
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2014.11.385
AND ENGINEERING
Volume 11, Number 2, April 2014 pp. 385–401

COOPERATIVE BEHAVIOR IN A JUMP DIFFUSION MODEL

FOR A SIMPLE NETWORK OF SPIKING NEURONS

Roberta Sirovich and Laura Sacerdote

Department of Mathematics “G. Peano”, University of Torino

Via Carlo Alberto 10, 10123 Torino, Italy

Alessandro E. P. Villa

Grenoble Institute of Neuroscience Inserm UMRS 836

University Joseph Fourier Grenoble, France
Department of Information Systems, Faculty of Business and Economics

University of Lausanne, CH-1015 Lausanne, Switzerland

Abstract. The distribution of time intervals between successive spikes gen-
erated by a neuronal cell –the interspike intervals (ISI)– may reveal interesting

features of the underlying dynamics. In this study we analyze the ISI sequence

–the spike train– generated by a simple network of neurons whose output ac-
tivity is modeled by a jump-diffusion process. We prove that, when specific

ranges of the involved parameters are chosen, it is possible to observe multi-

modal ISI distributions which reveal that the modeled network fires with more
than one single preferred time interval. Furthermore, the system exhibits res-

onance behavior, with modulation of the spike timings by the noise intensity.

We also show that inhibition helps the signal transmission between the units
of the simple network.

1. Introduction. In the past fifty years, extensive studies have been dedicated to
building good models for single neuron activity. Recently, experimental techniques
evolved towards the recording of neuronal activity by means of multiple electrodes
which yields the simultaneous and coupled activity of more than one single neuron.
From a modeling point of view, these results inspired a shift from single neuronal
unit description to the study of networks of neurons.

In this paper we reinterpret a jump diffusion LIF model proposed in [21] in terms
of a simple network of spiking neurons. In particular a target neuron A is supposed
to receive inputs both from the embedding network of neurons and from two cell
assemblies, E and I. The spiking activity of the target neuron A is studied with the
objective of understanding the contributions of the different elements which build
the system (the background network, E and I) and their interactions. In particular,
the following features are discussed:

1. the multimodal shape of the ISI distribution of neuron A;
2. the resonance behavior of the system;
3. the active role of inhibition in signal transmission.
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Multimodal ISI histograms may appear in experimental recordings, see for ex-
ample [5, 17, 31, 11, 18]. It is an interesting point, as each peak of the histogram
may be considered a characteristic firing time of the neuron suggesting multiple
functional roles of the neuron itself. In the simple network we are considering, each
characteristic firing time of the target neuron A, i. e. each mode of its interspike
interval distribution, is shown to be the response to different inputs. Despite the
overlapping of the information, the neuron discriminates and responds successfully
to each source, thus exhibiting different states. From a modeling point of view,
multimodality is interesting as well. It has been extensively considered in studies
on the response of model neurons to periodic inputs, see [19, 4, 3, 26]. However it
can also be observed in experimental data recorded in the absence of any external
periodic input. The hereby proposed model is a contribution to this framework, as
no periodic input is considered.

The multimodal structure of the ISI histogram recalls the Stochastic Resonance
(SR) mechanism, even though it is not itself a signature of SR. Originally, the
mechanism of SR was described in bistable nonlinear systems where information
is transmitted in the form of hopping events between stable states [20, 30]. Later,
several efforts have been devoted to the determination of a SR equivalent in excitable
systems with periodic inputs [19, 4, 3]. Other studies investigated the influence of
noise on the response of excitable systems to aperiodic (arbitrary) inputs [9, 8, 6].
The role of noise in signal processing and in natural systems is a lasting discussion
point [25, 7, 13]. The cooperative behavior of the units of the network described in
our model is investigated in this framework and the system is shown to exhibit SR.

Finally, we investigate the role of the inhibitory unit. Inhibition is well known to
be regulatory of neuronal excitability. However, despite the limited understanding of
the phenomenon, it can be hypothesized that inhibition has also a role in information
transmission, see for example [10, 14, 28] and references quoted therein. We propose
here a new method to quantify the signal transmission efficiency. Then we use the
proposed model to prove that a well tuned inhibition may actually increase the
response efficiency of the reference neuron.

The paper is organized as follows: the model and some analytical results are
given in Section 2 and in Section 3 the output of the target neuron A is analyzed
with regards to the three above presented main topics (multi modality, SR, role of
inhibition).

2. The model. A neuron A is supposed to receive inputs from the surrounding
network of neurons. The activation of a synapse in the input zone creates a postsy-
naptic potential (PSP) which is simplified as an instantaneous jump in the modeled
membrane potential of the cell A, denoted as V . As the neuron receives over 1,000
presynaptic terminals, its membrane potential, before the occurrence of an action
potential, can be described following the well known Stein’s model

dV (t) = −V (t)

θ
dt+

n∑
j=1

αjdP
e
j (t) +

m∑
j=1

βjdP
i
j (t) ,

V (0) = 0.

