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Abstract. In this paper, we propose a strategy for the selection of the hid-
den layer size in feedforward neural network models. The procedure herein

presented is based on comparison of different models in terms of their out of
sample predictive ability, for a specified loss function. To overcome the problem

of data snooping, we extend the scheme based on the use of the reality check

with modifications apt to compare nested models. Some applications of the
proposed procedure to simulated and real data sets show that it allows to select

parsimonious neural network models with the highest predictive accuracy.

1. Introduction. It is widely accepted that complex structures, in time and in
space, exist in biological data and that non-linear models, both parametric and
non-parametric, can effectively be used to reveal these patterns. In this context,
artificial neural networks are one of the most popular artificial learning tools due to
their ability to accurately represent the complex, non linear behaviour of relatively
poorly understood processes without any a priori knowledge of input and output
relationships.

The growing interest in neural networks, with respect to other non parametric
techniques, is due to their versatility which comes from the high capability of pro-
viding, under quite general conditions, an arbitrarily accurate approximation to an
unknown target function of interest. Barron [2] obtained a deterministic approx-
imation rate for a class of single hidden layer feedforward neural networks with r
hidden units and sigmoid activation functions when the target function satisfies cer-
tain smoothness conditions. Hornik et al. [16] extended Barron’s result to a class
of neural networks with possibly non-sigmoid activation approximating the target
function and its derivatives simultaneously. More recently, Makovoz [23] and Chen
and White [5] obtained an improved degree of approximation of Barron’s neural
networks with sigmoid activation function. Moreover, neural networks do not suf-
fer for the so-called ’curse of dimensionality’. Theoretically, they are expected to
perform better than other approximation methods since the approximation form is
not so sensitive to the increasing data space dimension, at least within the confines
of particular classes of functions.

The reliability of using neural networks in practice has been affirmed in many
different applications ranging from pattern recognition [3], in chromatographic spec-
tra [15, 4], and expression profiles [36, 18], to functional analyses of genomic and
proteomic sequences [6] to QSAR models [10, 1].
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Many studies [24, 40, 32] agree that one of the main difficulties in applying
neural networks in biotechnology is the choice of an adequate model. The problem
can be faced referring to the many proposals based on trial and error procedures,
adequately combined with pruning of the network graph, based on weight selection
or classical information criteria. Alternatively, the neural network model building
strategy could be faced in a statistical perspective, relating it to the classical model
selection approach. In the case of the single hidden feedforward neural network class,
model selection basically involves the choice of the number and type of input neurons
and the number of neurons in the hidden layer. In our opinion, a model building
process should highlight the different role of these two types of neurons. The input
neurons are related to the explanatory variables and, as a consequence, are useful
for the identification and interpretation of the model. Therefore, although many
techniques have been proposed in the literature, their selection should be addressed
focusing on statistical test procedures for variable selection in regression models
[19, 20] in order to give information explicitly on the ’relevance’ of the variable to
the model. On the contrary, the hidden layer size takes into account the trade-off
between estimation bias and variability and so it is related to the complexity of
the model. Of course, the selection of this parameter plays an important role since
under-parametrized (over-parametrized) models can lead to heavy consequences on
underfitting (overfitting) and, consequently, poor modeling performance or reduced
ex-post forecast accuracy. Generally, it is chosen according to one of the information
criteria available in the statistical literature even if many statistical studies [31, 26]
agree on the failure of these measures in choosing the best forecasting model.

In this paper, we propose a strategy in which the hidden layer size is selected by
comparing models in terms of their out of sample predictive ability, for a specified
loss function. In this context, since a given set of data is used more than once for
inference and model selection, there is the possibility that any satisfactory results
may simply be due to chance rather than to the model itself (a problem known
as ’data snooping’). To overcome this problem, we extend the procedure based on
the use of the reality check proposed in White [39] with the modification for nested
models as proposed in Clark and McCracken [7, 8].

The paper is organized as follows. In the next section, we describe the structure
of the data generating process and the neural network model. In section 3 we discuss
the proposed test procedure for model selection. Numerical examples on simulated
data and a moderate Monte Carlo experiment are reported in section 4 while in
section 5 two applications to biological data are discussed. Some final remarks close
the paper.

