


and

A(t, 0) :=

 −ds 0 −γ−1fu(S0)
0 −da −gu(a∗(t))
0 0 fu(S0)− f1u(S0, a∗(t))− du

 .

A computation yields the fundamental matrix φ1(t) of (7):

φ1(t) :=

 e−t 0 0
0 e−t 0
0 0 e−t


evaluating φ1(t) at t = T we obtained the Floquet exponents −1, −1 and −1. This
shows that (7) is asymptotically stable. Also the fundamental matrix φ2(t) of (6):

φ2(t) :=

 e−dst 0 φ13
0 e−dat φ23

0 0 e
∫ t
0 (fu(S0)−f1u(S0,a∗(s))−du)ds

 .

Evaluating this fundamental matrix φ2(t) at t = T we obtained the Floquet expo-
nents −ds, −da and fu(S0) − [f1u(S0, a∗(t))]m − du. It follows at once that (6) is
asymptotically stable if fu(S0)− [f1u(S0, a∗(t))]m−du < 0. Thus the T periodic so-
lution E0(t, ε) is asymptotically stable if and only if fu(S0)−[f1u(S0, a∗(t))]m−du <
0.

Proof. Proof for Theorem 3.2.
(1) We apply the theorem (4.1) of [19]. Using the notation, we set X =

{(s, u, a) ∈ R3
+ : γS + u ≤ γS0, A ≤ M1, where M1 = max

t∈R+
A0(t)}, X1 =

{(s, u, a) ∈ R3
+ : u 6= 0}, and X2 = {(s, u, a) ∈ R3

+ : u = 0}. Define a map h
such as h(s(0), a(0), u(0)) = (s(T ), a(T ), u(T )). We want to show that there exists
ε > 0 such that

lim inf
n→∞

d(hn(X), X2) > ε.

Given that

(i) X is compact metric space.
(ii) h : X → X is continuous map.

(iii) h(X1) ⊂ X1

(iv) M is maximal compact invariant set in X2.

In our case M = E0(0), since the omega limit set of solutions starting in X2 is, by
our hypotheses, E0(0) where E0(0) = (S0, a∗(0), 0). We want to show that

(i) M is isolated in X, that is, there exists a closed neighborhood U of M such
that M is the largest invariant set in U , and

(ii) W s(M) ⊂ X2, where W s(M) = {x ∈ X : hn(x)→M as n→∞+}
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In order to show that M is isolated in X we will apply the Theorem 2.3 of ([27]).
We will show that M is isolated in X and W s(M) ⊂ X2.

Let V be the neighborhood given by the theorem. Assume that there exists an
invariant set K̃ such that

M ⊂ K̃ ⊆ V ∩X.
Since K̃ is positively invariant, all solutions that begin in K̃ stay in K̃ and so in V
for positive time. Thus K̃ ⊂W s(E1).

Since K̃ is negatively invariant, all solutions that begin in K̃ stay in K̃ and so
in V for negative time. Thus K̃ ⊂Wu(E1).

W s(E1) ∩Wu(E1) = E1

thus K̃ = M = E1. Therefore K is an isolated compact invariant set in X.
It is clear that in this case W s(M) = X2.

(2) Suppose that the coefficients in system 3 are such that it has a positive
periodic solution. Denote this periodic solution by (s̄, ā, ū). Let us denote this
outer solution by E∗(t) = (S0, A0(t), 0, s̄(t), ā(t), ū(t)). We define

y1 = y − E∗u(t)

x1 = x− E◦u(t)

then expanding (2) about this outer solution and renaming x1 and y1 as x and y
respectively gives

εy′ = C(t, ε)x+D(t, ε)y + h2(t, x, y, ε)

(8)

x′ = A(t, ε)x+B(t, ε)y + h1(t, x, y, ε)

where

C(t, ε) :=

 εDs 0 0
0 εDa 0
0 0 εDu

 ,

D(t, ε) :=

 −1− εDs 0 −εγ−1f(S0)
0 −1− εDa −εg(A0(t))
0 0 −1 + εf(S0)− εkf1(S0, A0(t))− εDu

 ,

A(t, ε) := −ds − γ−1ūf ′u(s̄) 0 −γ−1fu(s̄)
0 −da − w̄g′w(ā) −gu(ā)

−(fu(s̄)− kuf ′1u(s̄, ā))ū −kuf1u(s̄) fu(s̄)− kuf1u(s̄, ā)− du

 ,

and

B(t, ε) :=

 ds 0 0
0 da 0
0 0 du

 .

