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Abstract. The mean-field dynamics of a collection of stochastic agents evolv-

ing under local and nonlocal interactions in one dimension is studied via an-
alytically solvable models. The nonlocal interactions between agents result

from (a) a finite extension of the agents interaction range and (b) a barycentric

modulation of the interaction strength. Our modeling framework is based on a
discrete two-velocity Boltzmann dynamics which can be analytically discussed.

Depending on the span and the modulation of the interaction range, we an-

alytically observe a transition from a purely diffusive regime without definite
pattern to a flocking evolution represented by a solitary wave traveling with

constant velocity.

1. Introduction. Since several decades, the fascination for flocking dynamics and
specifically, the detailed mechanisms which induce a collection of interacting sto-
chastic agents to exhibit an emergent collective behavior, stimulates a fruitful activ-
ity on both experimental [6, 36] and modeling sides [43, 48]. The recent pioneering
and truly engrossing contributions from T. Vicsek et al. [48] and F. Cucker and S.
Smale [18] unveil, from a simple and synthetic modeling point of view, some of the
basic features underlying the formation of robust collective motions. Recently, a
wealth of numerical and analytical explorations based on the Vicsek’s and related
models, describing self-propelled particles with collective motions, arose in the lit-
erature. In particular, in the framework of agent-based modeling, cohesive motions
have been studied via a statistical mechanics point of view in [8, 9, 14, 25, 26, 34].

As intuitively expected, a central role is played by the strength and range of
interactions connecting the agents. Heuristically, with strong enough interactions
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over a sufficiently wide range, the noise-induced detuning tendency, can be overcome
and ultimately produces an emergent synchronized evolution. Recent observations
for birds demonstrate that a fixed critical number of neighbors rather than a pure
metric spatial range is used by birds in order to flock together to platoons [10, 13].
This shows that the interaction range itself may depend on the instantaneous distri-
bution of agents. Such non-metric interactions have been recently taken explicitly
into account in [16, 42]. Here, we contribute to this widely open topic by proposing
a very simple class of models, where the interaction range and strength depend in
an effective way on the agent distribution.

Societies of agents can be composed either of dynamically homogeneous or het-
erogeneous individuals and each case requires a drastically different modeling ap-
proach. Recent analytical results have been derived for heterogeneous agents like
ranked-based interacting Brownian motions [3, 15, 41] or bucket brigades dynamics
[1, 4, 5]. We here focus on homogeneous populations of agents which offer a wide
potential for analytical approaches. In an homogeneous population, any randomly
selected individual is likely to be a dynamical representative of any other fellow of
the society. This very basic feature together with the fact that for large populations,
the relative importance of fluctuations diminishes, enable, in the thermodynamic
limit N → ∞, to adopt a purely macroscopic description. This assumes that the
normalized distribution of agents can be “hydrodynamically” described by a prob-
ability density which solves a deterministic, yet nonlinear, evolution equation. We
call, in accordance with the related mathematical literature, the resulting equation
the mean-field (MF) equation (see e.g., [2]).

The class of MF models introduced in this contribution shows flocking transitions
for large enough interaction ranges and belongs to the rare instances of exactly
solvable interacting agent dynamics. By a flocking pattern, we understand the self-
organized capability of agents to create, via their mutual interactions, a persistent
probability density taking the form of a traveling wave. The price to be paid for
such an analytical objective is to conveniently reduce the individual agents’ state
space and decision space. As a minimal class of models, we shall consider random
two velocity models involving agents traveling on the real line with two discrete
velocities, say {v±} with v− < v+. The usefulness of one dimensional models
has been proven in recent experimental and theoretical contributions, including
[12, 19]. Here, the effective agent autonomous decisions will consist in selecting, at
non-homogeneous Poisson random times, one out of the two possible velocities. The
velocity updating process will, via density-dependent parameters of the underlying
Poisson switching times, depend on the observation range, i.e. the range over which
agents interact. This naturally leads to nonlinear Boltzmann-like dynamics, which
is commonly adopted for traffic flows modeling [7, 29, 31], and which recently also
appeared in models more closely related to our present contribution, [8, 9, 14, 34].

The observation range, which will be the key control parameter for our discus-
sion, may depend on the distribution of the whole agent society via a barycentric
modulation. Such a barycentric modulation offers, in an effective manner, the pos-
sibility to model agent dynamics with configuration-dependent interaction ranges.
This approach enables us to construct several solvable nonlinear models for which
critical interaction modulations – required for flocking – can be obtained explicitly.

