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Abstract. We investigate an extension of the spike train stochastic model
based on the conditional intensity, in which the recovery function includes an

interaction between several excitatory neural units. Such function is proposed

as depending both on the time elapsed since the last spike and on the last
spiking unit. Our approach, being somewhat related to the competing risks

model, allows to obtain the general form of the interspike distribution and

of the probability of consecutive spikes from the same unit. Various results
are finally presented in the two cases when the free firing rate function (i) is

constant, and (ii) has a sinusoidal form.

1. Introduction. Since the seminal papers by Gerstein and Mandelbrot [19] and
Stein [32], many efforts have been directed to the formulation of stochastic models
for single neuron’s activity aimed to describe the relevant features of the behaviour
exhibited by neural cells. We mention the contributions by Ricciardi [27] and Ric-
ciardi et al. [30], and the bibliography therein, as a reference to mathematical models
and methods on this subject.

Various researches have been carried out by the authors of this paper on the
construction and analysis of models, based on stochastic processes and aimed to
describe dynamic systems of interest in different fields. Their research activity
has been performed continuously thanks to the precious guidance and support of
Professor Luigi M. Ricciardi, to whose unforgettable memory this paper is gratefully
dedicated.

Among the numerous investigations performed in biomathematics under his ad-
vice and supervision (mainly in neuronal modeling, population dynamics, subcellu-
lar stochastic modeling) we recall the following themes:
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– the characterization of the time course of the neuronal membrane potential as an
instantaneous return process (Ricciardi et al. [29]),
– the description of neuronal units subject to time-dependent inputs via Gauss-
Markov processes (Di Crescenzo et al. [12]),
– analysis of the interaction between neuronal units of Stein type based on Monte-
Carlo simulations (Di Crescenzo et al. [18]),
– stochastic modeling of the evolution of a multi-species population, where competi-
tion is regulated by colonization, death and replacement of individuals (Di Crescenzo
et al. [13]),
– analysis of birth-death processes and time-non-homogeneous Markov processes in
the presence of catastrophes (Di Crescenzo et al. [14], [15]),
– the study of stochastic processes suitable to describe the displacements performed
by single myosin heads along actin filaments during the rising phases (Buonocore
et al. [4], [5]).

Along the lines traced by some of the above contributions, in this paper we
discuss a suitable extension of a spike train stochastic model to neuronal networks
with interacting units.

In several investigations the synaptic inputs that carry the stochastic component
of the neuronal activity is modeled by Poisson processes with a fixed spike rate
(see Amit and Brunel [1], Bernander et al. [3], Softky and Koch [31], for instance).
We recall that the customary assumption based on Poisson processes allows the
approximation of the synaptic input of a typical neuron by a stationary uncorrelated
Gaussian process due to the superposition of a large number of incoming spikes
(hence a sum of many Poisson processes) of either excitatory as well as inhibitory
type (see Ricciardi [27]). However, models based on homogeneous Poisson processes
fail to capture the relevant feature of the neural activity consisting in the refractory
period. See, for instance, Hampel and Lansky [20] for an investigation on parametric
and nonparametric refractory period estimation methods. The refractory period is
sometimes modeled by means of a dead time, i.e. the time interval following every
firing during which the neuron cannot fire again. This leads to a delayed Poisson
process, obtained by a step change to the rate of a Poisson process (see Deger et al.
[11], Johnson [21], Ricciardi [28]).

Aiming to include the neuronal refractory period and to describe properties of
spike trains, another approach has been adopted recently by various authors. It
is based on the assumption that the inhomogeneous Poisson process describing the
number of neuronal firings has a conditional intensity function expressed as product
of the free firing rate function and a suitable recovery function.

