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Abstract. The aim of this work is to investigate the dynamics of a neural
network, in which neurons, individually described by the FitzHugh-Nagumo
model, are coupled by a generalized diffusive term. The formulation we are
going to exploit is based on the general framework of graph theory. With the

aim of defining the connection structure among the excitable elements, the
discrete Laplacian matrix plays a fundamental role. In fact, it allows us to
model the instantaneous propagation of signals between neurons, which need
not be physically close to each other.

This approach enables us to address three fundamental issues. Firstly,
each neuron is described using the well-known FitzHugh-Nagumo model which
might allow to differentiate their individual behaviour. Furthermore, exploiting
the Laplacian matrix, a well defined connection structure is formalized. Finally,
random networks and an ensemble of excitatory and inhibitory synapses are
considered.

Several simulations are performed to graphically present how dynamics
within a network evolve. Thanks to an appropriate initial stimulus a wave
is created: it propagates in a self-sustained way through the whole set of neu-
rons. A novel graphical representation of the dynamics is shown.

1. Introduction. Signal dynamics within neural populations have received much
attention in the past fifty years. How to tackle the issue of describing biological
neural networks involves two master steps. Firstly, the choice of the model which
describes each individual neuron has to be carried out. Secondly, the definition of
interactions among all neurons of the network has to be explained and discussed.

Concerning the first point, the FitzHugh-Nagumo model [4] began as a dimen-
sional reduction of the well-known Hodgkin-Huxley model [5]. It extracts the
Hodgkin-Huxley fast-slow phase plane and presents it in a simplified form. The
resulting model is more analytically and numerically tractable and it maintains a
certain biophysical meaning. Thus, the model is constituted by two equations in
two variables v and r. The first is the fast variable called excitatory: it represents
the transmembrane voltage. The second variable is the slow recovery variable: it
describes the time dependence of several physical quantities, such as the electri-
cal conductance of the ion currents across the membrane. The FitzHugh-Nagumo
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equations, using the notation in [6], are shown below:

v̇ = −v(a− v)(1 − v)− r

ṙ = bv − gr,
(1)

where, a, b, g ∈ R
+ are parameters of the model. The model describes neurons as

excitable elements which have two key properties. Firstly, they are characterized
by their excitability behaviour: a sufficiently large stimulus provokes a very large
response, that is, a small perturbation to the quiescent state of a neuron can pro-
voke a large excursion of its potential. Secondly, they are characterized by their
refractoriness: the elements cannot be excited during the period which follows the
stimulus.

Once the choice of the model for each individual neuron has been made, the
challenge is how to describe the dynamics of the action potential within a network.
We sustain that the graph theory is the most suitable context to tackle this issue.
According to this choice we are able to establish that links among neurons satisfy
a specific rule in which also not near neighbour interactions are allowed. Not near
neighbour interactions imply that we are allowing axons to reach neurons that are
far from the ones that generated the spike, as is typical in the brain.

The aim of this work is to present a description of a neural network and the dy-
namics of the action potential within it, where neurons, individually described by
the FitzHugh-Nagumo model (1), are coupled by a generalized diffusive term. The
word “generalized” underlines the previously specified key property of the model,
i.e., the exchange of signals may exist among neurons even if they are not adjacent.
A thorough description of the model in the framework of the graph theory is the
starting point of the present work. Furthermore, the study of the stability of the
solution’s equilibrium point is performed in the cases of one and two coupled neu-
rons. However, the core of the paper concerns the visualizations of the solutions
obtained by exploiting different connection rules among neurons. In particular, a
novel representation is shown.

2. Excitable neural network. To be able to present the FitzHugh-Nagumo model
relating to a neural network, it is fundamental to introduce basic concepts proper
to graph theory.