2. Neural network models. Let the observed data be the realization of a se-

quence
{
Zi =

(
Yi,X

T
i

)T}
of independent identically distributed (iid) random vec-

tors of order (d+ 1), with i ∈ N.
The random variables Yi represent targets (in the neural network jargon) and it

is usually of interest the probabilistic relationship with the variables Xi, described
by the conditional distribution of the random variable Yi |Xi . Certain aspects of
this probability law are relevant in interpreting what is the modeling role of artificial
neural network models. If E (Yi) <∞, then E (Yi |Xi ) = g (Xi) and we can write

Yi = g (Xi) + εi (1)
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where εi ≡ Yi − g (Xi) and g : Rd → R is a measurable function. Clearly, by
construction the error term εi is such that E (εi |Xi ) = 0.

The function g embodies the sistematic part of the stochastic relation between
Yi and Xi. It can be approximated by using the output of a single hidden layer
feedforward artificial neural network of the form

f (x,w) = w00 +

r∑
j=1

w0jψ
(
x̃Tw1j

)
(2)

where w ≡
(
w00, w01, . . . w0r,w

T
11, . . . ,w

T
1r

)T
is a r(d + 2) + 1 vector of network

weights, w ∈W with W compact subset of Rr(d+2)+1, and x̃ ≡
(
1,xT

)T
is the input

vector augmented by a bias component 1. The network (2) has d input neurons, r
neurons in the hidden layer and identity function for the output layer. The (fixed)
hidden unit activation function ψ is chosen in such a way that f (x, ·) : W → R
is continuous for each x in the support of the marginal distribution of Xi and
f (·,w) : Rd → R is measurable for each w in W.

The main difference with a parametric model is that instead of postulating a
specific non-linear function, a neural network model is constructed by combining
many “simple” non-linear functions via a multi-layer structure. In a feedforward
network, the explanatory variables simultaneously activate r hidden units in an in-
termediate layer through some function ψ, and the resulting hidden-unit activations
ψ
(
x̃Tw1j

)
, j = 1, . . . , r, then activate output units to produce the network output.

Given a training set of N observations, D = {(Yi,Xi) , i = 1, 2, . . . , N} estimation
of the network weights (learning) is obtained by solving the optimization problem

min
w∈W

1

N

N∑
i=1

q (Yi, f (Xi,w)) (3)

where q(·) is a proper chosen loss function. Under general regularity conditions
(White, [37]), denoting π (z) the distribution of Zi, a weight vector ŵn solving
equation (3) exists and converges almost surely to w∗, which solves

min
w∈W

∫
q (y, f (x,w))dπ (z) (4)

provided that the integral exists and the optimization problem has a unique solu-
tion vector interior to W. This is not necessarily true for neural networks without
considering appropriate restrictions, since the parametrization of the network func-
tion is not unique. However, Ossen and Rügen [25] provide sufficient conditions
to ensure uniqueness of w∗ in a suitable parameter space W for specific network
configurations.

Moreover, from an asymptotic point of view, the possible presence of multiple
minima has no essential effect for solutions to equation (4) (see [37]), while, from
a computational point of view, several global optimization strategies (simulation
annealing, genetic algorithms, etc.) have been successfully employed to avoid to
be trapped in local minima. Finally, when the focus is on prediction, as in this
paper, it can be shown that the unidentifiability can be overcome and the problem
disappears [17].

The estimated neural network model should capture the real functional relation-
ship existing between the inputs and the output, so it should well approximate the
observed data and, at the same time, it should perform reasonably well on new data
(prediction). Clearly, a good neural network model is characterised by its ability to
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approximate and to generalise in a proper way. A model structure that is chosen
to be too complex in relation to the real functional relationship, captures the noise
contained in the data (overfitting). Such a model will perform well in approximating
the data used for the estimation of its parameters but very poorly on new data.

The trade-off between approximation accuracy and generalization ability is gov-
erned by the hidden layer size which, in neural network framework, plays the role
of a smoothing parameter.