Here θ > 0 is the membrane potential time constant, which accounts for the the
spontaneous exponential decay of the membrane potential in the absence of in-
coming inputs and αj > 0 and βj < 0 are the amplitudes of the excitatory and
inhibitory PSPs. Each excitatory event reaches neuron A according to a counting
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processes P e (P i for the evoked inhibitory PSPs) of intensity µej (µij respectively).
Every postsynaptic potential is below threshold, meaning that PSPs are too small
(100 µV to 10 mV, see [15]) to reach the depolarization that activate the voltage–
gated ion channels and initiate the action potential. Hence PSPs must summate.
Summation of PSPs occurs when presynaptic neurons fire at a sufficiently high rate
(temporal summation) or when several presynaptic terminals fire at the same time
(spatial summation) or from a combination of temporal and spatial summation. In
order to include spatial summation in the model, we simplify the synchronous firing
of several presynaptic neurons as one single excitatory or inhibitory input. The as-
sembly of synchronized neuron is represented as a single unit, E for excitatory PSPs
and I for inhibitory PSPs, see Fig. 1. Their firing determines strong and sudden
changes of amplitudes e > 0 (excitatory) and i < 0 (inhibitory) in the membrane
potential of cell A according to independent counting processes, Ne or N i. Then
the model becomes

dV (t) = −V (t)

θ
dt+ edNe (t) + idN i (t) +

n∑
j=1

αjdP
e
j (t) +

m∑
j=1

βjdP
i
j (t) ,

V (0) = 0, (1)

which can be read as a generalization of the so called Stein’s model, see [27].
The Stein model is not suitable for analytical treatment. For this reason, many

approximations have been proposed in the literature, see [16, 23]. Based on these
papers, we performed a diffusion limit on the terms accounting for the frequent and
small inputs arriving from the surrounding network, i.e. the sums of processes P e

and P i in (1). Assuming the sizes of the evoked PSPs αj and βj going to zero and
simultaneously the frequencies µe and µi going to infinity in such a way that

µ = lim
µe
j ,µ

i
j→∞

αj ,βj→0

(
αjµ

e
j + βjµ

i
j

)
σ2 = lim

µe
j ,µ

i
j→∞

αj ,βj→0

(
α2
jµ
e
j + β2

jµ
i
j

)
(2)

we get

dV (t) =

[
−V (t)

θ
+ µ

]
dt+ σdW (t) + edNe (t) + idN i (t) , V (0) = 0 (3)

where W is a standard Brownian motion, µ ∈ R is the drift and accounts for the
mean contribution of all inputs from the embedding network, σ > 0 is the diffu-
sion term and accounts for the variability of such inputs. It should be noted that
an analogous diffusion limit on the terms Ne and N i in (1) cannot be performed.
Indeed these jumps are not infinitesimal and their frequencies prevent a diffusion
limit. Eq. (3) describes a jump-diffusion process whose continuous and discontin-
uous part are respectively the so called Ornstein-Uhlenbeck process and the series
of events driven by the two independent counting processes.

The idea of adding inducing–jumps inputs to a continuos diffusion model of the
membrane potential is not new and can be found in [21, 24]. However in [21]
the biological framework is different as the model was created to account for the
geometric structure of the synapses. In particular the main assumption was based
on the different weight of distal dendritic synapses and proximal somatic synapses.
The latter group was expected to induce larger changes in the membrane potential
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Figure 1. A target neuron A embedded in a larger network re-
ceives a pool of synchronized inputs from unit E (excitatory) and
from unit I (inhibitory).

of the postsynaptic cell as the membrane excitability was assumed to decrease as
the distance from the soma increased.

The leaky integrate and fire paradigm is followed to reproduce the spiking mech-
anism of neuron A and a firing threshold S is introduced: when the membrane
potential exceeds for the first time the threshold voltage S the neuron releases a
spike. Then the membrane potential is reset to its resting value. We do not assume
any feed back mechanism from neuron A to units E and I, so these two units are
not reset when A spikes. The sequence of firing times of unit E and unit I, will be a
collection of independent and identically distributed times following the interevent
distribution of the counting processes Ne and N i. On the other hand, the sequence
of firing times Tj of cell A inherit a dependency structure from the sequence of
inputs from E and I.

