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Abstract. Flow of energy and free energy minimization underpins almost ev-

ery aspect of naturally occurring physical mechanisms. Inspired by this fact

this work establishes an energy-based framework that spans the multi-scale
range of biological neural systems and integrates synaptic dynamic, synchro-

nous spiking activity and neural states into one consistent working paradigm.

Following a bottom-up approach, a hypothetical energy function is proposed
for dynamic synaptic models based on the theoretical thermodynamic prin-

ciples and the Hopfield networks. We show that a synapse exposes stable
operating points in terms of its excitatory postsynaptic potential as a function

of its synaptic strength. We postulate that synapses in a network operating

at these stable points can drive this network to an internal state of synchro-
nous firing. The presented analysis is related to the widely investigated tem-

poral coherent activities (cell assemblies) over a certain range of time scales

(binding-by-synchrony). This introduces a novel explanation of the observed
(poly)synchronous activities within networks regarding the synaptic (coupling)

functionality. On a network level the transitions from one firing scheme to the

other express discrete sets of neural states. The neural states exist as long as
the network sustains the internal synaptic energy.

1. Introduction. Energy flow and free energy minimization underpins (or at least
contribute to) almost every known natural and physical mechanisms, e.g., from the
atomic behavior, protein folding, metabolism and even the formation of hurricanes.
The brain is a biological neural computing system and is not expected to be an
exception. In order to track this fact within the biological neural system, following
a bottom-top approach this study starts with the synaptic dynamics. Experimental
observations have demonstrated that synaptic plasticity exists as set of well de-
fined discrete set of states, and that states are a fundamental property of central
synapses within the nervous system (CNS) [21]. They can provide a context for
understanding outstanding issues in synaptic function, plasticity and development
[21]. It has been shown that synapses change their strength by jumping between
discrete mechanistic states, rather than by simply moving up and down in a con-
tinuum of dynamic strength, see e.g., [20, 21]. Furthermore, it has been postulated
that the longterm potentiation (depression) dynamics of the synapse feature state
transitions among six different biophysical states [1]. This was a model of synaptic
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plasticity at hippocampal synapses which reproduces several slice experiments. If
the synapse is able to operate at a specific discretely defined state of activity as
pointed out in the above cited papers, these findings raise questions about the en-
ergy related aspects of such behavior. Specifically, they call for investigating the
kind of contribution attributed to the synapses in generating stable representations
of input information among cortical neural ensembles .

On the level of detailed networks, some studies have investigated the concept of
energy minimization and the involved synaptic dynamics in relation to synchronized
activity of networks acting as dynamic systems, see e.g., [25]. It has been shown
that in order to maintain the synchronized regime, there must be some kind of
steady energy flow holding the coupling strength between the neurons. This flow
of energy is also required for both the cooperative and collective behavior in any
neural ensemble. It was stated that this energy should be supplied through the
coupling mechanisms itself, i.e., through the maintained synaptic connections [29].
This postulates that synaptic dynamics are not only crucial in modulating the
information processing in general, but also it underpins the manifestation of neural
states in spiking neural networks (SNN). These remarks suggest that a synapse is
able to operate at any stable operating point for a certain interval. Intuitively, this
implies that a synapse as a physical system can exist in a certain state of activity
and it is able then to switch from this state to a new one. Based on the mentioned
argumentations, the energy-related intrinsic process that is involved in the synaptic
action of different synaptic models has been investigated [7, 5, 2] where the basis of
a synaptic energy function was proposed.

In the presented work and using the formerly presented basis of energy function
from [5] we show that, a finite discrete set of energy levels exist in response to the
temporal and statistical input features. This set is a function of the internal synaptic
state parameters. For any specific input features, the number of maintainable levels
within this set depends on the synaptic model, e.g. the modified stochastic synaptic
model from [7, 2] offers more levels in comparison to the well known Markram-
Tsodyks model in response to the same input [2].

Based on the observed set of energy levels, it is postulated that within a spiking
neural network synaptic dynamics drives the network activity and firing behaviour
in order to construct cell-assemblies (coherent firing or synchrony). Furthermore
and using a novel definition of a neural state we discuss the plausibility of neural
states that reflects the mechanisms of internal information processing within the
network.

2. Synaptic energy & emergence of neural states. Based on the lattice Ising
model, Hopfield introduced his network as a recurrent neural network having sym-
metric synaptic connection pattern [15]. Within a Hopfield network there is an
underlying monotonically decreasing energy function controlling the network dy-
namics [15]. Started in any initial state, the state of the system evolves to a final
state that is a (local) minimum of the energy function. Each energy minimum
acts as a point attractor in the space field of the system. It is an ongoing task in
neuroscience to quantify and define those operating points, even with less regard
to the underlying energy concepts. Many behavioural aspects were analyzed try-
ing to relate these behavioural observations to known attractor dynamics, see e.g.
[9, 28]. It was illustrated that there is a class of features that can be described as
dynamic attractors, referred as attractor networks. Levina et al. (2009) tackled the
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self-organizing behaviour regarding critical-stability in a fashion similar to the anal-
ysis of Avalanche dynamics [19]. It has been shown that a network interacting via
timing-dependent synapses attains criticality in a certain region of the parameter
space. That space is bounded by phase transitions that can be reached by tuning
the synaptic strengths. The ensuing remarks from the above are: a) The physical
system that may describe a biological neural system tries to find stable (or criti-
cally stable) operating points. These operating points act, in an abstract way, as
dynamic attractors. b) The search for such stable operating points is believed to be
performed in a self-organized manner, i.e., either unsupervised or via reinforcement
learning. Apart from those related to the Hopfield network, the idea of studying
those operating points have, however, been less studied from the energy point of
view.