This issue is usually addressed by splitting the available data set into two subsets:
(i) the training set and the test data set. The first is used for estimating the
weights of a certain model structure with a specified number of hidden units; then
the test data set is fed into the neural network model which runs in the prediction
mode. The discrepancy between the computed and the observed data of the second
subset, expressed as mean square error, is a measure of the generalisation property
of the network. The relationship between training and test data is usually chosen
to be 70% to 30%. To apply this method one usually starts with a small model
structure which is stepwise increased by adding hidden units. For every structure the
approximation and generalisation errors are computed as mean square error on the
basis of the training and the test data respectively. Obviously, the approximation
error is expected to decrease continuously with increasing complexity of the model.
The generalisation will also improve with increasing number of hidden nodes,but
beyond a certain complexity the model will have a poor generalisation performance,
due to overfitting problems, even if the number of hidden nodes is still increasing.
The number of hidden units corresponding to the minimum of the generalisation
error determines the optimal model structure and represents the solution to the
model selection problem.

In any case, all these model selection procedures are not entirely satisfactory.
Since model selection criteria depend on sample information, their actual values
are subject to statistical variations. As a consequence, a model with higher model
selection criterion value may not significantly outperform its competitors. In recent
years there is a growing literature addressing the problem of comparing different
models and theories through the use of predictive performance and predictive ac-
curacy tests ([9] and the references therein). In this literature, it is quite common
to compare multiple models, which are possibly misspecified (they are all approx-
imations of some unknown true model), in terms of their out of sample predictive
ability, for a specified loss function. In such context data snooping, which occurs
when a given set of data is used more than once for inference or model selection, can
be a serious problem. When such data reuse occurs, there is always the possibility
that any satisfactory results obtained may simply be due to chance rather than
any merit inherent to the model yielding to the result. In other words, by looking
long enough and hard enough at a given data set it will often reveal one or more
forecasting models that look good but are in fact useless.

The data snooping can be particularly serious especially when there is no theory
supporting the modeling strategy, as it happens when using neural network models
which are basically atheoretical. Unfortunately, as far as we know, there are no
results addressing the problem just described in a neural network framework.

3. Testing superior predictive ability for neural network modeling design.
Let (Yτ ,Xτ ) denote a future observation that satisfies

Yτ = g (Xτ ) + ετ (5)
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At this stage, assume that the set of explicative variable has been selected by an
appropriate variable selection technique (see [19, 21] inter alia).

Moreover, assume that k + 1 alternative forecasting neural network models are
available, namely fj (x,w), j = 0, 1, . . . , k, where j denotes the hidden layer size
and k is fixed to maximum level of desired complexity. Obviously, f0 (x,w) is a
neural network with skip layer and r = 0 neurons in the hidden layer (that is the
linear model). In our framework it is assumed to be the benchmark model.

Let the generic forecast error be uj,τ = Yτ − fj (Xτ ,w
∗) , j = 0, 1, . . . , k where

w∗ is defined as in the previous section. Let h be a loss function chosen to properly
weight the forecasting error [12] and define

θj = E (h (u0,τ )− h (uj,τ )) , j = 1, 2, . . . , k. (6)

Clearly, if model j beats the benchmark (i.e. it shows better expected predictive
performances) we have θj > 0, otherwise θj ≤ 0 and our goal is to identify as many
models for which θj > 0. In other words, for a given model j, consider

Hj : θj ≤ 0 vs H ′j : θj > 0, j = 1, 2, . . . , k (7)

and, in a multiple testing framework, take a decision concerning each individual
testing problem by either rejecting Hj or not. In this framework, to avoid declaring
true null hypotheses to be false, the familywise error rate, defined as the probability
of rejecting at least one of the true null hypotheses, should be taken under control.

This can be done by using the well known Bonferroni method or stepwise proce-
dures such as Holm’s approach, which are more powerful. Unfortunately, all these
procedures are conservative since they do not take into account the dependence
structure of the individual p-values [27]. To avoid these issues, it is possible to
use the reality check as in White [39] and the modification for nested models as
proposed in Clark and McCracken [7, 8].