We purpose to investigate the spike train model based on the conditional inten-
sity, where the recovery function is aimed not only to include the refractory period,
but also to devise the interaction between several excitatory neural units. This is
performed via a suitable choice of the monotone recovery function, which is increas-
ing when describes the effect of excitatory neurons and is decreasing when models
the refractory period. This scheme allows studying various statistics related to the
firing activity, by following an approach analogous to the competing risks model (see
Di Crescenzo and Longobardi [16]). In the homogeneous case it is shown that the
overall activity of the network exhibits exponentially distributed interspike inter-
vals. In addition, it seems that other suitable choices of the recovery function yield
further dynamics, such as the bi-exponential and periodic behaviors investigated by
Mazzoni et al. [24].
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This is the plan of the paper: In Section 2 we describe the background on the
conditional intensity function model. Section 3 presents a suitable extension of this
model to the case of a network formed by a fixed number of units, in which the
recovery function depends both on the time elapsed since the last spike and on
the last spiking unit. A comprehensive discussion on this model is also given, with
attention to the conditional random variables describing the time length between
consecutive spikes. A connection with the competing risks model is also pinpointed.
Section 4 is devoted to investigate the model in detail. We determine the general
form of the interspike distribution and of the probability of consecutive spikes from
the same unit. Explicit expressions are thus obtained in the special case of constant
free firing rate function, when the interspike distribution is shown to be exponential.
We also consider the case when the free firing rate is of sinusoidal type. The
spike intertimes density is thus given in closed form, whereas the mean and the
variance are obtained and shown for some suitable instances by means of numerical
computations.

2. A spike train probability model. A customary believe in neuroscience is
based on the hypothesis that the neural coding adopted by the brain to handle
information is based on the neuronal spike (the number of spikes in the time unit),
or on the temporal occurrence of spikes (the sequence of spikes). Within both
paradigms, since spikes have very short duration, point processes or counting pro-
cesses are commonly used as probability models of spike trains.

The occurrence of neuronal spikes is often described by the inhomogeneous Pois-
son process. It is a continuous-time stochastic process {N(t); t ≥ 0}, with state
space the set of non-negative integers, where N(t) denotes the number of spikes
of a single neural unit occurring in [0, t] (see, for instance, Burkitt [7] and [8] for
comprehensive reviews of the integrate-and-fire neuron model, where the stochas-
tic synaptic inputs are described as a temporally homogeneous and inhomogeneous
Poisson process). The intensity function of the inhomogeneous Poisson process is
defined as follows:

λ(t) = lim
δ↓0

E[N(t+ δ)−N(t)]

δ
, t ≥ 0. (1)

It represents the intensity of occurrence of a spike at time t in a single neural unit.
Various choices of λ(t) have been proposed in the past. In the simplest case it is
constant in t, this leading to a homogeneous Poisson process.

Function (1) is useful to describe various quantities of interest. For instance, let

τj be the j-th spike time (j = 1, 2, . . .) of a single unit; denote by Λ(t) =
∫ t

0
λ(s)ds

the mean function of N(t), and assume that Λ(t) < +∞ for any finite t ≥ 0, with
lim

t→+∞
Λ(t) = +∞; then the probability density function of τj is:

fτj (t) =
λ(t) e−Λ(t)[Λ(t)]j−1

(j − 1)!
, t ≥ 0, j = 1, 2, . . . .

A customary extension of definition (1) is based on the assumption that the following
conditional intensity function exists:

λ(t | τ1, τ2, . . . , τN(t)) = lim
δ↓0

E[N(t+ δ)−N(t) | τ1 < τ2 < . . . < τN(t)]

δ
a.s., (2)
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where 0 < τ1 < τ2 < . . . < τN(t) is the sequence of spike times occurring in [0, t].
Function (2) thus describes the intensity of occurrence of a new spike at time t
conditional on the spike times occurred in [0, t].

In order to describe specific properties of spike trains, such as the neuronal
refractory period, various authors follow an approach based on the assumption
that λ(t | τ1, τ2, . . . , τN(t)) is expressed as product of two suitable functions (see, for
instance, Berry and Meister [6], Johnson and Swami [22], Kass and Ventura [23],
Miller [25]), i.e.