Some studies have investigated the concept of energy minimization and its re-
lation to synchronized activity of networks by viewing the network as a dynamic
system, see e.g. [25]. Torrealdea et al. have studied extensively the energy and
its related global balance in two bidirectionally coupled neurons [29]. It has been
shown that in order to maintain the synchronized regime, there must be some kind
of steady energy flow holding the coupling strength between the neurons. This flow
of energy is also required for both the cooperative and collective behaviour in any
neural ensemble. Furthermore, it was stated that this energy should be supplied
(according to their analysis) through the coupling mechanisms itself, i.e., the synap-
tic connections [29]. As mentioned above, this strongly suggests that the synaptic
dynamics can drive (or reinforce) synchrony in SNN rather than being a passive
dynamic coupling element.

Friston et al. have theoretically shown that for a biological system to hold its
self-organizing behavior, seeking for stable operating points, should always exhibit
a bounded interaction with its environment [12]. Under the condition that this
bound quantity can be defined in terms of the internal states of the system. It
was therefore proposed that the energy of the system that is delivered to this envi-
ronment can represent this bound functionality, and that the system continuously
tries to minimize it. It was referred as the Free-Energy principle. This bound (or
exchange energy) is not the thermodynamical free energy of the system.

Therefore, here we inspect the energy-related intrinsic process that may be in-
volved in the synaptic action. By this, it extends the analysis made in [3, 6, 8]
to determine the role of synaptic dynamics as whether it can be responsible for
coherent activity (synchrony), neural states and to what extent. We adopt the
energy-based principle for biological neural systems from Friston et al. [12] and
consider the synapse as a dynamical system.

3. Theoretical foundations.

3.1. The synaptic energy function. The aforementioned free-energy principle
can be adopted describing the dynamics of the synaptic behaviour, specifically re-
garding the synchronous activity. Considering each synapse as a physical dynamical
system described by the system equations of the modified stochastic synaptic model
(MSSM), the excitatory postsynaptic potential EPSP(t) is the only output exchange
quantity between the synapse and a postsynaptic neuron (See App. C.2 for detailed
listing of model equations). The electrical energy held by (and transferred via)
EPSP, consequently, represents, in an abstract way, what is termed here “the free
synaptic energy” (FSE) and defined as:
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Proposition 1. As an open thermodynamic system, a synapse has a total free en-
ergy that is a function of two parameters: The output state parameter corresponding
to the presynaptic input, and the “recognition density that is encoded by its internal
states” [13]. When the EPSP(t) is the synaptic response and output state param-
eter, S(t) is the synaptic dynamic strength (recognition density), and τ > 0 is a
presynaptic-dependent constant, the free synaptic energy (FSE) is defined as

FSE ≡ Esyn(t) ≈ S(t)× EPSP(t)× e
−∆isi
τ , (1)

where ∆isi is the inter spike interval.

Proof. For the derivation please refer to App. A.

In other words, the energy represented in EPSP is the bounded function that
the biological system (here the synapse) tries to minimize and to stabilize by opti-
mizing its internal states. These states (in the synapse) are the activity-dependent
concentrations of the chemical constitutes holding (and responsible for) the synap-
tic transmission. ESyn does not represent the thermodynamic free energy of the
synapse. The notation “free” is adopted since the synapse as a biological system
tries to minimize this exchange energy in a fashion similar to that known from the
second law of thermodynamics. This is performed through the minimization of the
free energy of a system parallel to the maximization of its entropy. Based on the
considerations above, the following concepts are postulated consequently:

1. A synapse is in a continuous trial to bound (regulate) the interaction between
itself and its postsynaptic neuron. Assuming that the synapse is an open
biological system (from a thermodynamic point of view), the bounding is
accomplished, through its inherited dynamics, by keeping its energy as low as
possible. It is implicitly assumed that the synapse is able to change those state
parameters affecting these dynamics (via e.g., learning or an update rule) in
a self-organizing manner.

2. The synaptic transferred energy is a direct function of the internal synaptic
electrochemical activities. The synaptic strength can be defined as the product
of the state parameters of the synaptic model excluding the state parameters
carrying the synaptic response (EPSP(t)). Following the description of the
MSSM from App. C.2, the dynamic synaptic strength can be defined as a
function of the synaptic state parameters1:

S(t) = C(t) · V (t) · Nt(t) (2)

Where C(t) represents the concentration of the Calcium ions in the presynap-
tic terminal, V (t) models the size of ready-to-release pool of neurotransmitter
vesicles in the presynaptic terminal and N(t) is the concentration of neuro-
transmitter in the synaptic cleft.

3. At each minimum (either global or local, if any exists) in the state space, the
synapse undergoes a stable level of energy transfer that represents a certain
state of stable activity.

4. The stable level of energy transfer at the local minima (which results in a
specific firing activity) does not strictly imply a constant firing rate. It can be
a firing pattern, if the system does not operate continuously and exactly at

1Similarly this applies e.g., for the Markram-Tsodyks model, the state parameters are then u
and r.
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the minimum but within the finite region around it as well. This is actually
the case when the synaptic background noise is considered in the simulations.

In order to analyze the MSSM as a dynamical system with regard to energy,
the definitions of the synaptic strength and the synaptic energy (Eq. 2 and 1)
are added to the listing of the MSSM equations (given in App. C), and then the
synaptic dynamical system is solved to obtain the trajectories of solution describing
the synaptic energy Esyn(t) and the dynamic synaptic strength S(t) in response to a

hypothetical input spike train with overall firing frequency ∆−1isi . It should be noted
that there is no simulations involved in this analysis. The synaptic model is assumed
to take an input with a constant frequency and the required quantities are the time
evolutions of the Esyn(t) and S(t). They are function of: a) The frequency of the

input spike train ∆−1isi , and b) The synaptic resources and decay timing constants
which are the values of the model parameters. The system is solved using Matlab
(ode45-solver, MathWorks).