Although different from our present contribution, related MF models exist in the
literature. Exactly solvable MF models have been proposed in different contexts
including portfolio theory [22], coupled phase oscillators [11], traffic dynamics [7,
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29], self-propelled organisms [8, 9, 25, 47] and [20], this last contribution being
particularly relevant for our present approach. Related MF models with barycentric
self-interactions are studied in [2] and [17]. Our present study provides an explicit
and exactly solvable class of models which is closely related to the class of dynamics
discussed in [21, 37] (n.b. see particularly eqs. (2, 19) in [37] and eq. (1) in [21]).
In the present case, the solvability arises since our models are – for very short and
very long look-ahead interaction ranges – amenable to a discrete velocity Boltzmann
equation of the Ruijgrok-Wu type, [45]. Note that the Ruijgrok-Wu equations do
not invoke detailed balance in the momentum variable and our models are therefore
– in contrast to the seminal works of Vicsek [48] and Cucker-Smale [18] – asymmetric
as they are based on the existence of an intrinsic preferred direction. Before closing
this introduction, we quote the recent and detailed review by R. Eftimie [20]:

“Because of their complexity, these nonlocal hyperbolic models have not been the
subject of very thorough analytical investigations. For this reason it is quite difficult
to identify the exact mathematical mechanisms that can explain the formation of
these patterns in nonlocal models [...]”.

One hence realizes that exact solutions are presently particularly welcome. As
originally discussed in [27, 39], for large populations of agents, our discrete velocities
Boltzmann dynamics can be made to converge towards the generalized Burgers
equation for which exact results and stability issues for traveling waves can be
discussed explicitly, [40].

2. Two velocity agent model. Consider a collection A composed of N au-
tonomous agents which are in a migration process on the real line R. At any
time t ∈ R+, we assume that the complete population is composed of two types
of agents A+ and A−, (A = A+ ∪ A−), characterized by two associated migration
velocities v+ and v− on R. Agents traveling with velocity v+ (resp. v−) belong to
A+ (resp. A−). The time-dependent positions of the agents Xk(t), k = 1, 2, ..., N ,
can be written as a set of coupled stochastic differential equations (SDEs):

Ẋk(t) = Ik(X(t)), k = 1, 2, ..., N, (1)

with X(t) = (X1(t), ..., XN (t)) and where Ik(X(t)) stands for a two-states Markov
process with state space Ω := {v+, v−}. The associated transition rates of agent
k, α = α

(
Xk(t),X(t)

)
> 0 from v+ to v− and β = β

(
Xk(t),X(t)

)
> 0 from v−

to v+ are here state-dependent. For a given configuration X(t) at time t, they
represent the inverse of the average sojourn times of agent k in the velocity states.
This dependency of the switching rates on the agent population effectively allows
agent k to observe his/her environment and to react accordingly. In the sequel,
we consider large populations of homogeneous agents, i.e. N → ∞, so that a MF
description of the dynamics holds. Using a phenomenological MF representation, we
shall write P+(x, t | x0) (resp. P−(x, t | x0)) for the conditional probability density
to find agents at position x at time t with velocity v+ (resp. v−), knowing that at
time t = 0 the density was given by the initial distribution p+(x) (resp. p−(x)).
Due to the assumed Markov character of the transitions, the nonlinear evolution for
P+(x, t | x0) and P−(x, t | x0) can be written as a discrete Bolzmann-type equation
of the form (see [35] for the derivation of the linear version and, e.g., [23] for the
non-linear case):

Ṗ±(x, t) + v±∂xP±(x, t) = ∓α(x, t)P+(x, t)± β(x, t)P−(x, t) (2)
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Here we dropped the x0-dependence for typographic ease and introduced the inter-
action kernels:

α(x, t) = α−
∫ x+V

x−U
g [z − 〈X(t)〉]P−(z, t)dz, (3)

β(x, t) = β +

∫ x+V

x−U
g [z − 〈X(t)〉]P+(z, t)dz, (4)

where now α and β are two positive constants, g(x) ≥ 0 is a smooth function and
integrable with respect to the P+ and P− probability densities and where

〈X(t)〉 =

∫
R
x [P+(x, t) + P−(x, t)] dx (5)

is the barycenter. According to eqs. (2-5), agents modify their velocity by the
following dynamic rules:

(i) Agents with velocity v+. An agent at position x and with velocity v+ changes
spontaneously to v− with constant rate α. This agent is allowed to observe
the environment in the observation interval O = [x − U, x + V ]. The α-rate
is reduced in a weighted proportion to the number of v− agents present in
O. When g 6= constant, the weight is modulated by the barycentric position
〈X(t)〉 of the population via the g-dependence.