Let us consider a graph G = (V,E), where V = {1, · · · , N} ⊂ N is the set
of vertices and E ⊂ V × V is the set of edges. The so-called adjacency matrix

AG = [aij ] is a N ×N matrix whose entries are:

aij =

{

wij if (i, j) ∈ E(G),

0 else,

where i, j = 1, · · · , N and weights wij = ±1, as proposed in [1]. Moreover, the
diagonal degree matrix DG = [dii] is defined so that ∀i = 1, · · · , N, dii =

∑

j 6=i |aij |.
Furthermore, we introduce the concept of Laplacian matrix which is defined as
follow:

LG = DG −AG. (2)

Hence, the Laplacian matrix is an N ×N matrix whose elements are

lij =











dii if j = i,

−wij if (i, j) ∈ E(G),

0 otherwise.

(3)
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Figure 1. Arrangement of the graph vertices in the plane. Neu-
ron labels are disposed over the nodes of a one dimensional closed
chain, i.e., a ring. Graph edges are not represented. An example
of connection structure over the ring is described in Figure 2.

Exploiting the notions proper to graph theory, let us tackle the issue of describing
a neural network. Neurons are identified with integer labels 1, · · · , N which are
collected in the set of vertices V while the links among them constitute the set
of edges. According to the definition of the Laplacian matrix (3), we are able to
describe the connection structure among neurons: entry wij represents the presence
of a synapse between neurons i and j. The weights wij = ±1 allow both excitatory
(if wij = 1) and inhibitory (if wij = −1) synapses. Although Eq. (3) is the general
definition of the Laplacian matrix, the connection structures we will exploit allow
us to consider a more specific expression of the equation. Some further assumptions
have to be established. Firstly, let us assume that each neuron is linked with a finite
number of others. In particular, we will focus on the case of two connections per
neuron. These connections are invariant under discrete neuron labels translations,
i.e., we keep the same connection rule for each neuron. Secondly, let us consider
that neuron labels are disposed over the nodes of a one dimensional chain with
periodicity, i.e., a ring as shown in Figure 1. These ingredients mean that a sparse
Laplacian matrix with the following entries is considered:

lij =











2 if j = i,

−wij if j = φ(i− q) or j = φ(i+ k),

0 otherwise,

(4)

where

∀h ∈ N : −N < h ≤ 2N, φ(h) =











h if 0 < h ≤ N,

h+N if h ≤ 0,

h−N if h > N.

(5)

Hence, in Eq. (4) the number of connections for all neuron i is shown on the diagonal
while the linked neurons which take effect on it are neurons i − q and i + k with
q, k ∈ N. The function φ in Eq. (5) describes the periodicity of the ring. Let us
underlined that Eq. (4) is, in general, a non-symmetric matrix whenever q 6= k. The
case of four connections per neuron is studied in [3].

In order to present the model that we will exploit in the simulations, let us make
some biophysical assumptions. Firstly, we hypothesize that neurons are identical
entities, i.e., they show the same dynamics when stimulated in the same way. Fur-
thermore, we suppose infinite velocity in the exchange of communications among
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Figure 2. An example of link structure over the graph ring is
represented. The connection structure is described by the Lapla-
cian matrix (6).

neurons. A future work will tackle the issue of delay in synapses. Furthermore,
signals can reach even not neighbouring neurons without passing through the ad-
jacent ones. This means that, in accordance with the connection structure which
exists in a specific neural network, direct links between vertices arise in Figure 1.
For example, if q = k = 2 in Eq. (4), the symmetric Laplacian matrix is described
as follow:

L =























2 0 −1 0 0 · · · 0 −1 0
0 2 0 −1 0 · · · 0 0 −1
−1 0 2 0 −1 · · · 0 0 0
...

...
0 0 0 · · · −1 0 2 0 −1
−1 0 0 · · · 0 −1 0 2 0
0 −1 0 · · · 0 0 −1 0 2























, (6)

and the corresponding graph is shown in Figure 2. As a result of this treatment,
we are able to formalise the model which describes the dynamics of signals within
a general neural network. Hence, for each neuron i = 1, · · · , N within the network,
the FitzHugh-Nagumo model with generalized diffusive coupling can be expressed as
below:

v̇i = −vi(a− vi)(1 − vi)− ri − d
∑

j

lijvj

ṙi = bvi − gri,

(7)

with parameters a, b, g, d ∈ R
+.