Since (H1)− (H4) hold for the model (2). So by theorem (1.4) of [38], the system
(2) has a T periodic solution

Eu(t, ε) = (E∗u(t, ε), E◦u(t, ε))

with

E∗u(t, ε) = E∗u(t) + εO(M(ε))

E◦u(t, ε) = E◦u(t) +O(M(ε))
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(3) It follows from [38] that the T periodic solution (x∗(t, ε), y∗(t, ε)) of (5) is
asymptotically stable provided

z′1 = A(t, 0)z1 (9)

and

z′2 = D0z2 (10)

are asymptotically stable where

D0 :=

 −1 0 0
0 −1 0
0 0 −1


and

A(t, 0) :=

 −ds − γ−1w̄f ′u(s̄) 0 −γ−1fu(s̄)
0 −da − ūg′u(ā) −gu(ā)

−(fu(s̄)− f ′1u(s̄, ā))ū −f1u(s̄) fu(s̄)− f1u(s̄, ā)− du

 .

Computation yields the fundamental matrix φ1(t) of (10):

φ1(t) :=

 e−t 0 0
0 e−t 0
0 0 e−t


evaluating φ1(t) at t = T we obtained the Floquet exponents −1, −1 and −1. This
shows that (10) is asymptotically stable. Thus, Eu(t, ε) is locally asymptotically
stable if 9 is locally asymptotically stable.

Appendix B. Proof of Theorem 5.1.

Proof. Let ~r(t, x, u) be the right hand side of (3), where x is as defined in Appen-
dix A. We make the following observations regarding our problem and the control
function δ.

(i) ~r(t, x, u) possesses the Lipschitz property with respect to the state variables
contained in x.

(ii) As a constant control is permitted, the set of all allowable control functions
is non-empty.

(iii) ~r(t, x, u) is linear in the control function,i.e., ~r(t, x, u) = ~p(t, x) + ~q(t, x)u.
(iv) The range of the control function, [0, 1], is closed, convex and compact.
(v) The integrand in (4) is convex with respect to the control function δ.

By Corollary 4.1 of [16], as our system has properties (i)-(v), we conclude that
a unique optimal control exists for our problem that minimizes the functional in
(4).

To find the optimal control function, we begin by defining a Lagrangian

L =
1

2
Wδ(t)2 + λ1s

′ + λ2a
′ + λ3u

′ (11)
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where the λi are adjoint functions and s′,a′ and u′ refer to (3). By Pontryagin’s
principle, the adjoint functions obey

dλ1
dt

= −∂L
∂s

dλ2
dt

= −∂L
∂a

(12)

dλ3
dt

= −∂L
∂u

with λ1(tf ) = 0, λ2(tf ) = 0 and λ3(tf ) = Wu. Furthermore, at optimum, ∂L
∂δ = 0.

Using (3) and (11), this translates to

δ∗(t) = −λ2daAm
W

(13)

We have now ended up with a system of six ODEs, namely the systems (3) and
(12), along with their boundary values. The solution of this combined system can
be used to yield the form of the control function by (13).

Finding the analytic solution of this system is a difficult problem due to the non-
linearity of the system. However, several techniques exist for solving it numerically.
The method we employ is the forward-backward sweep method, as detailed in [28].
First making an initial guess for adjoint functions λ1, λ2 and λ3, we use the Runga-
Kutta algorithm to solve for s, a and u forward in time - in a sense, sweeping
forward. These solutions are then used to sweep backward in time for the solutions
of the adjoint functions. These iterations are continued until convergence occurs;
(13) is then used to give the form of the optimal treatment function.
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