A family of curves are illustrated in Fig. 1 showing the time courses of the solu-
tions in case of different starting initial conditions. Fig. 1(a) gives the time courses
of the synaptic energy for three different initial conditions and model parameters
(see Tab. 1), the input spike train features an input frequency ∆−1isi = 200 Hz. The
synaptic energy raises at the beginning of applying the input, as time advances the
energy level falls down to a set of stable steady state values σ = {σ1, σ2, σ3}. These
states (i.e., these energy levels) are function of the initial conditions and timing
values listed in Tab. 1. The solution of the dynamical system of the MSSM shows
three different states of energy for the same input spike train following three differ-
ent settings in terms of initial conditions and timing constants. From Fig. 1(b), it
turns out that each state of synaptic energy correspond to a different course of the
operating synaptic strength. This implies that in case this synaptic model is coupled
to a postsynaptic neuron, the corresponding postsynaptic response (postsynaptic
spiking activity) will be accordingly different with each energy state. Consequently,
the postsynaptic firing pattern shall be unique to this energy state and it corre-
sponds to the time course of the energy function and the related steady-state value
of the synaptic strength. More analysis of the influence of the input frequency and
noisy inputs are given in the supplementary materials, see Figs. S.1 and S.2.

The questions that remains is: How can the synaptic energy profile affect the
collective network behaviour? In order to answer this question we present the next
proposition that represents a theoretical bridge between the internal dynamics from
a synaptic level to the top network level.

Proposition 2. For a given network with n neurons, if s synapses operate at any
of the local energy minima and sustain stable synaptic energy ESyn to l neurons,
then the rest of the network ((n− l) neurons) is forced to follow gradually the stable
activity of the l neurons, provided that the temporal features of input signal are
maintained. If the coherent activity of these neurons is observed over a time window
W, after a suitable time T , where T � W, a general new state of synchronous
discharge from all n neurons should be observed. This defines a network synchrony
state.

Proof. For the proof please refer to the Gedanken experiment given in App. B.

3.2. Neural states. We make a formal distinction between a network state and a
neural state. While the network state is the spiking activity across all neurons in
the network at any time instant, a neural state must describe either the localized
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Figure 1. Solutions and time evolutions of synaptic energy and
corresponding synaptic strength. (a) Time courses of Esyn with
three different initial resources and timing constants, see Tab. 1.
The final stable states of synaptic energies are the those labelled
as σ1, σ2 and σ3. (b) Semilog scale for the y-axis to show the
final synaptic strength values corresponding to the different energy
states from (a). The values for the model parameters to generate
these solutions are summarized in Tab. 1. More variations from
the illustrated solutions are shown in the supplementary materials
Sec. S.1. Figure is adapted from [2].

Table 1. Model parameters for synaptic energy states. The values
of both the controlling parameters and initial conditions involved
in the solution of the dynamical system of MSSM. These values
are chosen to be biologically plausible following [26, 14]. Table is
adapted from [2].

Parameter Comment σ1 σ2 σ2

τC 3 msec 5 msec 7 msec
τV 8.4 msec 14 msec 19.6 msec
τNt 13.5 msec 22.5 msec 31 msec
α 0.0905 0.0905 0.0905
τepsp 9 msec 15 msec 21 msec
Co 0.05 0.05 0.05
Vo 3.45 3.45 3.45
kepsp 10 10 10
kNt 1 1 1
kNt,V 1 1 1
C(0) Initial condition for ODE solver 0.0150 0.0090 0.0064
V (0) ” 0.1233 0.0740 0.0529
Nt(0) ” 0 0 0
EPSP(0) ” 0 0 0
S(0) ” 0 0 0
Esyn(0) ” 0 0 0
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or general level of information processing within the network over a confined time
interval. In the general sense, we propose in this work that the existence of a neural
state exists implies that a group of neurons collectively act with their spiking activity
over a limited (basically varying) duration to signalize the internal representation
(low level perception) of input information and involved features.

In order to distinguish and observe certain spiking activity as being a represen-
tation for a neural state, i.e., carrying special features, this requires having a sort
of a reference activity for the sake of comparison. Hence, states are relative and
are defined as maintained distances between the network states in response to two
inputs that are slightly different from each other.

Specifically, for two sets of input spike trains u(·) and v(·), the corresponding
network state at any time t is yu

N (t) and yv
N (t) respectively. yu

N (·) and yv
N (·) are

referred to as the network states across all neurons. The quantity D = ‖yu
N (t) −

yv
N (t)‖ is the average distance between the network states at any time t and ‖ · ‖

denotes the Euclidean norm. A depictive definition of a neural state within a
dynamic network framework is presented in this paper, it reads:

Definition 3.1. Within a dynamic network N ∈ DN , for all output vectors yN (t)
and t > 0 corresponding to the input functions u(·) and during the interval t1 <
t < t2 a neural state σ is defined if c − δ < ‖yu

N (t) − yref
N (t)‖ < c + δ where c is

a constant and δ is small. yref
N (·) is a fixed reference set of output functions where

|yu
N | = |yref

N |.

Note that the quantity ‖yu
N (t)−yref

N (t)‖ is, in abstract way, a distance calculated
as the Euclidean norm between the network response and the reference one. This
quantity is coined hereinafter as either the observed states or states level.