λ(t | τ1, τ2, . . . , τN(t)) =

{
s(t), if N(t) = 0,

s(t) r(t− τN(t)), if N(t) ≥ 1.
(3)

In Eq. (3), s(·) and r(·) are suitable non-negative functions, s being known as the
free firing rate function and r as the recovery function. Recently, Chan and Loh [9]
investigated this model with reference to template matching of multiple spike trains,
and to maximum likelihood estimators of the free firing rate and recovery functions.
We notice that model (3) is Markovian because the conditional intensity of spikes
is assumed to depend only on the present time t and on the duration t− τN(t) since
the last spike.

3. A model for interacting neural units. We aim to study the model de-
scribed by Eq. (3) in a more general case that includes interaction among units.
Indeed, we consider a network of d excitatory neural units, say U1, U2, . . . , Ud. Let
N1(t), N2(t), . . . , Nd(t) be counting processes, where Ni(t) describes the number of
spikes of unit Ui in [0, t], for 1 ≤ i ≤ d. Moreover, we denote by τi,k the k-th spike
time, k = 1, 2, . . ., of unit Ui, for 1 ≤ i ≤ d. The sequence of overall spike times of
the network occurring in [0, t] will be denoted as

0 < τ·1 < τ·2 < . . . < τ·N(t), t ≥ 0, (4)

where the counting process

N(t) := N1(t) + . . .+Nd(t), t ≥ 0 (5)

counts the total number of spikes occurring in [0, t]. For k = 1, 2, . . . and 1 ≤ i ≤ d,
we set

Zk = j, if the k-th spike in the sequence (4) is generated by unit Uj . (6)

In analogy with the model expressed by (3), the conditional intensity function of
the unit Ui, for 1 ≤ i ≤ d, is assumed to have the following form, for t ≥ 0:

λi(t |Gt) = lim
δ↓0

E[Ni(t+ δ)−Ni(t) |Gt]
δ

=

{
s(t) 1

d , if N(t) = 0,

s(t) ri(t− τ·N(t);ZN(t)), if N(t) ≥ 1,
(7)

where Gt collects all information related to the activity up to time t, i.e.

Gt := σ(N(t), τ·1, . . . , τ·N(t), Z1, . . . , ZN(t)).

Function s(t) is non-negative and such that
∫ +∞
τ

s(t) dt = +∞ for any τ > 0. As for
model (3), it is named free firing rate function, since it describes the spiking intensity
of the network’s units due to external inputs, and in absence of firing activity. From
Eq. (7) we note that if N(t) = 0 then λi(t |Gt) is constant in i = 1, 2, . . . , d. This
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means that the occurrence of the first spike is uniform over the d units. Moreover,
we have:

d∑
i=1

λi(t |Gt) = s(t) if N(t) = 0. (8)

In the general setting s(t) is a time-varying function, which allows for the description
of stimuli with varying amplitudes such as modulated inputs. Again, function ri(·; ·)
is non-negative, and is called the recovery function of unit Ui. Its main role is the
inclusion in the model of the refractory period of Ui, and also of the effect of the
spiking activity of the other network units.

Remark 1. Due to Eq. (7) the intensity function ofNi(t) does not depend on i when
N(t) = 0, whereas it depends on the counting process (5) through τ·N(t) and ZN(t),
whenN(t) ≥ 1. The firing activity of the i-th neural unit is thus governed by the last
spiking time, τ·N(t), and by the last spiking unit of the network, ZN(t). Moreover,
N1(t), N2(t), . . . , Nd(t) are conditionally independent processes, in the sense that
the distribution of each of such counting processes depends on the remaining d− 1
processes only through the sum (5).