This latter approach can be easily extended to our neural network framework. Let
S = {(Yi,Xi) , i ∈ S} and P = {(Yi,Xi) , i ∈ P} denote, respectively, the estimation
data set and the test data set, where P is the complement set of S with respect to D,
with |P| = N − |S|. Let the estimated forecast error be ûj,τ = Yτ − fj(Xτ , ŵ), j =
0, 1, . . . , k and let MPEj =

∑
τ∈P h (ûj,τ ), where P is the cardinality of the set P.

The test procedure can be based on the F-type statistic defined as

Fpj = P
MPE0 −MPEj

MPEj
, j = 1, 2, . . . , k. (8)

It has a clear interpretation: large values of Fpj indicate evidence against the null
Hj .

The procedure for testing the system of hypotheses (7) keeping under control the
family wise error rate, runs as follows. Relabel the hypothesis from Hr1 to Hrk in
redescending order with respect to the value of the test statistics Fpj , that is Fpr1 ≥
Fpr2 ≥ . . . ≥ Fprk . The procedure focuses on testing the joint null hypothesis that
all hypothesesHj are true, that is no competing model is able to beat the benchmark
model. This hypothesis is rejected if Fpr1 is large, otherwise all hypotheses are
accepted. In other words, the procedure constructs a rectangular joint confidence

region for the vector (Fpr1 , . . . , Fprk)
T

, with nominal joint coverage probability
1−α. The confidence region is of the form [Fpr1 − c1−α,∞)×· · ·×[Fprk − c1−α,∞)
where the common value c1−α is chosen to ensure the proper joint (asymptotic)
coverage probability. If a particular individual confidence interval

[
Fprj − c1−α,∞

)
does not contain zero, the corresponding null hypothesis Hrj is rejected.
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So, the testing procedure will select a set of models which delivers the greatest
predictive ability, when compared to the benchmark model. All these models are
somewhat equivalent and, for a parsimony principle, the one with smallest hidden
layer size should be selected. If all the nulls are not rejected in the first step, there is
no neural network model which is able to outperform the linear model (assumed as
a benchmark) in terms of predictive ability. The quantile of order c1−α is estimated
by using the bootstrap [29].

The pseudo-code for the complete testing procedure is described in algorithm
(1).

Algorithm 1 Testing algorithm for superior predictive ability.

1: Relabel the hypothesis from Hr1 to Hrk in redescending order of the value of
the test statistics Fpj , that is Fpr1 ≥ Fpr2 ≥ . . . ≥ Fprk .

2: Generate B bootstrap replicates Z∗N,1,Z
∗
N,2, . . . ,Z

∗
N,B as iid samples from ZN

3: From each bootstrap data matrix Z∗N,b with b = 1, 2, . . . , B compute the boot-
strap counterparts of the individual test statistics F ∗pj,b, j = 1, 2, . . . , k.

4: Let K be the set of indexes of models with better predictive performance

5: For b = 1, 2, . . . , B compute θb,∗N = max1≤s≤k

(
Fp∗rs,b − Fprs

)
6: Compute ĉ1−α as the 1−α quantile of the bootstrap values θb,∗N , b = 1, 2, . . . , B
7: for s = 1 to k do
8: if 0 /∈ [Fprs − ĉ1−α,∞) then
9: reject Hrs and include s in K

10: end if
11: end for
12: Deliver the set K (if it is an empty set, no neural network model is able to beat

the benchmark model)

4. Some numerical results. To illustrate the performance of the proposed model
selection procedure, we use simulated data sets generated by models with known
structure. The simulated data sets were generated by using different models often
employed in the neural network literature as data generating processes.

The first model is the same used in De Veaux et al. [11] and it is defined as

Y = 1.5 cos

(
2π√

3

√
(X1 − 0.5)

2
+ (X2 − 0.5)

2
+ (X3 − 0.5)

2

)
+ ε

where ε is gaussian with zero mean and variance equal to 0.1 and X = (X1, X2, X3)T

is drawn randomly from the unit hypercube. The function is radially symmetric
in these three variables. Clearly, the number of the neurons in the hidden layer is
unknown and the model we try to identify is, by construction, misspecified.