This definition illustrates how to observe the states if they exist rather than the
rules of their existence. Following this definition and according to, Prop. 2, a spiking
neural network with suitable synaptic dynamics (a dynamic network) experiences
a neural state that can be characterized by a level of synchronous activity, this
corresponds to a sustainable level of synaptic energy. In fact, the latter statement
establishes the missing link among synaptic dynamics, collective spiking activity
and neural states.

Following Def. 3.1, the next section shows simulation based examples that explore
the aspects of internal states within a dynamic network in accordance with the
synaptic energy states.

4. Simulation & results. The simulation setup follows basically the seminal work
from [18] while the major changes are the synaptic parameterization and the cor-
reponding STDP dynamics. The details of the simulation and models are given in
App. C. The input is a sustained single spike that is sustained over the simulation
epoch and is fed to a single neuron drawn randomly from the network with each
time step. A sample of this input is shown in Fig. 2, it represents a background
thalamic input.

Using the mentioned network and simulation setup (see App. C), Fig. 3 illus-
trates the synchronous firing and the synaptic energy profile using a simulation
case in contrast to the pure theoretical and analytical postulates given in Fig. 1.
Fig. 3(a) shows the emergence of synchronous firing, Fig. 3(b) demonstrates the
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Figure 2. Sample input to the network over a simulation epoch
of 1 Second. Only a single spike is fed to a single neuron at every
msec.

corresponding time evolution of mean synaptic energy within the network2 and the
spike coincidence; both time series are scaled to unity. The illustrated time evolu-
tion of the synaptic energy from the simulation represents a simulation-based proof
of the theoretically postulated synaptic energy behaviour. Specifically, the energy
profile shown here comprises a repetition of the postulated behavior as the synaptic
dynamics is in a continuous attempt of minimizing its energy.

In quest for analyzing the proposed concepts of neural states and their relation
with synaptic energy, a basic reference synchrony-free response is needed. Fig. 4(a)
shows the network firing activity where the synaptic parameters were chosen so
that no specific neural assemblies can be constructed. This was accomplished by
using e.g., low excitatory postsynaptic gain kepsp and short timing constants for
both neurotransmitter buffering τNt and postsynaptic potential τepsp. This network
response is taken as the reference response of the dynamic network yref

N (·). The mean
time evolutions of synaptic strength across presynaptic connections per neuron are
shown in Fig. 4(b), the corresponding synaptic energy evolutions are in Fig. 4(c).
The corresponding mean time evolutions of synaptic strengths and synaptic energies
over all neurons are shown in Figs. 4(d) and 4(e).

In contrast to the synchrony-free response, three cases of synchrony were gener-
ated in response to three different input pattern fed to the network using the same
mechanism described above. The responses are summarized in Fig. 5. The values of
the synaptic model parameters used to generate these responses are listed in Tab. 2
in App. C. Fig. 6(a) shows the time evolutions of the average synaptic energy across
all neurons for the four involved simulations, i.e., the three synchronous responses
and the reference synchrony-free one. Following the postulated definition of neu-
ral states from Def. 3.1, Fig. 6(b) demonstrates the observed distance between the
spiking activity of each response (from cases I–III) and the reference synchrony-free
one.

It is important to note that the first and second cases are intentionally selected
to be alike in terms of spiking activity in order to illustrate the role of investigating
the new aspects of synaptic energy and observing the existence of neural states. Put

2Calculated first as mean over the presynaptic synapses of each neuron and then over all
neurons.
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differently, analyzing the synaptic energy evolution and the possibly involved neu-
ral states give more insights into the processing of information within the network
rather than observing the temporally coherent spiking. For the purpose of high-
lighting these differences, Fig. 7 shows the spiking activities, the synaptic energy
and observed states over arbitrarily selected intervals from the three synchronous
cases. It is important to observe that the three profiles of synaptic energy and
states are completely different from each other, even the first two cases are clearly
distinguishable although their synchronous spiking activities might seem alike at
first glance.
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Figure 3. Basic example of the simulation result with synchro-
nous activity (Upper panel) and the corresponding synaptic energy
illustrated over the spiking coincidence (Lower panel). The lower
panel illustrates the temporal relation between the appearance of
a synchronous firing and the time evolution of the synaptic energy.
It is important to note the likelihood between the time evolution
of the synaptic energy between this simulation and the theoretical
analysis shown in Fig. 1: The energy profile comprises a repeti-
tion of the postulated behavior as the synaptic dynamics is in a
continuous attempt of minimizing its energy.
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Figure 4. Synchrony-free network response and the correspond-
ing internal network dynamics. a) Spiking activity of the network
response, details of synaptic parameters are listed in Tab. 2 in
App. C. b) and c) The time evolutions of the presynaptic strength
S and energy ESyn of the excitatory neurons (averaged over 10
presynaptic connection per neuron). d) and e) The overall average
time evolutions of S and ESyn over all neurons in the network.
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(a) Response Case I
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(c) Response Case III

Figure 5. Network responses that involves different patterns of
synchronous firings. The values of model parameters are listed in
Tab. 2 in App. C. This response is different from the reference
(synchrony-free) response depicted in Fig. 4(a).
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Figure 6. a) Summary of time evolutions of overall average
synaptic energy in all four network response-cases, including the
synchrony-free response and the cases I–III. b) States level cal-
culated according to the definition of observing states given in
Def. 3.1. Lines correspond to cases I–III (from Fig. 5) relative
to the reference one given in Fig. 4(a).
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In order to get a more detailed insight into the coupling between the synaptic
energy dynamics and the detection of neural states, Fig. 8 shows the detected states
in accordance with the time evolution of the synaptic energy for case III. Each state
is denoted with the Greek letter σ. According to Def. 3.1, the sequence of detected
states represents the discrete set of neural states that represents the internal pro-
cessing of the input information. This set of states can be a characteristic attribute
for the combination of network structure, synaptic parameters and input informa-
tion. It should be noted that although the input here is not more than a random
spike train that represents abstractly a random thalamic activity fed to the cortex,
it is assumed that such input definitely carry a (yet unknown) certain amount of
information. Surprisingly, one of the detected states σ(6) is revisited along the time
evolution of the states level.