(ii) Agents with velocity v−. An agent at position x and with velocity v− changes
spontaneously to v+ with constant rate β. This agent is allowed to observe
the environment in the observation interval O = [x − U, x + V ]. The β-rate
is enlarged in a weighted proportion to the number of v+ agents present in
O. When g 6= constant, the weight is modulated by the barycentric position
〈X(t)〉 of the population via the g-dependence.

The following remarks can be drawn:

(1) Agents interact non-locally with their neighbors in two ways: (a) via the finite
extension of the observation interval O and (b) via the g-modulation which
depends on the barycenter 〈X(t)〉. In concrete cases, information concerning
the location of the barycenter of the agent population as well as information
regarding the observation interval O may be delivered by physically different
sensors having distinct spatial resolution ranges (e.g., vision, sound, olfaction,
etc.).

(2) Observe that the sum of the right-hand-sides of the two equations given in
eqs. (2) is equal to zero. This is an expression of the continuity equation
which guarantees the conservation of the number of agents.

(3) Using the hydrodynamic rescaling v± 7→ v±/ε, α 7→ α/ε2 and β 7→ β/ε2 in
eqs. (2) together with the celebrated central limit theorem, our two velocity
model is seen to converge for ε→ 0 to a Burgers’ type dynamics of the form,
[32]:

∂tΨ(x, t) = −∂x

{(
f(x, t) + g

[∫ x+U

x−V
Ψ(z, t) dz

])
Ψ(x, t)

}
+
D

2
∂2xxΨ(x, t), (6)

which is a MF nonlinear Fokker-Planck equation for interacting diffusion pro-
cesses driven by White Gaussian Noise, [24, 32]. In Appendix A, we exemplify
how to transfer our findings valid for the Boltzmann-type dynamics to this
Burgers’ type limiting model.
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We now explicitly give the solutions to the set of two non-linearly coupled equations
given in eqs. (2) for the following specific regimes:

(A) Follow the immediate leaders : U = 0, V = ε, with ε infinitesimal small, and
g ≡ 1,

(B) Follow all the leaders: U = 0, V =∞ and g ≡ 1,
(C) Follow the leaders with barycentric modulation: U = 0, V = ∞ and g =

g(x− 〈X(t)〉).
By comparing the regimes (A) and (B), we quantify the importance played by
the size of the observation interval O. Comparing the regimes (B) and (C), we
may appreciate how the influence of the g-barycentric modulation will give rise to
flocking phase transitions.

Note that for the almost local regime (A), the role played by U and V can be
interchanged without altering the subsequent results. The choice U = 0 in (B) and
(C) however, turning O into a look-ahead observation interval, is not innocent with
respect to our concern for analytic flocking results. This choice induces indeed yet
another asymmetry and enables – similar to the analogous and well studied situation
occurring for the Burgers equation, [38] – the existence of a stable rarefaction wave
solution. In the case agents would compare to laggards, i.e. the observation interval
is directed backwards, no stationary flocking solutions but instead shock waves type
behaviors which may explode in finite time would develop. The present type of
agent interactions with spatial asymmetry, as studied in this contribution, is also
addressed in [44] and [46], where the models are directly inspired by animal group
behavior.

3. Discrete velocity dynamics. Using a simple rescaling of the state and time
variables (e.g. see [31] for details), we can without loss of generality set v+ = −v− =
1 and rewrite eqs. (2) in canonical form:

Ṗ±(x, t)± ∂xP±(x, t) = ∓α(x, t)P+(x, t)± β(x, t)P−(x, t). (7)

Based on eqs. (7), we now explore the above mentioned regimes.