From now on we suppose that the recovery function appearing in the right-hand-
side of (7) is given by:

ri(t− τ·N(t);ZN(t) = j) =
1

2

[
1 + ci,j u(t− τ·N(t))

]
, t ≥ 0, (9)

for all 1 ≤ i ≤ d and 1 ≤ j ≤ d, where:
(i) coefficients ci,j are such that

ci,j =

{
−1, if i = j

> 0, if i 6= j
and

d∑
i=1
i6=j

ci,j = 1, (10)

(ii) u(t) is a non-negative continuous function, decreasing for all t ∈ [0,+∞), with

u(0) = 1 and lim
t→+∞

u(t) = 0.

We point out that the above assumptions concerning Eq. (9) yield the following
features of the model:
• Coefficients ci,j measure the strength of the spiking activity of Uj on the network
units. Conditioning on ZN(t) = j, thus being Uj the last spiking unit before t, we
have:
(a) If i = j then cj,j = −1; this describes the auto-inhibition due to a neuron spike,
i.e. the effect of the refractory period.
(b) If i 6= j then the coefficients ci,j are strictly positive, this yielding a full inter-
action (of excitatory type) among the network’s units. In some sense, they give
a measure of the synaptic strength from Uj (the presynaptic neuron) to Ui (the
postsynaptic neuron).
• Function u(·) describes the effect over time of the spiking activity on the network
units. When t is close to last spiking time τ·N(t), the last spiking neuron, Uj , is less
likely to process the stimuli arriving according to the free firing rate function s(·),
since

rj(t− τ·N(t);ZN(t) = j) =
1

2

[
1− u(t− τ·N(t))

]
≈ 0 for small t− τ·N(t), (11)
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this being in agreement with the effect of the refractory period. Moreover, for all t
and 1 ≤ j ≤ d we have rj(t− τ·N(t);ZN(t) = j) ≤ 1/2.
• All other units Ui, i 6= j, receive a stimulus from the last spiking neuron Uj , the
strength of the stimulus being regulated by ci,j . In this case, for all t and i 6= j, it
is ri(t− τ·N(t);ZN(t) = j) ≥ 1/2.
• The effect of the last spike tends to vanish as time proceeds; indeed, for all
1 ≤ i ≤ d and 1 ≤ j ≤ d,

ri(t− τ·N(t);ZN(t) = j) ≈ 1

2
for large t− τ·N(t).

Note that an accurate choice of the recovery function ri(t − τ·N(t);ZN(t) = j)
should treat the cases i = j and i 6= j as different since they arise from distinct
physical situations. When i = j we deal with the auto-inhibition of a neuron due
to spikes, and then the modeling of the refractory period should include time-delay
effects in function u(·). On the contrary, when i 6= j we deal with the interaction
between different neurons, and thus such delay is not required. Nevertheless, in
order to make the model mathematically treatable, the cases i = j and i 6= j have
been unified in the right-hand-side of Eq. (9). On the other hand the condition (11)
implies that, within the present model, spikes close in time from the same neuron
are very unlikely.

Remark 2. In order to assess the plausibility of the above assumptions in a model
of neural spike trains, we point out that the mean interspike intervals (of the su-
perposed spike trains) should be larger than the characteristic time scale of the
recovery function. In a broad sense, the model is physiologically plausible when the
recovery function (9) decreases rapidly as t increases.

Recalling Remark 1, the first spike occurs according to the free firing rate s(t)
(see Eq. (8)), so that τ·1 has distribution function

Fτ·1(t) = P (τ·1 ≤ t) = 1− exp

{
−
∫ t

0

s(v) dv

}
, t ≥ 0.