4

6

8

10

E
 S

yn
(t

)

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

2

4

6

Time [msec]

S
ta

te
s

σ(1)

σ(2)

σ(3)
σ(4)

σ(5)
σ(6) σ(7) σ(7)

σ(8) σ(6)

Figure 8. Detailed illustration of the detected states level for
case III (Lower panel) and the corresponding time evolution of
synaptic energy (Upper panel). Detected states are highlighted
with the shaded horizontal bars between dashed lines and named
with the letter σ and and index. The index corresponds to the
temporal sequence of appearance. When the detected state level
has appeared previously, the same state symbol is given, e.g., σ(6).
The vertical shaded bars indicate the temporal span of the detected
state in order to highlight the portion of the synaptic energy that
corresponds to the interval of this state.

5. Discussion & conclusions. Using a hypothetical synaptic energy function and
based on solid analytical procedures, this work integrates the paradigms of synchro-
nous firing (cell assemblies) and computing through temporal states into a consistent
working framework. By this integration this work establishes a consistent connec-
tion that spans the multi-scale ranges of biological neural systems. For this purpose,
the analysis started with investigating the key role of synaptic dynamics in driving
the dynamics of a spiking neural network.

Hence, the simulation result shown in Figs. 3(b) supports the proofs of the ba-
sic theoretical and analytical solutions of the synaptic energy profile proposed in
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Sec. 3.1 and as depicted in Figs. 1 and S.1.These results indicate a temporal rela-
tion, e.g., coupling, between the synaptic energy profile and the synchronous firing
within the dynamic network.

Further, both the basic theoretical and analytical solutions of the synaptic en-
ergy concept and the corresponding synaptic strength, proposed in Sec. 3.1, are
strikingly supported and proofed by Figs. 4(d) and 4(e). Although no synchronous
firing is observed in this case, the associated energy profile is still in complete accor-
dance with the postulated concept of overall synaptic energy minimization within
a dynamic network. This does contradict with the existence of a relation between
synaptic energy minimization and the construction of cell assemblies via synchro-
nous firing. In order to experience a synchronous firing within the dynamic network,
the excitatory synaptic coupling should be strong enough to build the required inter-
nal linkage leading to synchronous firing. This occurs while the synaptic dynamics
seeking a minimum level of postsynaptic energy. That is, energy minimization is
an emergent inherited feature that is always active while synchrony is a modus
of activity that might appear or not depending on the synaptic dynamics within
the network. Put differently, the synaptic energy concept presented here proposes
that energy minimization should be considered as necessary but not sufficient for a
synchronous spiking. On contrary, reaching either a local or an absolute minimum
synaptic energy level is necessary and sufficient for synchronous firing.

The results of the analysis with the MSSM presented here so far strongly agree
with the experimental findings from [21, 25, 29, 1]. These experimental studies
have pointed out implicitly that synapses seem to feature a set of discrete operating
points. However, there was no indication about why and how these states may
emerge or on which basis these states are developed. The here presented energy-
based analysis based on the MSSM dynamics answers these questions.

Fig. 6(a) and 6(b) reveal that the time evolutions over synaptic energy and states
across the three cases I–III are almost alike in terms of overall shape and trends;
the involved amplitudes and local minima/maxima are the major differences. This
indicates that the overall energy profile and the corresponding state transitions
characterize both the network structure and the input information. This agrees
with preliminary results reported on the change in the network perception with a
change in the network structure in response to the same input information [6].

Figs. 7 and 8 emphasize the relevance of the presented analytical framework, the
paradigms of coherent firing, binding or cell assemblies are a sort of a final result
for a deep and intrinsic mechanism on the synaptic level. By investigating this
level through the analysis of its energy flow, one can think that synapses and their
dynamics play a more crucial role than even known or expected. Synapses and
their biologically inherited tendency to minimize their energy drive the information
processing within neural systems.

Although the presented definition of neural states relies on the concepts of tem-
poral coherence, it cogitates the debated issue of states as steady state attractors.
Because the states are defined as relative quantities by the comparison to a ref-
erence activity. This allows for more flexible analysis of the involved states and
consequently the states transitions; state transitions are the more crucial issue in
information processing. From a state-machine point of view, it remains to be seen
how the existence of neural states and the transitions among them are regulated
within the network.
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Furthermore, the proposed concept of neural states as being only defined as rela-
tive behavior resolves a major conflict between the two main approaches that have
addressed the issue of neural states and the basis of temporal coherence. The con-
flicting approaches are: a) The studies proposing that temporal coherence indicates
indeed a neural state of internal information processing (low level internal percep-
tion) within cortical circuits [30, 24], and b) Studies argue that temporal coherence
is only a sort of internal rhythm that organizes the flow of information among neu-
ral circuitries rather than signalizing a neural state, see e.g., [10, 11]. By accepting
that neural states can only be described as relative behavior in comparison to a
reference one, both perspectives about temporal coherence can be regarded correct.
Let us start with the assumption that a reference firing activity indicates a low level
of input information processing or the activity in absence of input information, e.g.,
during sleeping. If the reference firing behavior of a neural ensemble is taken to be
spontaneous (random) and incoherent, a temporally coherent activity within this
ensemble indicates indeed a different collective behavior which is plausibly a neural
state. The situation can be turned around, i.e., when the reference behavior is then
taken to be a standard cortical activity that contains a sort of internal coherence
e.g., synfire chains [16]. In this case it is difficult to identify temporal coherence and
cell assemblies as being of special meaning or that they signalize a different level of
information processing than the normal (reference) one. Thus, the plausibility of
defining neural states as a relative neural behavior is supported from the opposing
studies that discuss the relevance of temporal coherence and its interplay in defining
neural states of information processing.