Exploiting the adjacency matrix instead of the Laplacian matrix, an equivalent
formulation is:

v̇i = −vi(a− vi)(1− vi)− ri + d
∑

j 6=i

aij(vj − vi)

ṙi = bvi − gri,

(8)

in which the presence of the well-known diffusive coupling in d
∑

j aij(vj − vi) be-
comes more evident.

3. Analytical results. Before showing the dynamics produced by Eq. (7), we
present some analytical results. In this section we introduce two propositions which
ensure the stability of the equilibrium point in the case of an uncoupled neuron
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and two coupled neurons whatever the choice of parameters a, b, g, d ∈ R
+ is.

However, since we are interested in restricting our analysis to the systems which
exhibit excitability with only one equilibrium point at the origin, let us state that:

Proposition 1. The equilibrium point of the systems Eq. (1) and Eq. (11) is unique
and it is the trivial one if and only if

4b

g
> (a− 1)2. (9)

The proof follows from straightforward computations and is hence omitted.
For the sake of completeness, both systems (1)–(11) exhibit a periodic limit cycle

by adding an external current to the v differential equation.

3.1. Single neuron. Consider first the case of a single uncoupled neuron whose
dynamics is described by Eq. (1). Point

(v̄, r̄) = (0, 0) (10)

is the trivial stationary solution and it is the unique equilibrium point since Eq. (9)
holds.

Proposition 2. ∀a, b, g ∈ R
+ \ {0}, the steady state (v̄, r̄) = (0, 0) is stable.

Proof. The linearization of Eq. (1) on the trivial equilibrium point (10) is
[

v̇
ṙ

]

=

[

−a −1
b −g

] [

v
r

]

.

The corresponding characteristic equation is

λ2 + (a+ g)λ+ ag + b = 0

which provides the eigenvalues of the linearized system:

λ1, 2 =
−(a+ g)±

√

(a− g)2 − 4b

2
.

As ∀a, b, g ∈ R
+ is Re(λ1, 2) < 0, then we conclude that (v̄, r̄) = (0, 0) is stable.

3.2. Two coupled neurons. Let us assume that neurons are identical. The
model (8) with N = 2 is

v̇1 = −v1(a− v1)(1 − v1)− r1 + d1(v2 − v1)

ṙ1 = bv1 − gr1

v̇2 = −v2(a− v2)(1 − v2)− r2 + d2(v1 − v2)

ṙ1 = bv2 − gr2.

(11)

Let us note that there are two different diffusion coefficients d1, d2 > 0. Although
in the next section we will exploit a unique diffusion coefficient for each coupling,
this choice ensures the possibility to consider an asymmetric connection structure
even in the case of two coupled neuron.

Proposition 3. ∀a, b, g ∈ R
+\{0}, then the steady state (v̄1, r̄1, v̄2, r̄2) = (0, 0, 0, 0)

is stable.
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Proof. The steps of the proof are the same as in the case of a single neuron. Here,
the linearization of (11) with respect to the trivial equilibrium point is the following:









v̇1
ṙ1
v̇2
ṙ2









=









−a− d1 −1 d1 0
b −g 0 0
d2 0 −a− d2 −1
0 0 b −g

















v1
r1
v2
r2









and, introducing χ = a2 + g2 + d21 + d22 + 2(d1 + d2)(a− g)− 2ga+ 2d1d2 − 4b, the
eigenvalues are

λ1, 2 =
−(a+ d1 + d2 + g)±√

χ

2

λ3, 4 =
−(a+ g)±

√

(a− g)2 − 4b

2
.