Moreover, the probability that the first spike is generated by unit Ui is uniform,
since P (Z1 = i) = 1

d , 1 ≤ i ≤ d, due to (6) and (7). We now introduce the random
vectors (

X
(τ·k)
1,j , X

(τ·k)
2,j , . . . , X

(τ·k)
d,j

)
, 1 ≤ j ≤ d, k = 1, 2, . . . , (12)

where, in agreement with (7), X
(τ·k)
i,j is a non-negative random variable having

hazard rate s(t) ri(t−τ·N(t);ZN(t) = j). Assuming that the k-th spike of the network

was generated by unit Uj at time τ·k, then X
(τ·k)
i,j describes the time length between

τ·k and the next spike, conditional on the event that the latter spike is generated
by unit Ui, 1 ≤ i ≤ d. From the above assumptions it follows that the spiking

process is regenerative, in the sense that the distribution of X
(τ·k)
i,j does not depend

on k. Hence, we shall write X
(τ)
i,j when it is not necessary to specify the index k.

Moreover, as soon as a spike occurs, the firing activity restarts afresh according to
the scheme described by Eqs. (7) and (9). We notice that the components of vector
(12) are not observable, whereas the following random variables are observable:

T
(τ)
j := min

{
X

(τ)
1,j , X

(τ)
2,j , . . . , X

(τ)
d,j

}
,

δ
(τ)
j := i, if T

(τ)
j = X

(τ)
i,j ,

(13)
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for 1 ≤ j ≤ d. Clearly, T
(τ)
j denotes the time length between a spike discharged

at time τ by unit Uj and the next spike produced in the network, the unit pro-

ducing such spike being described by δ
(τ)
j . On the ground of Eqs. (7) and (9), the

distribution function of X
(τ)
i,j is given by

Fi,j(t | τ) := P (X
(τ)
i,j ≤ t) = 1− exp

{
−1

2

∫ τ+t

τ

s(v)
[
1 + ci,j u(v − τ)

]
dv

}
, t ≥ 0.

(14)
In the following we shall denote by

q
(τ)
j = P (δ

(τ)
j = j) =

+∞∑
k=1

P (Zk+1 = Zk |Zk = j, τ·k = τ), 1 ≤ j ≤ d (15)

the probability that a spike of unit Uj , occured at time τ , is followed by a spike of
the same unit.

We remark that the above framework can be viewed as referring to the classical
“competing risks model”. The latter deals with failure times subject to multiple
causes of failure, and deserves interest in various fields such as survival analysis and
reliability theory. In the present case the roles of failures and of failure causes are
played, respectively, by the observed spikes and by the firing network units. General
properties of the competing risks model can be found for instance in Crowder [10],
whereas recent results on such model related to ageing notions and shock models
are given in Di Crescenzo and Longobardi [16] and [17], respectively.

4. Analysis of the model. Aiming to give a deeper description of the model
introduced in the previous section, we first consider the simple case where the
network is composed of d = 2 units. Due to (10), for d = 2 and i, j = 1, 2 we have

ci,j =

{
−1, if i = j

+1, if i 6= j,
(16)

so that Eq. (9) becomes

ri(t− τ·N(t);ZN(t) = j) =


1

2

[
1− u(t− τ·N(t))

]
, if i = j

1

2

[
1 + u(t− τ·N(t))

]
, if i 6= j,

for i, j = 1, 2. Recalling (12) and (13), now we deal with the random vectors(
X

(τ)
1,j , X

(τ)
2,j

)
, j = 1, 2, (17)

whose components are not observable. On the contrary, the random variables T
(τ)
j

and δ
(τ)
j , j = 1, 2, defined in (13), are observable. Since the matrix ||ci,j || in this

case is symmetric (cf. (16)), we can introduce two random variables X
(τ)
− and X

(τ)
+ ,

by renaming the components of the random vector (17) as follows:1

X
(τ)
−

d
= X

(τ)
1,1

d
= X

(τ)
2,2 , X

(τ)
+

d
= X

(τ)
1,2

d
= X

(τ)
2,1 . (18)

Hence, from the given assumption it is not hard to prove that X
(τ)
− and X

(τ)
+ are

non-negative independent random variables, where X
(τ)
− (resp., X

(τ)
+ ) describes the

1The notation
d
= denotes equality in distribution.
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time
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−

Figure 1. A sample of activity of a network with d = 2 units.

time length between a spike occurring at time τ and the next spike, conditional on
the event that the latter spike is due to the same unit (resp., the other unit). An
example of activity of a network with d = 2 units is shown in Figure 1 where, for

instance, X
(τ·1)
+ and X

(τ·2)
− are observable.