The presented theoretical concept resolves a set of basic problems and brings
together a number of isolated theoretical and experimental paradigms. For example,
this work reveals potential relation among binding-by-synchrony [22, 27] and the
information processing within biological neural networks as finite state-machines,
for more about this topic please review the preliminary work [8, 6] and the extensive
analysis in [2].

This study discusses the involvement of the temporal dimension as a basis of
defining the neural states within the neural network; this extends our preliminary
work from [6]. We show how time is associated with the processed pieces of infor-
mation through the transitions among the different states. The involvement of time
in defining states and its association with the information processing is generally a
crucial issue because it distinguishes the processing within the CNS from the general
class of finite-state machines or the more general Turing machines. Based on the
concept of synaptic-related states, the presented work introduces a novel conceptual
as well theoretical framework that permits both the capture and implementation of
the information processing methods found in the CNS.

The brain is a spatio-temporal multi-scale system, and the presented work postu-
lates the missing linkage through the main abstraction levels: the low-level synaptic
dynamics, the mid-level collective spiking activity and the potential higher cogni-
tive level of neural states. The linkage is the interplay between the biologically
inherited feature of energy minimization within synapses and the emergence of syn-
chronous firing along with the involved neural states. This coupling between the
deep network dynamics and the collective network behavior on a cognitive level
open new avenues in understanding the multi-scale, and rather complicated, infor-
mation processing mechanisms within the brain. This work establishes a framework
that spans the multi-scale range of biological neural systems and integrates synaptic
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dynamic, synchronous spiking activity and neural states into one consistent working
paradigm.

Appendices

A. Proof of synaptic energy function. It starts with the energy function of a
Hopfield network. In such a network, the total energy of the network with n neurons
Etot,net is defined as [23]

Etot,net = −1

2

n∑
i

n∑
j

wijxixj︸ ︷︷ ︸
Synaptic term

−
n∑
i

Iixi︸ ︷︷ ︸
Input

+

n∑
i

1

τ

∫ x

xo

g−1(x)dx︸ ︷︷ ︸
Neuronal term

(3)

In Eq. 3, xi(j) are the graded (rate coded) activity value of neuron i(j). wij is the
static synaptic weight between neurons i and j. Only the first term (the synaptic
term) is important in the case considered here. Since a single synapse is investigated,
the summations can be ignored. Hence, the synaptic energy directly from the
Hopfield definition reads

Esyn = wij × xi × xj , (4)

This implies that the synaptic energy is the product of the synaptic weight be-
tween the pre- and postsynaptic activity levels and these activity levels. In case
of the MSSM, the neuron activity is bounded with the threshold mechanism and
this mechanism is directly a function of the postsynaptic potential. Since EPSP is a
continuous time-varying function, it maybe viewed as an indication that determines
the postsynaptic activity. That is

xi ← EPSP (5)

Estimating presynaptic activity is, however, not a straight forward task. The
input to the MSSM as well as any other dynamic synaptic model is a spike train.
In case of a regular spike train, the presynaptic activity scales with input frequency.
The presynaptic activity can be estimated to be rate coded value

xj ← e
−∆isi
τ , (6)

where τ is a scaling constant. With this definition, the presynaptic activity satisfies
xj ∈]0, 1[ as the input frequency spans from infinity to zero. The synaptic weights
can be replaced with the dynamic synaptic strength, i.e.,

wij ← S(t). (7)

Substituting Eqs. 5–7 in Eq. 4, the FSE reads

Esyn(t) ≈ S(t)× EPSP(t)× e
−∆isi
τ

The approximation sign emphasizes that the derived quantity represents only an
estimation of the actual synaptic energy. As for the units, according to the basic
definition Esyn has units of energy per unit resistance, i.e., Volts2. This is ac-
complished by considering that S(t) is dimensionless and that the quantity xj has
the same units as EPSP since it indicates the presynaptic activity in response to
electrical input stimulation.
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B. Proof of Prop. 2. The following Gedanken experiment illustrates the theo-
retical proof of the relation between minimizing synaptic energy and driving the
synchronous firing within a dynamic network:

Proof. According to this proposition, an energy state (or actually a set of synaptic
energy states) is(are) encoded within the neural network into a state of synchrony.
The proof follows a Gedanken experiment. Fig. 9 gives an illustrative example of
the process described in Prop. 2. For the network schematic in this figure, it is a
recurrent network with three spiking neurons and the interconnections are synapses
modeled with the MSSM. After certain time duration, the synapses shall be able
to operate at an operating point that corresponds to this low stable energy level
in response to the input spike train, the hypothetical operating point is indicated
with the big red point in Fig. 9. This operating point corresponds to stable level of
synaptic energy that reflects a stable transfer of postsynaptic potential. Since the
temporal and statistical input features are stationary, the synapses remain operat-
ing at this level. When the synapses start operating at the stable synaptic strength
level, a certain firing pattern from neurons N2 and N3 is expected. As long as other
synapses are not experiencing a change in their values, N1 renders a firing pat-
tern that integrates both the latter firing pattern from other neurons via backward
synapses and the input one. Again, S1 and S2 will try to adopt the new changes
in the input pattern from N1. At this point there is two possible cases: a) The
new N1 firing pattern still carries the same information content as the original one
from the input alone. Or, b) The N1 firing pattern carries new information content
that encodes the network response through the synergetic contributions from S1,
S2, N2 and N3. In the first case, the synapses shall keep their energy level, i.e.,
they will not search for another stable level of energy. Consequently, the over all
network firing pattern shall continue over time till either new information content
is presented or when the synaptic background noise adds this new information con-
tent. In the second case, the synapses will seek for another new level of energy that
corresponds to the new information content. This search shall be sustained till the
network stabilizes again or it stays in search till some new information is fed in.