As ∀a, b, g, d ∈ R
+ is Re(λ1, 2, 3, 4) < 0, then we conclude that (v̄1, r̄1, v̄2, r̄2) =

(0, 0, 0, 0) is stable.

As in [2], the analytical results concerning the stability of the trivial equilibrium
point are performed when N = 1 and N = 2. When N > 2, we only check stability
by numerical integrations.

4. Numerical integrations. The aim of this section is to present several dynamics
of the action potential in a set of N excitable FitzHugh-Nagumo elements with the
diffusive coupling described by Eq. (7). Integrations are done using Matlab. The
differential equations are advanced in time by the Runge-Kutta method (ode45
solver in Matlab, with default parameters). The parameters used in the following
simulations are a = 0.25, b = 0.001, g = 0.003, d = 0.05 and N = 128. Although
in the following dynamics N > 2, it is possible to check stability by analysing the
simulations at large time from a qualitative point of view. In fact, dealing with this
specific choice of parameters, at the end of the dynamics all neuron action potentials
will return to the quiescent state, i.e., (vf , rf ) = (0, 0).

In order to highlight the dynamics we are going to show, neurons are disposed
in line with increasing integer labels. The periodic boundary conditions are still
considered. Below, we show several dynamics in which different connection rule
are taken into account. The next two subsections show, firstly, the dynamics pro-
duced by all excitatory synapses and, secondly, those produced by an ensemble of
excitatory and inhibitory synapses.

4.1. All excitatory synapses. In this subsection we will consider the case of all
excitatory synapses between linked neurons. This means that wij = 1 in Eq. (4).
In all the following dynamics, an initial stimulus is applied to the central neuron
of the line. The stimulus consists in imposing a non-null initial action potential
on the central node and we set (v0, r0) = (0.5, 0). As we will see, different con-
nection structures, which means different Laplacian matrices, produce a variety of
behaviours in the whole set of neurons. However, whatever the dynamics produced,
all neurons return to the quiescent state at the end. Neurons are modelled as ex-
citable units and then, after the excitation, they undergo a long refractory period.
In this period they are blind to any stimulus. This is the reason why, as we will see
in the dynamics frames, two travelling waves that collide depress their signals. Let
us now go into details of the specific dynamics.
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Figure 3. Integration of Eq. (7) with the Laplacian discretiza-
tion (4) where q = k = 1. In this simulation N = 128 and an ex-
ternal stimulus is applied to the central neuron. Let us underline
that the external stimulus is produced by a non-quiescent initial
state, i.e., (v0, r0)(N/2) = (0.5, 0). The rest values are v0 = 0 and
r0 = 0. At the end of the dynamics all neurons the whole set of
neurons is at the quiescent state.

Let us first consider equations (4)–(7) with q = k = 1. Naively, a neuron which
receives a signal fires in turn to the two adjacent ones (to the two neurons identified
by the adjacent integer labels). Then, after having applied an initial stimulus to
the central neuron of the line, the result is the propagation of two impulses away
from that point of stimulation. The boundary conditions are considered periodic
as described in Eq. (5). Some selected frames of the dynamics are presented in
Figure 3. An alternative representation is shown in Figure 5. To graphically stress
how neurons reach the quiescent state at the end of integrations, let us consider a
non-null initial datum on the first neuron of the line. Through the periodic boundary
conditions the waves travel in opposite directions and they collide in the center of
the domain. In Figure 4 the dynamics is reproduced. The same phenomenon can
be observed by analysing Figure 5 for the upper bound values of t where the action
potential of the neurons returns to zero. Let us underline that, in this simple case,
the dynamics produced coincides with those proposed by [4] and recalled in [8]. In
these two references, the propagation along an axon is described. Roughly speaking,
an axon can be assimilate to our set of neurons disposed in line.

Differently from the case q = k = 1, by exploiting equations (4)–(7) with q = k =
2 we obtain a dynamics in which odd-label neurons remain at the quiescent state.
It follows that, if we consider a set of N = 64 neurons constituted by even-label
ones, the dynamics is equivalent to the one presented in the case of q = k = 1.