The second model has been used by Friedman [13] and it is defined as

Y =
(
10 sin (πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε

)
/25

where X = (X1, X2, X3, X4, X5)T is a vector of multivariate uniform random vari-
ables and ε is gaussian with zero mean and variance equal to 1. The model includes
both linear and nonlinear relationships.

The third model is the same one used by Tibshirani [33] and it is defined as

Y = 3ψ (2X1 + 4X2 + 3X3 + 3X4) + 3ψ (2X1 + 4X2 − 3X3 − 3X4) + ε
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where ψ is the logistic activation function, X = (X1, X2, X3, X4)T is a vector of
multivariate gaussian random variables with zero mean, unit variance and pairwise
correlation equal to 0.5 and ε is gaussian with zero mean and variance equal to 0.25.
Clearly a neural network with logistic activation function, four input neurons and
two hidden neurons is a correctly specified model and no misspecification is present.

The last model is the same model used by Turlach [35] and it is defined as

Y = (X1 − 0.5)
2

+X2 +X3 +X4 +X5 + ε

where X = (X1, X2, X3, X4, X5)T is a vector of multivariate uniform random vari-
ables and ε is gaussian with zero mean and variance equal to 0.05. The model
includes both linear and nonlinear relationships.

For the numerical examples, we have considered a quadratic loss function h and
N = 600, P = 180, B = 1000 and k = 8. All neural network models have been
estimated by using nonlinear least squares, including a weight decay in the objective
function to control overfitting. Moreover, to avoid to be trapped in local minima,
the estimation procedure has been initialized 25 times with random starting values,
keeping the estimated network with the lowest residual sum of squares.

Figure 1. Joint confidence regions with nominal coverage proba-
bility 1− α = 0.95

The results of the testing procedure for typical realizations are reported in figure
(1). In the Tibshirani model case, the hidden layer size is known and equal to 2.
The procedure correctly identifies the hidden layer size and indicates that it is not
possible to improve accuracy by increasing the hidden layer size. All models with r
ranging from 2 to 8 are basically equivalent with respect to the predictive accuracy.
Similar remarks apply also to all other models. Note that for the DeVeaux and
the Friedman data simply considering the statistical index would indicate r = 8 as
the best choice, but this does not give any significant improvement with respect to
r = 4.
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A moderate Monte Carlo experiment has also been performed considering the
same data generating processes as before. We have considered 240 Monte Carlo
runs with three different sample sizes N = 300, 400, 600 using the last 30% observa-
tions for prediction. The results are reported in figure (2). In the Tibshirani case,
the hidden layer size (which is known and equal to 2) the proportion of correct
identification is very high for all the sample sizes, reaching 100% for N = 600. For
the other data sets, the simulations confirm the results shown by the numerical
examples and highlight the steep improvement as the sample size increases.

Figure 2. Proportion of hidden layer size identification by using
the testing procedure for superior predictive ability

5. Real data applications. To validate the performance of the proposed pro-
cedure two applications to real data are discussed in this section. The aim is to
verify if the proposed procedure is able to correctly identify an appropriate model
structure for the data at hand.

As a first example, we use the Prostate Cancer data set which comes from a study
by Stamey et al [30] and also used by Hastie et al [14]. The dependent variable is
the level of prostate-specific antigen which depends on 8 clinical measures in men
who were about to receive prostatectomy. The data set, already used in many bio-
statistical studies, has a well known regression structure and so it is suitable for
testing new procedures. The data set has 97 observations and it is splitted in two
subsets: 67 observations have been used for the modeling step while 30 observations
have been used for the validation step. By using a linear model and a best subset
variable selection rule, just two explanatory variables (out of eight) are identified
as relevant: lweight (log prostate weight) and lcavol (log cancer volume). For sake
of comparison, as identification tools for the number of hidden neurons, we also use
the k-fold Cross-Validation (CV) selection rule (see [14] inter alia) and the Bayesian
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Information Criterion (BIC) [28], proved to be consistent (almost surely) in the case
of multi-layer perceptrons with one hidden layer in [38].