C. Simulation setup. The simulation setup is based on the seminal simulation
code provided by E. Izhikevich in studying the formation of polychronous groups
[18]. The network consists of N = 100 neurons with the first Ne = 80 of excitatory
regular spiking (RS) type, and the remaining Ni = 20 of inhibitory fast spiking (FS)
type [18]; the details about the neuronal model are given in the next subsection. The
ratio of excitatory to inhibitory cells is 4 to 1, as in the mammalian neocortex. Each
excitatory neuron is connected to M = 10 random neurons, so that the probability
of connection is M/N = 0.1, again as in the neocortex. Each inhibitory neuron is
connected to M = 10 excitatory neurons only. The indices of postsynaptic targets
are in the N × M -matrix post. Different from the simulation setup from [18],
this work uses an explicit dynamic synaptic model instead of the α-function-based
spike-timing dependent potentiation (STDP). The synaptic model is the modified
stochastic synaptic model (MSSM) from [2, 7], the model is given below in details
after listing the details of the neuronal model. The input represents background
thalamic activity that is implemented as a sustained single spike fed to a randomly
drawn neuron from the network.
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Figure 9. Influence of synaptic dynamics and the involved synap-
tic energy on the network dynamics (In relation to Prop. 2). The
schematic illustrates a hypothetical simulation to indicate the rel-
evance of defining the synaptic energy and its relation to network
dynamics. The example given in this illustration is generalized in
Prop. 2. When a synapse operated at a stable energy level which
corresponds to an operating point that features a stable synaptic
energy, the synaptic dynamics drive the network to a regime of syn-
chronized firing. The firing pattern can be a regular or an irregular
pattern. For details see the text in the proof of Prop. 2. Figure is
adapted from [2].

Following the original simulation code from [18], a fixed integer conduction delay
D is implemented for each synaptic connection; D is set between 1 ms and 10 msec
(M/D must be integer in the model). The delay implemented here does not model
modifiable delays or transmission failures. The list of all synaptic connections from
neuron i having delay j is in the cell array delaysi, j . The MATLAB implemen-
tation assigns 1 msec delay to all inhibitory connections, and 1 to D msec delay to
all excitatory connections.

C.1. The neuron model. Each neuron in the network is described by the simple
spiking model [17].

v̇ = 0.04v2 + 5v + 140− u+ I, (8)

u̇ = a(bv − u) (9)
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with the spike-reset mechanism

if v ≥ 20 mV, then

{
v ← c

u← u+ d
(10)

Variable v models the membrane potential of the neuron, and u is a membrane
recovery variable, which accounts for the activation of K+ ionic currents and inacti-
vation of Na+ ionic currents, and it provides negative feedback to v. After the spike
reaches its max. at +20 mV, which is not to be confused with the firing threshold,
the membrane voltage and the recovery variable are reset according to the reseting
mechanism, Eq. 10. Depending on the values of the parameters, the model can
exhibit different firing patterns.

For all simulations listed in this study, b and c are set at 0.2 and -65 respectively.
For excitatory neurons, a and d are set at 0.02 and 8 respectively corresponding
to cortical pyramidal neurons exhibiting regular spiking (RS) firing patterns. For
inhibitory neurons, a and d are set at 0.1 and 2 respectively corresponding to cortical
interneurons exhibiting fast spiking (FS) firing patterns.

Variable I in the model combines two kinds of input to the neuron: (1) random
thalamic input (if exists) and (2) the output of the dynamic synaptic model, it is
the overall postsynaptic potential EPSP from the presynaptic connections feeding
each neuron.

C.2. Synaptic model: The modified stochastic synaptic model. The modi-
fied stochastic synaptic model (MSSM) introduced in [7] estimates the transmission
probability of an arriving action potential, i.e., a spike, from a presynaptic neu-
ron via a synapse to a postsynaptic neuron. Thus, P (ti) is the probability that
the ith spike in a presynaptic spike train

∑
i δ(t − ti) (input spikes) triggers the

release of a vesicle at time ti at the synapse. The involved probability-of-release
P (t) = 1− exp(−C(t) · V (t)) is governed by two counteracting mechanisms: facili-
tation and depression. Facilitation reflects the calcium concentration in the presy-
naptic neuron, C(t), while depression represents the effect of the concentration of
ready-to-release vesicles in the presynaptic terminal, V (t). The model reads [3, 4]:

Ċ =
(Co − C)

τC
+ α ·

∑
i

δ(t− ti), (11)

V̇ =
(Vo − V )

τV
− P (t) ·

∑
i

δ(t− ti), (12)

Ṅt = max(0,−V̇ ) + (
Nto −Nt

τNt
), (13)

τepsp ˙EPSP = −EPSP + kepsp ·Nt, (14)