Recalling (14), the complementary distribution functions and the probability
density functions of variables (18) can be expressed respectively as

F±(t | τ) := P (X
(τ)
± > t) = exp

{
−1

2

∫ τ+t

τ

s(v)
[
1± u(v − τ)

]
dv

}
,

f±(t | τ) := − ∂

∂t
F±(t | τ) = F±(t | τ)

1

2
s(τ + t)

[
1± u(t)

]
,

(19)

for t ≥ 0. Moreover, due to (15), and since X
(τ)
− and X

(τ)
+ are independent, when

d = 2 the probability that a spike of a generic unit, occured at time τ , is followed
by a spike of the same unit is given by

q(τ) = q
(τ)
1 = q

(τ)
2 = P (X

(τ)
− < X

(τ)
+ ) =

∫ +∞

0

f−(t | τ) F+(t | τ) dt. (20)

We are now able to provide the expressions of (20) and of the distribution function
of the observable random variable

T (τ) = min{X(τ)
− , X

(τ)
+ }. (21)

Note that T (τ) describes the intertime between a spike occurring at time τ and the
subsequent spike. A relevant role is played by the free firing rate function s(·) and
by the auxiliary function u(·) appearing in the recovery function (9).

Proposition 1. For a network constituted by d = 2 units we have

q(τ) =
1

2

{
1−

∫ +∞

0

e−v u
(
φ−1
τ (v)

)
dv

}
, (22)

F
(τ)
T (t) := P (T (τ) ≤ t) = 1− e−φτ (t), t ≥ 0. (23)

where

φτ (t) :=

∫ τ+t

τ

s(v) dv, t ≥ 0, (24)
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and where φ−1
τ (·) is the inverse function of φτ (·).

Proof. From (19) and (20) we have

q(τ) =
1

2

∫ +∞

0

e−φτ (t)s(τ + t) [1− u(t)] dt.

Eq. (22) thus follows by position v = φτ (t). Moreover, making use of (19) and (21),

and of the independence of X
(τ)
− and X

(τ)
+ , recalling (24) we get

P (T (τ) > t) = P (X
(τ)
− > t)P (X

(τ)
+ > t) = e−φτ (t), t ≥ 0,

this giving Eq. (23).

Since u(·) is a non-negative function, from (22) we have q(τ) ≤ 1/2. Thus it is
more likely that consecutive spikes are displayed by different units rather than the
same unit. The function φτ (t), defined in Eq. (24), is named cumulative firing rate.

The analysis of the model in the case of a network of d units can be performed
by taking into account that, similarly to (20), the probability (15) is given by

q
(τ)
j = P

(
X

(τ)
j,j < min

i 6=j
{X(τ)

i,j }
)

=

∫ +∞

0

fj,j(t | τ)
∏
i6=j

F i,j(t | τ) dt, (25)

where fi,j(t | τ) and F i,j(t | τ) denote respectively the probability density and the

complementary distribution function of X
(τ)
i,j , for i, j = 1, 2, . . . , d. Due to (10), the

terms in the right-hand-side of (25) do not depend on j, and thus we are now able
to give the following extension of Proposition 1.

Proposition 2. For a network constituted by d units we have, for 1 ≤ j ≤ d,

q(τ) = q
(τ)
j =

1

2

{
2

d
−
∫ +∞

0

e−(d/2)v u
(
φ−1
τ (v)

)
dv

}
, (26)

FT (τ)(t) := P (T
(τ)
j ≤ t) = 1− e−(d/2)φτ (t), t ≥ 0, (27)

where φτ (t) is defined in (24), and φ−1
τ (·) is its inverse.