(A) Follow the immediate leaders. In the myopic case where V = ε is very
small and U = 0, we may Taylor expand up to first order the quadrature in eqs. (3)
and (4). The resulting dynamics from eqs. (7) reads as (n.b. in this regime, g ≡ 1):

Ṗ±(x, t)± ∂xP±(x, t) = ±2εP+(x, t)P−(x, t)∓ αP+(x, t)± βP−(x, t). (8)

This is an exactly solvable, discrete Boltzmann-type equation discovered by T. Rui-
jgrok and T. T. Wu, [45]. Potential applications for this type of dynamics have been
recently considered in [28, 33]. Using the boundary conditions lim|x|→∞ P±(x, t) =
0, the solution reads as:

P+(x, t) = −β + ∂t logH(x, t)− ∂x logH((x, t), (9)

P−(x, t) = α− ∂t logH(x, t)− ∂x logH(x, t), (10)

where H(x, t) solves the linear Telegraphist equation:

∂ttH(x, t)− ∂xxH(x, t)− αβH(x, t) = 0 (11)

and whose explicit solution is recalled in Appendix B.
The diffusive solution does not converge towards a finite stationary density, im-

plying that, for any initial condition, the agents will ultimately be spread over the
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whole line R. This explicitly indicates that local interactions are not strong enough
to sustain a stationary cooperative motion (i.e. no flock is formed).

(B) Follow all the leaders. Instead of the myopic regime (A) given in eqs. (8),
let us now consider case (B), namely:

∂tP±(x, t)± ∂xP±(x, t) = ∓
[
α−

∫ ∞
x

P−dz

]
P+(x, t)

±
[
β +

∫ ∞
x

P+dz

]
P−(x, t). (12)

Introducing the notations

F±(x, t) =

∫ ∞
x

P±(z, t) dz, (13)

we can rewrite eqs. (12) as:

∂xtF±(x, t)± ∂xxF±(x, t) = ±∂x [F−(x, t)F+(x, t)]

∓ α∂xF+(x, t)± β∂xF−(x, t). (14)

After integration with respect to x, eqs. (14) exhibit the same structure than eqs.
(8) with respect to the fields F+(x, t) and F−(x, t). Here however, the boundary
conditions are:

lim
x→∞

F±(x, t) = 0, and lim
x→−∞

F±(x, t) = ρ± (15)

and the normalization imposes that (ρ++ρ−) = 1. With these boundary conditions,
the solution reads as, [45]:

F±(x, t) =
ρ±
2

{
1− tanh

[
x− wt

4

]}
, (16)

with

2ρ± = 1± w > 0, (17)

and where w is the velocity defined by :

w =

√
[α+ β − 1]

2
+ 4β − (α+ β). (18)

From eq. (16), the probability densities in eqs. (12) exhibit the form of solitary
waves:

P±(x, t) = −∂xF±(x, t) =
ρ±

8 cosh2
(
x−wt

4

) · (19)

The solutions in eqs. (19) explicitly show that in case (B), the long-range imitation
process generates stationary, finite probability densities. Hence contrary to what
happens in the myopic regime (A), here flocking results from the long-range of the
agents’ mutual interactions. An illustration of the emerging stationary flocking
behavior is given in Fig. 1.
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Figure 1. Illustration of the stationary probability densities
P−(x, t) and P+(x, t) of the agent populations A− and A+ respec-
tively, when α = β = 1 (i.e. the constant transition rates are
equal).

(C) Follow the leaders with barycentric modulation. The above analysis
of the regimes (A) and (B) suggests that for a certain critical interaction range,
one should be able to observe a phase transition from a purely diffusive regime
with no stationary patterns to a stationary dispersive flocking regime. A very
simple, yet exact solution to this problem is shown here, where we now introduce
an explicit barycentric modulation function. Recent contributions using barycentric
interactions are discussed in [2, 17, 23, 41]. The class of models we consider here
are of the following form:

Ṗ±(x, t)±∂xP±(x, t) = ∓P+(x, t) [α− F−(x, t)]±P−(x, t) [β + F+(x, t)] , (20)

with

F±(x, t) =

∫ ∞
x

g [z − 〈X(t)〉]P±(z, t)dz, (21)

and where 〈X(t)〉, defined in eq. (5), is the barycenter position at time t.
Let us from now on, consider traveling wave solutions to eqs. (20) of the form

f(x− wt) for some velocity w. In such a traveling wave regime and for large t, we
have 〈X(t)〉 = w t. Introducing the variable ξ = (x−w t) we may, by a slight abuse
of notations, rewrite P± in this regime as P±(x, t) = P±(ξ) and eq. (5) now reads
as:

0 =

∫
R
ξ [P+(ξ) + P−(ξ)] dξ, (22)

meaning that in the traveling wave case, the stationary distribution, as seen from
the center of mass, has zero mean.