To properly define the firing times of cell A we introduce the following sequence
of stochastic processes. Let us denote as V1 the process solution of the equation

dV1 (t) =

[
−V1 (t)

θ
+ µ

]
dt+ σdW (t) + edNe (t) + idN i (t) , (4)

with initial condition V1(0) = 0 and implicitly Ne(0) = N i(0) = 0. Then define
T1 = inf{t > 0 : V1(t) = S} that is the first hitting time of the level S. Next define

dV2 (t) =

[
−V2 (t)

θ
+ µ

]
dt+ σdW (t+ T1) + edNe (t+ T1) + idN i (t+ T1) , (5)

with V2(0) = 0. Note that V2 inherit the noise term and the counting processes
that were driving V1 but with a random time change. As previously we call T2 =
inf{t > 0 : V2(t) = S}.
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Figure 2. Example of a sample trajectory of the membrane po-
tential of cell A given in eq. (7).

For a general k = 2, 3, ... we define the sequence of processes

dVk (t) =

[
−Vk (t)

θ
+ µ

]
dt+ σdW

t+

k−1∑
j=1

Tj

+

+ edNe

t+

k−1∑
j=1

Tj

+ idN i

t+

k−1∑
j=1

Tj

 , (6)

with corresponding first passage times Tk = inf{t > 0 : Vk(t) = S}. Finally, pasting
one after the other the processes Vk, we get the process describing the membrane
potential of cell A

X(t) =
∑
k

Vk

(
t−

k−1∑
i=1

Ti

)
1(Tk−1,Tk](t), (7)

where 1A(x) is the indicator function of the set A. An example of trajectory of
process (7) is given in Fig. 2.

In particular, in this paper we consider two choices for the counting processes
Ne and N i in (7):

Case 1: two independent counting processes with Inverse Gaussian (IG) distributed
intertimes;

Case 2: two independent Poisson processes.

The latter case gives Exponential distributed intertimes and it is a choice motivated
by the rare events law which is often suggested in biological literature. In this case,
the memoryless property of the Exponential distribution, makes the process (7) a
Markov process and despite the absence of a reset of the counting processes P e and
P i the sequence of firing times of cell A will be a collection of independent and
identically distributed random variables. By contrast, the Gaussian distribution is
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not memoryless and X in (7) is not a Markov process. Moreover in this case, the
sequence of firing times of cell A will not be a collection of independent random
variables. The choice of the IG distribution is motivated by the neuronal modeling
literature: it is the distribution of the first passage time of a Brownian motion with
drift through a constant threshold. Hence with this choice we are modeling units
E and I as synchronized perfect integrator model neurons, see [27].

Let us recall that the IG distribution of parameters a and b, IG(a,b), has density

f (t; a, b) =

√
b

2π
t−

3
2 exp

[
−−b (t− a)

2

2a2t

]
, t > 0. (8)

In the following sections we will also need the mode (the abscissa of the peak) of
this density which is given as

m = a

[(
1 +

9a2

4b2

)1/2

− 3a

2b

]
(9)

Through all the manuscript the parameters of the intertime distribution of the
excitatory unit E will be denoted as Se, µe and σe and analogously for the inhibitory
unit I as Si, µi and σi. Indeed when a = |Se| /µe and b = S2

e/σ
2
e , eq. (8) gives

the distribution of the first passage time of a Brownian motion with drift µe and
diffusion coefficient σe through the boundary Se.

2.1. Analytical results on the firing time. We propose here an approximating
equation for the density of the firing time of cell A. Let us remark that the analytical
treatment of this problem in the case of counting processes with not Exponentially
distributed intertimes is particularly challenging as the resulting membrane poten-
tial process is not even markovian. We consider here only the case when the jump
processes Ne and N i in eq. (7) are Poisson processes.

The instantaneous resetting of neuron A after each spike and the Poisson hypoth-
esis on Ne and N i make the sequence of first passage times Tk = inf{t > 0 : Vk(t) =
S} of the processes Vk independent and identically distributed. Hence, for the sake
of brevity, let us denote the underlying membrane potential jump–diffusion process
as V and the first passage time as T . The compound Poisson process obtained as
the sum of the processes Ne and N i is denoted as Ne,i and its k–th time of arrival
is denoted as T e,i(k).

We are giving a recursive equation for the density of T involving the density of
the first passage time of the diffusion process with no jumps (i.e. the Ornstein–
Uhlenbeck process, denoted as U). Let us denote as gSx the density of the first
passage time of the process V originated in x through the threshold S and as dSx
the corresponding density of the first passage time for the process with no jump
component U . Let us consider the following three events{

T e,i(1) ≥ t
}

= {the first jump occurs after time t}{
T e,i(1) < t

}
= {the first jump occurs before time t}

E = {the jump is excitatory}
I = {the jump is inhibitory}

and let us consider that

P(T ≤ t) = P(T ≤ t|T e,i(1) ≥ t)P(T e,i(1) ≥ t) + P(T ≤ t|T e,i(1) < t)P(T e,i(1) < t).
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Moreover