Clearly, the BIC identifies a neural network with skip layer and zero hidden
neurons (i.e a linear model), for all the weight decay values considered (see figure
3, left panel). In the following, all the computations are based on a weight decay
equal to zero, since it delivers the lowest BIC value. The CV also confirms the
model selected by using the BIC and the same conclusions can be drawn by using
the proposed test of superior predictive ability (see figure 4, left panel). To validate
these results, a linear model and neural networks with hidden neurons ranging from
1 to 8 have been estimated and used to predict the observations in the validation
set. The distributions of the absolute prediction errors are reported in figure 4, right
panel. The plot shows that the neural networks considered are not able to provide
better predictions with respect to the linear model (as predicted by the CV, the BIC
and the novel test). Even a neural network with 6 hidden neurons (which shows
the lowest median absolute prediction error) does not appear to provide prediction
errors statistically different from those provided by the linear model. These results
are confirmed by a formal statistical comparison between the two distributions: the
Brunner Munzel test and the Wilcoxon rank sum test give p-values equal to 0.497
and 0.495, respectively.

Figure 3. Bayesian Information Criterion values for different hid-
den layer sizes and different weight decay values (left panel). k-fold
cross validation values for k = 5 and k = 10 using a weight decay
equal to zero (right panel).

The second data set used as an example has been downloaded from the UCI
Machine Learning Repository and is composed of a range of biomedical voice mea-
surements from 42 people with early-stage Parkinson’s disease recruited to a six-
month trial of a telemonitoring device for remote symptom progression monitoring
(for details see [34]). The data set has 5,875 observations on age, gender and on 16
biomedical voice measures. The statistical model is used to predict the total UP-
DRS score. For computational reasons, just the subset of the first 887 observations
(corresponding to the first 5 patients) has been considered. Again, the data set is
splitted in two subsets: 731 observations (the first 4 individuals) have been used
for the modeling step while 156 observations (corresponding to the 5th patient)
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Figure 4. Joint confidence regions with nominal coverage prob-
ability 1 − α = 0.95 (left panel). Absolute prediction error dis-
tributions computed on the test set for linear models and neural
networks with hidden layer size ranging from 1 to 8 (right panel).

are used for validation purposes. In this case, the CV model selection rule would
suggests a neural network model with 4 hidden neurons while, following the BIC,
also a neural network with 2 neurons would be appropriate. On the contrary, by
using the proposed test, there is no superior predictive ability of neural network
models with respect to linear models (see figure 4, left panel). This is confirmed by
the distribution of the absolute predictive errors reported in figure 4, right panel:
the linear model and the neural networks with 2 or 4 neurons in the hidden layer
perform similarly. This latter result is also supported by the Brunner Munzel test
and the Wilcoxon rank sum test whose p-values are, respectively, equal to 0.219 and
0.218. In this example, the regression model uses 17 explanatory variables so net-
works with 2 or 4 hidden neurons include 39 or 77 parameters, respectively. These
networks appear to be heavily overparametrized, with no clear advantages in terms
of predictive ability.

6. Concluding remarks. In this work, the main point was to introduce a strat-
egy for the selection of the hidden layer size in feedforward neural network models.
The numerical examples and the Monte Carlo experiment show that looking at the
predictive ability of the model, simply measured by statistical indexes of predictive
accuracy, might be misleading. In this case, the selected model might be over-
parametrized with heavy consequences on the generalization ability of the network.
A better approach should be based on testing procedures of superior predictive abil-
ity. However, this strategy generates a sequence of tests and as a consequence the
data snooping problem arises. This multiple testing structure, which is inherent to
most model selection strategies, can be effectively addressed by reality check type
tests. The proposed testing procedure, which takes under control the familywise
error rate, is able to select parsimonious neural network models with the highest
predictive accuracy. The real data analysis also supports this latter conclusion
showing also that the CV and the BIC might lead to neural network models much
more complex than necessary.
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