Proof. Making use of (14) and (25) we obtain Eq. (26). The expression (27) follows
from the first of (13) and from (14), and recalling conditions (10).

Hereafter, in Sections 4.1 and 4.2 we consider two special cases in which s(t) is
constant and of sinusoidal type.

4.1. Constant free firing rate. In this section we discuss the homogeneous case,
in which the external inputs arrive to the network’s units according to a constant
intensity. We thus assume that the free firing rate is constant, so that

s(t) = λ for all t ≥ 0, (28)

with λ > 0. We point out that in this case the distribution functions given in (14)
do not depend on τ , and thus can be expressed as follows:

Fi,j(t) = Fi,j(t | τ) = exp
{
− 1

2
λ
[
t+ ci,jU(t)

]}
, t ≥ 0, (29)

where

U(t) :=

∫ t

0

u(v) dv, t ≥ 0. (30)
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In this case we show that probability (20) can be expressed in terms of the mean

of u[T
(τ)
j ], and that the intertime T

(τ)
j is exponentially distributed. Moreover, since

both quantities do not depend on τ and j, in this section we adopt the simpler

notation q = q
(τ)
j and T = T

(τ)
j .

Proposition 3. For a network constituted by d units, under assumption (28) we
have

q =
1

d

{
1− E

[
u(T )

]}
, (31)

FT (t) = 1− e−λ(d/2)t, t ≥ 0.

Proof. It follows from Proposition 2 and by noting that, due to assumption (28),
the cumulative firing rate is linear, i.e. φτ (t) = λt, and then φ−1

τ (y) = y/λ.

Example 1. Making use of (30) and (31), we now evaluate function U(·) and
probability q under two suitable choices of u(·).

(i) Let u(t) = e−(αt)r , t ≥ 0, with α > 0 and r > 0. Then, the distribution
function (29) can be easily evaluated, since

U(t) =
1

αr
γ
(1

r
, (αt)r

)
, t ≥ 0,

where γ(·, ·) is the lower incomplete gamma function. For instance, for t ≥ 0 we
have

U(t) =



2

α
e−
√
αt
(

e
√
αt −

√
αt− 1

)
, if r =

1

2
1

α

(
1− e−αt

)
, if r = 1

√
π

2α
erf(αt), if r = 2,

where erf(·) is the error function. Moreover, we can evaluate q for some choices of
r:

q =



√
π

2d
√
c

exp
( 1

4c

)
erfc

( 1

2
√
c

)
, if r =

1

2
1

d

1

1 + c
, if r = 1

1

2d

[
2− c

√
π exp

(c2
4

)
erfc

( c
2

)]
, if r = 2,

where erfc(·) is the complementary error function and

c :=
λ

α

d

2
. (32)

(ii) Let u(t) = [1 + (αt)r]−1, t ≥ 0, with α > 0 and r > 0. Hence,

U(t) = t 2F1

(
1,

1

r
; 1 +

1

r
;−(αt)r

)
, t ≥ 0,

where 2F1 is the Gauss hypergeometric function. For instance, for t ≥ 0 we have

U(t) =



2

α

[√
αt− log

(
1 +
√
αt
)]
, if r =

1

2
1

α
log(1 + αt), if r = 1

1

α
arctan(αt), if r = 2.
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Figure 2. Probability q in cases (i) (left panel) and (ii) (right
panel) of Example 1, for d = 2.

If r = 1 the following expression of q holds:

q =
1

d
[1− cecΓ(0, c)]

where c is defined in (32), and Γ(·, ·) is the upper incomplete gamma function.
For both cases treated above, Figure 2 shows some plots of q as function of c,

with various choices of r, and for d = 2.

We point out that Proposition 3 states that the interspike intervals described by
T are exponentially distributed. This is significantly different from the distribution
functions specified in (29).