P(T ≤ t|T e,i(1) < t) = P(T ≤ t|T e,i(1) < t,E)P(E|T e,i(1) < t)+

+ P(T ≤ t|T e,i(1) < t, I)P(I|T e,i(1) < t)

= P(T ≤ t|T e,i(1) < t,E)P(E) + P(T ≤ t|T e,i(1) < t, I)P(I)

=
λe

λe + λi
P(T ≤ t|T e,i(1) < t,E) +

λi
λe + λi

P(T ≤ t|T e,i(1) < t, I)

=
λe

λe + λi

∫ t

0

P(T ≤ t|T e,i(1) = u,E)fT e,i
(1)

(u)du+

+
λi

λe + λi

∫ t

0

P(T ≤ t|T e,i(1) = u, I)fT e,i
(1)

(u)du,

where fT e,i
(1)

denotes the probability density function of the random variable T e,i(1).

Hence going to the density of the first passage time T we have

gSx (t) = e −(λe+λi)tdSx (t) + λe

∫ t

0

gSV S
u+

(t− u)e −(λe+λi)udu+

+ λi

∫ t

0

gSV S
u+

(t− u)e −(λe+λi)u

= e −(λe+λi)tdSx (t) + λe

∫ t

0

gSUS
u +e(t− u)e −(λe+λi)udu+

+ λi

∫ t

0

gSUS
u−i

(t− u)e −(λe+λi)udu (10)

where the processes V S and US are the processes V and U in the presence of the
absorbing threshold S, meaning that P(USt ∈ A) = P(Ut ∈ A, T ≥ t). Let us denote
as pUS its transition probability functions. Then we have

gSx (t) = e −(λe+λi)tdSx (t)+

+ λe

∫ t

0

(∫ S−e

−∞
gSz+e(t− u)pUS (z, u|x)dz+

+

∫ S

S−e
pUS (z, u|x)δ(u− t)dz

)
e −(λe+λi)udu+

+ λi

∫ t

0

(∫ S

−∞
pUS (z, u|x, 0)gSz−i(t− u)dz

)
e −(λe+λi)udu. (11)

Eq. (11) can be used recursively to get an approximation of the first passage
time density gSx . All the terms in the r.h.s. of the equation are known. Indeed the
density dSx of the first passage time of the process U , i.e. the process with no jumps
which is an Ornstein Uhlenbeck process, can be calculated using one of the methods
reviewed in [1]. Moreover, the transition density of the Ornstein Uhlenbeck process
U in the presence of the absorbing threshold can be evaluated as

pUS (x, t|y, s) = pU (x, t|y, s)−
∫ t

s

gSy (τ)pU (x, t|S, τ)dτ. (12)

However let us remark that the computations required to get a good approximation
are quite demanding. For this reason we decided to rely on Monte Carlo simulations
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even in the case of Poissonian jumps where actually a numerical approximation can
be achieved by means of eq. eq. (11).

3. Results. We hereby focus on some qualitative features of the spiking activity
of cell A, in order to determine:

• the role of the parameters involved in the proposed neuronal model;
• the rise of complex dynamics determined by the coupling of synchronized

inputs (from E and I) to the “background” activity of the network;
• the role of inhibition in signal transmission.

When Ne and N i are two independent counting processes with IG distributed
intertimes, no closed form expression is available for the distribution of the interspike
times Ti. Moreover the numerical approximation in the Poissonian case (11) is quite
complicated to implement. Hence, for the examples of this Section we used computer
simulations. The simulation algorithm is a generalization of the exact generation
of trajectories of an Ornstein Uhlenbeck process by means of the transition density
in order to include the jumps events. The first passage time is deduced from the
trajectories evaluating possible hidden crossings in between the nodes of the time
discretization, as suggested in [12, 2].

We selected the values of the parameters into biological ranges but we did not
test a specific physiological case as our aim was rather to study the qualitative
features of the neuromimetic model. The only parameters that are kept constant
through all the paper are the threshold level S = 10 mV and the resetting potential
V (0) = 0 mV. We choose to limit our examples to the case of balanced activity of
the units E and I motivated by two reasons:

• we tested the model with unbalanced inputs from E and I and we have not
observed special interesting features;

• the balanced setting gives a zero mean signal from E and I which cannot hide
the activity of the surrounding network.