In Eq. 11, the intracellular calcium concentration starts at Co. It is raised incre-
mentally by each stimulus impulse, approximated herein by a Dirac Delta function
δ(t − ti). The impact of each stimulus impulse to the intracellular calcium con-
centration is equal to the product of calcium gain (calcium current), α, caused by
action potential and set to 0.095. Once the stimulus sequence ends, C(t) decays
with time constant τC toward Co. C(t) represents, in an abstract way, the intrinsic
synaptic processes of synaptic facilitation [7]. In Eq. 12, V (t) is the expected num-
ber of vesicles of neurotransmitter molecules in the ready-for-release pool at time
instant t. Vo is the maximum number of vesicles that can be stored in the pool.
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In a similar fashion to C(t), V (t) follows first-order nonlinear differential equations
with a time constant τV .
Nt determines the concentration of the released neurotransmitter in the synaptic

cleft, Eq. 13. This concentration can be estimated by tracing the amount of vesicles
of neurotransmitter that remains in the presynaptic neuron, V (t), over time. It
is worth mentioning that there is a formal distinction between release site and
synapse. Alternatively, each quantum of neurotransmitter is stored in one synaptic
vesicle. The concentration of neurotransmitter in the synaptic cleft is meant to be
the corresponding concentration of quanta of neurotransmitter. Hence, in Eq. 13 we
use here a first-order nonlinear differential equation similar in nature to Eq. 11. The
incremental raise in this case is then the decrease in the concentration of vesicles
(first term). The drift term (second term) allows the value of Nt to decay, in case of
no input, to a minimum accepted concentration Nto with a decay time constant τNt
et to 0 and 0.05 sec respectively. This decay reflects the biological cleaning action
(or complete removal) of the neurotransmitter from the cleft. As the binding process
of neurotransmitter in the postsynaptic membrane induces EPSP, it is calculated
as in Eq. 14; where τepsp is a decay time constant and kepsp is a scaling factor.

Table 2. Model parameters for generating the different network responses.

Parameter No Synch. Case I Case II Case III

τC 3.5 msec 3.5 msec 3.5 msec 3.5 msec
τV 9.3 msec 9.3 msec 9.3 msec 9.3msec
τNt 8 msec 15 msec 12 msec 8 msec
α 0.09 0.09 0.09 0.09
τepsp 10 msec 5 msec 6 msec 10 msec
Co 0.45 0.45 0.45 0.45
Vo 3.49 3.49 3.49 3.49
kepsp 0.25 1.5 1.5 0.75
kNt 1 1 1.2 0.1
kNt,V 1 0.4 0.4 5

Supplementary materials.

For the manuscript

Synaptic Energy Drives the Information Processing
Mechanisms in Spiking Neural Networks

Karim El Laithy and and Martin Bogdan

S.1. On synaptic energy. The relevant theoretical details about the concept of
synaptic energy and the related energy minimization attributes are given in the
main manuscript, please review Sec. 3 for the details. Apart from the main synap-
tic energy profile given in the manuscript text, more information are given here
about the other possible alterations that might be induced to this energy profile.
Specifically, Figs. S.1 and S.2 show the effect of changing the input frequency and
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noisy inputs on the solution of the synaptic energy model respectively. Figures are
adapted from [2].
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Figure S.1. Solutions and time evolutions of synaptic energy and
corresponding synaptic strength in case of two different input fre-
quencies ∆−1isi in Eq. 1: the blue lines correspond to 200 Hz (the
same from Fig. 1) while the green lines are for the 50 Hz. Model
parameters and initial conditions are the same from Tab. 1 used
to generate the solutions in Fig. 1. a) The time evolutions of the
synaptic energy in case of both input frequencies. The relative po-
sitioning of energy states is function of the used initial resources
and timing constants. b) Semilog scale for the y-axis to show the
final synaptic strength values corresponding to the different energy
states from (a).

Adding background noise to the model dynamics is not practical during solving
the dynamical system within the Matlab solver. Instead, the input frequency is
perturbed with ±10% during the second half of the simulation time. This change
in the input frequency represents the influence of a background synaptic noise on
the input frequency. The results of this trial are illustrated in Fig. 2(a). When
the change in input frequency is fed after a while, the final states are considered
variations from the main one. The opposite of this process is tested as well, the
±10% change in frequency value is used during the first half of the simulation
time then followed by the standard input frequency. The response to the latter
case is given in Fig. 2(b). On contrary to the previous case, using different input
frequencies at the beginning lead to three distinguishable energy profiles with final
three different states. At a glance, this analysis suggests that the synaptic model
keeps a kind of memory to the stimuli interrupting its normal flow of energy over
time. Although this might not be new, it supports the main goal of studying
the synaptic dynamics from an energy-related point of view. That is, considering
this energy profile of the MSSM and its relattion to synaptic responses gives novel
and more insights into the potential roles of this model in regulating and may be
controlling the network behaviour.

S.2. On neural states. In order to view the intrinsic flow of synaptic dynamics
and involved synaptic energy for the selected time windows of Fig. 7, the following
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Figure S.2. Solution of the dynamical system with the same set-
tings for model parameters from Fig. 1 while the input frequency is
altered. a) Solution in case of feeding standard input with 200 Hz
for the first half of the simulation epoch followed by ±10% change
in input frequency for the second half of the simulation epoch. The
final three states are considered a main states with two variations
(as deviations from the main central one) b) Opposite to the case
in a), this is the solution in case of feeding input of 200 Hz with
±10% change in input frequency for the first half of the simulation
epoch followed by standard input with unchanged frequency for
the second half of the simulation epoch. Three unique states are
observed in this case.

Fig. S.3 illustrates using color-maps the presynaptic strength and synaptic energy
for all excitatory neurons averaged over the presynaptic connections per neuron.

It is important to note that although the similarity of coherent spiking activities
among the three different cases, the corresponding intensity of synaptic strength and
the level of synaptic energies are far from being alike. This reinforce the importance
and relevance of the proposed analytical measures in studying the synchronous firing
of spiking neural networks in terms of the comprised synaptic dynamics.
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