4.2. Sinusoidal free firing rate. Several papers on neuronal activity focus on
modulated stimuli described by periodic inputs. For instance we recall Tateno et al.
[33], where the problem of finding the period of the oscillation in an oscillator driven
by a period input is studied by means of a first-passage-time approach, and Yoshino
et al. [34], where the effect of periodic pulse trains on oscillatory regimes neuronal
membranes is investigated. More recent researches studied the behaviour of the
leaky integrate-and-fire model driven by a sinusoidal current or slowly fluctuating
signal (see, for instance, Barbi et al. [2], Picchini et al. [26]).

Aiming to include the presence of periodic external stimuli in model (7), in this
section we consider the inhomogeneous case in which the time-varying free firing
rate is given by

s(t) = λ+A sin

(
2π

P
t

)
, for all t ≥ 0, (33)

where |A| ≤ λ and P > 0. Hence, due to (27) the density of the spike intertimes
T (τ) for a network of d units is

f
(τ)
T (t) =

d

2
s(t+ τ) e−(d/2)φτ (t), t ≥ 0, (34)

where, due to (24), the cumulative firing rate is

φτ (t) = λt+
AP

2π

[
cos

(
2π

P
τ

)
− cos

(
2π

P
(t+ τ)

)]
, t ≥ 0.

Figure 3 displays some plots of density (34) for some choices of the involved pa-
rameters. It shows that the multimodality of such density reflects the periodicity
of the free firing rate (33). Figure 4 gives the mean M = E[T (τ)] and the variance



228 ANTONIO DI CRESCENZO, MARIA LONGOBARDI AND BARBARA MARTINUCCI

τ = 0

0 1 2 3 4
t

0.5

1.0

1.5

2.0
f HtL

τ = 0.25

0 1 2 3 4
t

0.5

1.0

1.5

2.0
f HtL

τ = 0.5

0 1 2 3 4
t

0.5

1.0

1.5

2.0
f HtL

τ = 0.75

0 1 2 3 4
t

0.5

1.0

1.5

2.0
f HtL

Figure 3. Density (34) for A = −1, −0.5, 0, 0.5, 1 (from bottom
to top near the origin), with d = 2, λ = 1 and P = 2.
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Figure 4. Mean (left panel) and variance (right panel) of density
(34) for τ = 0, 0.25, 0.5, 0.75 (from bottom to top when A > 0),
with d = 2, λ = 1 and P = 2.

V = Var[T (τ)] of the spike intertimes, obtained from (34) by numerical evaluation.

In this case a closed-form expression of probability q(τ) seems not available.
However, it can be numerically evaluated by making use of Proposition 1. See
Figure 5 for some plots of q(τ) when u(t) = e−t, t ≥ 0. In particular, the oscillating
behaviour of q(τ) with respect to τ is evident for large values of A (see the right
panel of Figure 5).

5. Concluding remarks. The model proposed in this paper has been inspired by
the suitable assumption that the conditional intensity function of the non-homo-
geneous Poisson process describing the number of neuronal firings is given by the
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Figure 5. Plots of q(τ) in the sinusoidal free firing rate case as a
function of A (left panel) and of τ (right panel), for u(t) = e−t,
t ≥ 0, with d = 2, λ = 1 and P = 2.

product of the free firing rate function and a suitable recovery function. We have
proposed an extension dealing with a neural network composed of d excitatory
units, in which the recovery function of each unit depends both on the time elapsed
since the last spike and on the last spiking unit. Our approach, which is somewhat
related to the competing risks model, leads to the general form of the interspike
distribution and of the probability of consecutive spikes from the same unit.

Explicit results have been found when the free firing rate function is constant.
We also considered the case when the free firing rate is sinusoidal, for which the
density, the mean and the variance of the spike intertimes is investigated by means
of numerical evaluations. In both cases we studied the probability that a spike of a
generic unit, occured at a fixed time, is followed by a spike of the same unit.
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