Few words should be spent about the parameters e and i that result from the spatial
summation of several excitatory and inhibitory PSPs generated at the same time.
We consider e = −i = 5 mV. Even if their role in the model lead to choose “large”
values for such parameters and 5 mV could be plausible, see [15], our choice is hardly
motivated by the physiological knowledge. Indeed on the basis of the physiological
knowledge we should prefer smaller amplitudes, at most around 2-3 mV. However,
once we checked that the results were qualitatively unchanged, we moved to extreme
values as 5 mV in order to intensify the features of the spiking activity of cell A
that are the object of the next Sections and to speed up the computational time
of the simulations. In particular, the multimodality of the ISIs distribution of cell
A, which is the core of this manuscript, is shown to be robust to changes of the
amplitude of the positive and negative jumps, e and i, see Fig. 3–panels a1–a4.

Simulation batches are performed with samples of N = 10, 000 spikes of the
target neuron A. At each run the spike trains of units A, E and I (i.e., the epochs
of the events) are recorded and the ISIs are calculated.

3.1. Multimodal interspike interval distribution. It is remarkable that the
ISIs distribution of the neuron A is multimodal, see Figures 3–4. We observed
shapes similar to those in Figures 3–4 for a wide range of values of the parameters
even if though in our study there is no oscillatory term (we will investigate the
nature of the signal from E and I in Section 3.2).
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Figure 3. Neuron A with IG modeled units E and I: ISI his-
tograms. Common parameters: S = 10 mV, µ = 0.7 mV, σ2 = 0.05
mV2ms−1, Se = Si = 10 mV. Panels a1–a4: θ = 10 ms,
µe = µi = 0.3 mVms−1, σ2

e = σ2
i = 0.01 mV2ms−1. The values of

the varying parameter are: e = 2 (a1), e = 2.5 (a2), e = 3 (a3)
and e = 5 (a4). Panels b1–b4: θ = 10 ms, σ2

e = 0.01 mV2ms−1

and e = −i = 5 mV. The values of the varying parameter are:
µe = 0.3 (b4), µe = 0.2 (b3), µe = 0.1 (b2) and µe = 0.01 (b1).
The vertical dotted lines correspond to the values tk = k · 33.17
(b1), tk = k · 49.63 (b2), tk = k · 98.51 (b3), tk = k · 194.09
(panel b4) obtained from eq. (9). Panels c1–c4: θ = 10 ms,
µe = µi = 0.3 mVms−1 and e = −i = 5 mV. The values of the
varying parameters are: σ2

e = 0.005 (c1), σ2
e = 0.01 (c2), σ2

e = 0.1
(c3) and σ2

e = 0.5 (c4). The vertical dotted lines correspond to
the values tk = k · 33.17 obtained from eq. (9). Panels d1–d4:
µe = µi = 0.3 mVms−1, σ2

e = σ2
i = 0.01 mV2ms−1 and e = −i = 5

mV. The values of the varying parameter are: θ = 10 (d1), θ = 15
(d2), θ = 17.5 (d3) and θ = 20 (d4). The vertical dotted lines
correspond to the values tk = k · 33.17 obtained from eq. (9). The
continuous line in each panel is the corresponding density of the
firing time of a neuron modeled as an Ornstein Uhlenbeck process,
eq. (7) with e = i = 0.

Each peak of the histograms in Figures 3–4 corresponds to a characteristic firing
time of the neuron. In order to understand the causes of these peaks we will discuss
a set of examples and two cases will be distinguished for activity modeling of units
E and I: counting processes generated by IG case and the Poisson case.

Let us enter a detailed study.
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Case 1: Ne and N i with IG distributed intertimes. The parameters can be
separated in two families:

1. the parameters regulating the activity of units E and I, i. e. Se, µe, σe and
Si, µi, σi

2. the parameters linked to the embedding network, S, µ, θ and σ

We herein present results based on the dependency on the first family of parameters
and on the second family of parameters in Figure 3.

From a first look at the Figure, we see several peaks in the histograms. They can
be very regularly spaced and separated, see Fig. 3 panels a1–a4, b3, b4, c1–c3,
and panel d1, but also partially overlapped and irregular, see Fig. 3 panels d3, d4.

The abscissae of the peaks are determined by the frequency of the evoked exci-
tatory PSPs from unit E. Indeed, named m the mode of the IG distribution in eq.
(9), the peaks appear at times tk = k ·m, for k ∈ N. With the parameters of Fig.
3–panels b1–b4 we predict peaks at positions tk = k · 33.17 panel b4, tk = k · 49.63
panel b3, tk = k · 98.51 panel b2, tk = k · 194.09 panel b1, as indicated by the
vertical dotted gray lines. The parameter σe has a double role: it determines both
the position of the peaks and their width. Larger values of σe increase the variabil-
ity of the activity of unit E determining wider peaks. When σe is large, the peaks
completely mix up in a single scattered peak, see Fig. 3 panel c4. In panels b1–c4,
the discontinuous part dominates the dynamics, due to the choice of the parame-
ters involved in the diffusive part of model (7), µ, θ and σ. This fact facilitates the
analysis of the role of units E and I in the figures. Nevertheless, the contribution of
the embedding network is critical. In the absence of the diffusion component, cell
A has unimodal ISI distribution with abscissa of the maximum at time t2 = 2 ·m.
Indeed, two jumps of amplitude e = 5 mV determined by unit E are necessary to
cross the threshold S = 10 mV.