As the right-hand-sides in eqs. (20) sum to zero, we immediately find, by simple
integration with respect to ξ, the following relation:

(1− w)P+(ξ) = (1 + w)P−(ξ) + κ, (23)

where the velocity of the center of mass w will be chosen below, so as to be consistent
with the agent distribution. The integration constant κ will be set to zero in order
to match natural (i.e. vanishing) boundary conditions at infinity. Therefore, we
shall have:

P−(ξ) =
1− w
1 + w

P+(ξ). (24)
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Using eq. (24) and writing eqs. (20) with the variable ξ, we obtain the MF evolution
equation:

∂ξP+(ξ) = P+(ξ)
( 2

1 + w

∫ ∞
ξ

g(ζ)P+(ζ)dζ +
β

1 + w
− α

1− w

)
. (25)

In view of our analytical objective, we now introduce the class of symmetric inter-
action modulations (see Fig. 2):

g(x) = ∆ coshη(x), (26)

with ∆ > 0 and η ∈ R, together with the Ansatz:

P+(ξ) = N (m) coshm(ξ), (27)

where m < 0 is some negative constant and where N (m) stands for the probability
normalization, explicitly :

N (m) =

√
π Γ(|m|/2)

2|m|Γ [(|m|+ 1)/2]
· (28)

Introducing eqs. (26) and (27) into the integral equation (25), an elementary cal-
culation shows that eq. (27) is actually a solution provided we impose:

m+ η = −2, (29)

in which case we end up with the relation:[
m+

2∆N (m)

1 + w

]
tanh(ξ) =

2∆N (m) + β

1 + w
− α

1− w
· (30)

Clearly, eq. (30) is realized only if the following equalities hold

m

N (m)
= − 2∆

1 + w
and

1− w
1 + w

=
α

β + 2∆N (m)
, (31)

implying the self-consistency equation for the traveling speed:

w = 1 +
2α∆N (m)

m [β + 2∆N (m)]
· (32)

Hence, given the positive input modeling data α, β and ∆, together with the modu-
lation η of the barycentric interaction g, eq. (29) determines the probability density
decay m and eq. (32) determines the resulting solitary wave velocity w. Note that
the normalization factor in eqs. (27, 28) exists only for m < 0, or equivalently for
η > −2, which yields the critical power ηc for the range of the modulation decay:

η > ηc = −2. (33)

The condition on the modulation range power η in eq. (33) leads to conclude that for
strongly localized interactions, η < ηc (see Fig. 2 for an illustration), no stable finite
stationary probability density arises (i.e. agents spread to ultimately be dispersed
over the entire space). In this regime, no stable flocking emerges from the agent
interactions. Conversely, when η > ηc, a finite stable stationary probability density
exists, thus showing that comparatively long-range interactions ultimately drive the
population to a persistent flocking behavior characterized here by a traveling wave.
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Figure 2. Considered class of barycentric modulations coshη(x)
(here ∆ = 1). The flocking transition emerges at ηc = −2.

4. Conclusion and perspectives. The models we have exposed in this contri-
bution simultaneously involve two types of nonlinear sources: first an imitation
interaction mechanism of the quadratic type which reflects the observation of the
state of the agents by their fellows and secondly a barycentric modulation for the
strength of the interactions. The possibility to derive an exactly solvable model for
the flocking transition dynamics relies partially on the fact that one nonlinearity
can be removed via a logarithmic transformation. The second type of nonlinearity
however is truly intrinsic. In actual agent models like birds or fishes, interactions
are characterized by both of these nonlinearities: by imitation (stylized here by
the quadratic nonlinearity) and by tuning the observation range according to the
agents’ local density (effectively stylized here by a barycentric modulation). An-
other important simplification allowing the derivation of exactly solvable models is
the mean-field limit adopted here. In this limit, the law of large numbers reduces
the influence of the fluctuations to insignificancy and this leads to deterministic evo-
lution equations for the agent distribution. For many applications in perspective,
finite-size population effects will manifest via the presence of fluctuations (i.e. a
mesoscopic description). Noise will definitely affect the dynamics and could poten-
tially destroy the flocking capability of the agents. We hope that the basic models
discussed in this paper could provide some analytical clues for this truly challenging
issue.