In panels d1–d4 the parameter θ is changed. The Figure illustrate two different
regimes of the ISI distribution of the target neuron A. In the first case, the peaks
are very regularly spaced and clearly separated (see panel d1). In the second case,
the peaks are partially overlapped and irregular (see panels d3–d4). Furthermore,
in these last panels, a first peak appears at t1 < m. In the transition from the first
regime to the second one (see panel d2), the distribution becomes nearly unimodal.
Completely similar results can be obtained studying the dependency on µ, but the
corresponding Figure is omitted for the sake of brevity.

These observations suggest the existence of two different dynamics of neuron A
in correspondence to two domains in the space of the parameters θ and µ:

1. subthreshold regime: µ · θ < S (cell A behaves according to the first regime);
2. suprathreshold regime µ · θ > S (cell A behaves according to the second

regime).

In the subthreshold regime, the process (7), crosses the constant boundary S exclu-
sively due to the presence of the noise of intensity σ. The coupling of the dynamics
determined by the continuous and by the discrete parts of the model (7) is domi-
nated by the activity of units E and I. Conversely, in the suprathreshold regime,
two phenomena concur to the crossing of the threshold: the deterministic trend
associated with the drift term µ and the synchronous activity of excitatory unit E.

The features of the output of neuron A are determined by the superimposition
of three sources of “signal” in the system: the network, unit E and unit I. Fig. 3
panels d1–d4 shows that neuron A is able to decompose these three input signals.
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The different panels illustrate the output of neuron A as the continuous component
of process (7) becomes stronger. The gray continuos line in panels d4 is the first
passage time through the threshold S determined by the signal from the surrounding
network in the absence of activity of the units E and I. Its shape shifts towards
shorter times and reduces its variability as θ increases. When the units E and I
are active, the ISIs histogram exhibits a peak at the same epoch as the histogram
determined by a pure diffusive input. The other peak at time t1 = m, is driven by
the excitatory unit E. It looses mass as the diffusion input increases with θ. Finally
we observe a very early peak around time t0 ∼ 10, driven by the interaction of the
three sources of activity which gains mass as θ increases.
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Figure 4. Neuron A with Poisson units E and I: ISI histograms.
Common parameters: S = 10 mV, θ = 10 ms, σ2 = 0.05 mV2ms−1,
e = −i = 5 mV. Panels a1–a4: µ = 1 mVms−1 and λe = 5 (a1),
λe = 10 (a2), λe = 20 (a3) and λe = 30 (a4) ev/s. Panels b1–b4:
λe = λi = 20 ev/s and µ = 0.7 (b1), µ = 1 (b2), µ = 1.05 (b3)
and µ = 1.2 (b4) mVms−1. The continuous line in each panel is
the corresponding density of the firing time of a neuron modeled
as an Ornstein Uhlenbeck process, eq. (7) with e = i = 0.

Case 2: Ne and N i Poisson processes. In Figure 4 we illustrate the case
with excitatory and inhibitory inputs from units E and I which arrive according to
Poisson counting processes, i.e. Exponential interarrival times.

The ISIs of unit A are mainly bimodal. Furthermore, the regimen with many
well distinguished peaks are not exhibited in the presence of Poisson inputs. When
the diffusive part of the process (7) is in the strongly subthreshold regime( see panel
b1), the firing distribution is over dispersed. This feature is typical of the Poisson
process and it is the result of the superimposition of the Poissonian activity of
the two units E and I and of an analogous Poissonian behavior of the embedding
network. Indeed, in the subthreshold regimen, even the output determined by the
surrounding network is Poissonian, see [29, 22].

Bimodal histograms result from the coupling between the synchronous activity
of unit E and I and the network. As µ increases, the output determined by the
surrounding network is no more Poissonian and the distribution splits up in two
peaks, see panels b2–b4. One is placed at the lags corresponding to the peak of
the distribution of the firing time when units E and I are silent (cf. continuous
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line). The other one appears at shorter times, hence it anticipates the firing with
respect to the response to the network activity.

The strong connection between bimodality in firing times and response to su-
perimposed synchronous and diffusive inputs is confirmed in panels a1–a4. When
λe and λi strongly increase, the synchronous inputs dominate and the histograms
become unimodal (panel a4). The same happens when λe and λi are small enough
and the inputs from the surrounding network dominate (panel a1).