Acknowledgments. This work is in part supported by the Swiss National Science
Foundation.

Appendix A. The complete program performed in this paper can be repeated for
the Burgers’ dynamics given in eq. (6). Let us only focus here on the interactions
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given in case (C) for which the dynamics reads as:

∂tΨ(x, t) = −∂x
[
−Ψ(x, t)

∫ ∞
x

g (z − 〈X(t)〉) Ψ(z, t)dz − D

2
∂xΨ(x, t)

]
, (34)

where:

〈X(t)〉 =

∫
R
xΨ(x, t)dx. (35)

Concerned with traveling wave solutions with constant velocity w, we introduce the
notation ξ = (x− wt). Accordingly, eq. (34) takes the form:

0 = ∂ξ

[
Ψ(ξ)

{
w −

∫ ∞
ξ

g (z) Ψ(z)dz

}
− D

2
∂ξΨ(ξ)

]
(36)

and w is implicitly determined by the equation:∫
R
ξΨ(ξ)dξ = 0. (37)

Eq.(36) can be reduced to the form:

D

2
∂ξ log [Ψ(ξ)] =

{
w −

∫ ∞
ξ

g (z) Ψ(z)dz

}
+ κ, (38)

where κ is a constant which will be taken to be zero as no steady probability flow
exists in the stationary regime. Assume now a symmetric barycentric modulation
of the form:

g(x) = ∆ coshη(x), (39)

with ∆ > 0 a constant and η ∈ R. In view of eq. (39), we introduce the Ansatz:

Ψ(ξ) = N (m) coshm(ξ), (40)

where again, for m < 0, the normalization factor N (m) is given by eq. (28). Note
from eq. (40) that Ψ(ξ) = Ψ(−ξ) and therefore eq. (37) is automatically satisfied.
Using eqs. (40) and (28) into eq. (38), we end up with:

D

2
m tanh(ξ) =

[
w −∆N (m)

∫ ∞
ξ

coshη+m(ξ)dξ

]
. (41)

Using the identity
∫

cosh(x)−2dx = 1 − tanh(x), we see that eq. (41) is solved
provided we have:

m

N (m)
=

2∆

D
and w = ∆N (m). (42)

From eqs.(41) and (42) , one concludes that for η > −2, a traveling solitary wave
with velocity w is created via the agents’ interactions. Hence for η > −2 the flocking
mechanism is triggered. Conversely, for η < −2, normalization cannot be achieved
and this shows that too weak interactions at long-range preclude the formation of
a flock.

Appendix B. The solution H(x, t) to the linear Telegraphist equation,

∂ttH(x, t)− ∂xxH(x, t)− αβH(x, t) = 0 (43)

is of the form, [30, 45]:

H(x, t) =
1

2
[A(x+ t) +A(x− t)] +

1

2
B1(x, t) +

νt

2
B2(x, t), (44)
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where ν =
√
αβ
2 and where we have the following definitions:

B1(x, t) =

∫ x+t

x−t
I0
(
ν
√
t2 − (x− z)2

)
B(z)dz, (45)

and

B2(x, t) =

∫ x+t

x−t

(
1√

t2 − (x− z)2

)
I1
(
ν
√
t2 − (x− z)2

)
A(z)dz, (46)

with In(·) being integer-order modified Bessel functions of the first kind and where
B(·) and A(·) are short for:

B(x) =
1

2
[P0(x)−Q0(x) + α+ β]A(x), (47)

and

A(x) = exp

{
−1

2

∫ x

0

[P0(z) +Q0(z)− α+ β] dz

}
. (48)
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[39] H. P. McKean, Jr., Propagation of chaos for a class of non-linear parabolic equations, in

Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic
Univ., 1967), Air Force Office Sci. Res., Arlington, Va., 1967, 41–57.

[40] K. Nishihara, A note on the stability of travelling wave solutions of Burgers’ equation, Jap.
J. Appl. Math., 2 (1985), 27–35.

[41] S. Pal and J. Pitman, One-dimensional Brownian particle systems with rank-dependent drifts,

Ann. of App. Prob., 18 (2008), 2179–2207.
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