3.2. Resonance behavior: The role of noise. To enter the classical SR par-
adigm, the “signal” and the “noise” component of the system should be properly
identified. In the model here studied, the “noise” component can be easily recog-
nized as the continuous part of eq. (7), which is given by an Ornstein Uhlenbeck
process. On the other hand, the “signal” is the discontinuous part, namely the
jumps occurring when the units E and I release synchronous spikes. Hence, it
seems as if no periodic component was present in the “signal”. However, the case
where synchronized units fire with IG distributed intertimes could be considered at
least “almost–periodic”. This fact becomes evident if we pass a unit–area symmetric
Hanning window filter over the time series of the pulses corresponding to the spike
events from units E and I (the so called spike train). In Fig. 5 we illustrate the
filtered spike trains from E (panel a IG and panel d Exponential intertimes), from
I (panel b IG and panel e Exponential intertimes) and the sum of them (panel c IG
and panel f Exponential intertimes). In the IG case, the filtered signal, obtained by
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Figure 5. Examples of signals from E and I filtered by a sym-
metric Hanning window of 5 ms. IG modeled units E and I (pan-
els a–c) and Poisson modeled units E and I (panels d–f). In a,
filtered signal from a spike train made of 10 excitatory events (ver-
tical dotted red lines) for Se = 10 mV, µe = 0.2 mVms−1, σ2

e = 0.5
mV2ms−1. In b, filtered signal from a spike train made of 10
inhibitory events (vertical dotted blue lines) with the same param-
eters as in a. In c, filtered signal from the sum of the spike trains in
a and b. In panels d–f the corresponding examples for the Poisson
model with λe = λi = 20 ev/s.

the superimposition of the excitatory and inhibitory synchronized inputs in panel
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c, shows some weakly periodic behavior. Indeed, this signal looks like a sine wave
with variable amplitude, whose characteristics depend on the alternance between
positive and negative inputs. Its period is affected by random small drift resulting
from the small random perturbation of the intertimes between firing events. As it
can be asserted, the dominant frequency is equal to 1/m, where m is the mode of
the IG distribution given in eq. (9).

If we filter the spike trains from units E and I with Exponential distributed
intertimes we find a completely different resulting signal, see Fig. 5 panels d–f.
This is related to the memoryless property of the Exponential distribution. As this
feature is exclusive of the Exponential distribution, the resulting signal will have a
non–predictable shape only for Exponential intertimes. By contrast, it will appear
weakly periodic for any other distribution of intertimes provided that variance is
not too large.

As a consequence of these remarks, we decided to investigate the cooperative
behavior between the “signal” (evoked PSPs due to the activity of units E and I)
and the “noise” (from the embedding network of neurons) only for IG distributed
intertimes in the signal component of the system. We choose between a set of
parameters coherent with the investigations in the usual SR framework and weak
“signal” was considered a condition in which the cell fires with very low probability
(but not zero), in the absence of “noise”. Furthermore our analysis is limited to
choices of the parameter compatible with the subthreshold regime.
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Figure 6. Histograms of the ISI of the target neuron A with IG
modeled units E and I. Here σ2 = 10−3, 5, 10 mV2ms−1 (panels a,
b, c) and S = Se = 10 mV, θ = 10 ms, µ = 0.9 mVms−1, µe = 2
mVms−1, σ2

e = 0.5 mV2ms−1, e = i = 5 mV. In d, signal to noise
ratio (SNR) as a function of σ. In e, height of the peak at lag
t = 5 as a function of σ. In f, height of the peaks at lags t1 = 5,
t2 = 10 and t3 = 15 for the following choice of the parameters:
µ = 0 mVms−1, θ = 9 ms, e = −i = 7 mV.

The most common way to quantify SR is through the signal–to–noise ratio (SNR),
given as the ratio between the strength of the peak located at the signal frequency in
the power spectrum of the spike train and the background noise level. In particular it
can be calculated as 10 log10(S/N) dB, where S is the area enclosed above the noise
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background and N is the amplitude of the noise background at the signal frequency.
Evidence of SR is a maximum in the SNR at an optimal value of noise intensity.
Alternatively SR can be identified through the analysis of the ISI distribution. In
particular the heights of individual peaks should go through maxima for critical
values of the noise strength, here represented by the diffusion parameter σ2.

In Fig. 6 the results of the investigation are illustrated for both the measures
of SR, the SNR (panel d) and the ISI distribution (panels e–f). In both cases
SR can be determined. The SNR and the height of the first peak (located at
the dominant frequency 1/m) goes through a maximum as a function of the noise
intensity. Conversely, the second, third and fourth peaks show a monotonically
decreasing height. Let us deepen the comprehension of the different behavior of the
heights of the peak in the ISI histogram. The peak located at lag 1/m is made up
of noise induced firing times of cell A. Hence the noisy crossing of the threshold
gradually synchronizes with the signal, which is exactly the paradigm of SR. The
next peaks are no more noise induced, as can be deduced from the ISI in Fig. 6 panel
a. Though the noise intensity is very small, σ2 = 10−3 mV2ms−1, the peaks are
clearly observable. They are determined by the synchronization of the signal with
the threshold crossings. This synchronism is caused by the drift term µ. Indeed the
drift leads the membrane potential to large enough values which allows the cell to
fire when an excitatory PSP is evoked. Hence those peaks do not show resonance
behavior because they are actually not related to the cooperation between signal
and noise in the system. To strengthen this argument let us notice that if the drift
term µ is removed from eq. (7) (µ = 0) it can be proved that all the peaks in the
ISI distribution show a maximum as a function of the noise intensity, see Fig. 6
panel f.

3.3. The role of inhibition in signal transmission. In this section we inves-
tigate the role of the inhibitory unit I in the signal transmission. As the role of
the excitatory unit E can be clearly deduced from the above–mentioned results, the
role of inhibition may be not so obvious. In order to investigate this subject let
us quantify the part of the signal that we consider successfully transmitted by the
neuron A.

The flow of information transmitted throughout a system can be measured as
a coherence between the input stimulus and the system response. In our problem,
the input stimulus and the system response are respectively represented by the
excitatory PSPs from unit E and the output spikes from the target neuron A. Both
stimulus and response are modeled as point events. We propose to measure the
coherence between stimulus and response as the fraction of events in the spike train
produced by neuron A which are caused by an excitatory event in the spike train
produced by unit E. This is the portion of events in the A spike train which are
synchronous to an event in the E spike train. We call such a proportion response
efficiency (RE) and it is given as

RE =
#{Tj : |Tj − T ek | < tol}

#{Tj}
, (13)

where Tj are the ISIs in the A spike train, T ek are the ISIs in the E spike train and
‘tol’ is a fixed tolerance for calling synchronous two events that differ less than ‘tol’.

Let us calculate the RE of the system both in the presence and in the absence of
inhibitory activity from unit I. The results are reported in Fig. 7. The left panel
considers the case with IG distributed intertimes, while the right panel considers
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the response efficiency (RE) defined in eq. (13) for different values
of µ. Left panel, IG modeled units E and I. Right panel, Poisson
modeled units E and I. Here S = Se = 10 mV, θ = 10 ms,
σ2 = 0.05 mV2ms−1, µe = 0.3 mVms−1, σ2

e = 0.01 mV2ms−1,
tol= 0.1 ms. Black lines e = −i = 5 mV, red lines e = −i = 0 mV.

the Poissonian case. The figure contains the plots of the 95% level Monte Carlo
confidence interval calculated on a sample of size 100 made up of sample RE, each
of them obtained from a spike train with 1000 firing events of cell A. The samples
have been simulated for different values of µ, both in the presence (black lines)
and in the absence (red lines) of inhibitory activity from I. From a first look at
the figure we can assert that the RE for the IG and the Poisson case exhibits
analogous behaviors. If the role of inhibition is considered, as the process moves
from subthreshold to suprathreshold regime, the RE levels show different behaviors
of the network. When the diffusion term is in the subthreshold regime, the signal
from the network embedding cell A is not strong enough to induce a response. As
the chosen noise level is very small (σ2 = 0.05 mV2ms−1), the firing activity of
cell A is fully driven by the excitatory unit. This is supported in Fig. 7 by the
confidence intervals for µ = 0.7 and µ = 0.8 mVms−1 that are located near to value
1, meaning that almost all spikes from A are synchronous to a spike from E. In the
suprathreshold regime, the network signal is stronger and may produce a response
of cell A. Hence its firing activity will be competitively driven both from E and
the network. Consequently, the RE assumes lower values even if the signal from
E has the same strength. In this regime the role of inhibition can be appreciated.
Indeed, in the presence of inhibition (black confidence intervals) cell A responds
with higher efficiency to the synchronous excitatory inputs from E (larger values of
RE) if compared to the response in the system with no inhibition (red confidence
intervals). This suggests an active role of inhibition in the synchronization of neural
firing and in information processing.

4. Conclusions. We propose a jump diffusion LIF model for a neuron belonging
to a network in spontaneous activity and receiving inputs from two independent
units of synchronous neurons. This formal neuron is able to distinguish different
inputs. Its output ISIs distribution is multimodal and each peak is determined by
a specific input. Furthermore we observe a stochastic resonance behavior and we
relate it with the synchronous inputs from the excitatory unit. A further feature of
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the proposed model concerns the role of inhibition. Indeed we show that inhibition
increases the information transmission efficiency of the neuron. Future studies could
consider a larger variety of activity from sets of synchronous units.
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