The case of equations (4)–(7) with q = k = 3 is shown in Figure 6. The dynamics
involves all neurons due to this choice. Differently from the case q = k = 1, before
waves reach the boundary, two on three neurons remain at the quiescent state. Even
if at different integration times, due to the periodic boundary conditions, all neurons
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Figure 4. Integration of Eq. (7) with the Laplacian discretiza-
tion (4) where q = k = 1. In this simulation N = 128 and an ex-
ternal stimulus is applied to the central neuron. Let us underline
that the external stimulus is produced by a non-quiescent initial
state, i.e., (v0, r0)(1) = (0.5, 0). The rest values are v0 = 0 and
r0 = 0. Due to the periodic boundary conditions, when the waves
collide they disappear. In fact, neurons which are in the refractory
period, i.e. the period that follows the instant when they reach the
maximum action potential, cannot propagate the signals in turn
and cause the decay of the action potential. At the end of the
dynamics all neurons are at the quiescent state.

excite and then return to the stable equilibrium point. A correct permutation of
neurons makes it possible to obtain the dynamics of q = k = 1.

The dynamics proposed in Figure 7 and Figure 8 are obtained by exploiting
equations (4)–(7) with, respectively, (q = 1, k = 2) and (q = 5, k = 2). In contrast
with the previous cases, two asymmetric dynamics are produced. Nevertheless, all
neurons are involved in the dynamics.

A way to generalize the dynamics between neurons is to make the structure of
the connections random, i.e., to randomly construct the Laplacian matrix. Specif-
ically, let us firstly define for each neuron the connection number ni such that it
is uniformly distributed on number two, three and four; in symbols: ni ∼ U(2, 4).
Then, for each neuron i, the integer-labels of the ni links are determined exploiting
the normal distribution. Specifically,

X i ∼ N (i + µ, σ2), (12)

where Xi is a vector of ni components. Imposing µ = 8 and σ2 = 25, an example
of Laplacian matrix, having definition presented in Eq. (4), is shown in Figure 9.
The resulting dynamics is presented in Figure 10. In accordance with the Laplacian
matrix, the wave in the dynamics travels to the right.

4.2. Ensemble of excitatory and inhibitory synapses. In this section, both
excitatory and inhibitory synapses are considered. This ensemble is a fundamental
ingredient to make the model meaningful from a biological perspective. In order to
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Figure 5. An alternative representation of the dynamics shown
in Figure 3 is proposed. The action potential v(t, x) for each neu-
ron, disposed over the y-axis, by time increasing, displayed on the
x-axis, is described.
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Figure 6. Integration of Eq. (7) with the Laplacian discretiza-
tion (4) where q = k = 3. The parameters and the initial datum are
the same used in Figure 3. Differently from the case of q = k = 2,
all neurons will be excited. All neurons will return to the rest state
(v, r) = (0, 0) at the end of the integration.

describe a certain number of inhibitory connections, several sub-diagonal and super-
diagonal entries wij of the Laplacian matrix will be equal to −1. This approach is
proposed, among others, in [7]. Specifically, if a row i exists such that li,i+k = 1,
then the link between neurons i and i + k produces an inhibitory synapse. In Fig-
ure 11 a dynamics in which several neurons receive inhibitory synapses is shown.
In particular, neurons labelled as 71, 72, 73, 80, 90, 100 receive inhibitory synapses
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Figure 7. Integration of Eq. (7) with the Laplacian dis-
cretization (4) where q = 1 and k = 2. The initial datum is
(v0, r0)(N/2) = (0.5, 0). At the end of the integration all neurons
will return to the quiescent state (v, r) = (0, 0).
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Figure 8. Integration of Eq. (7) with the Laplacian discretiza-
tion (4) where q = 5 and k = 2. The initial data are (v0, r0)(N/2) =
(0.5, 0). At the end of the integration all neurons will return to the
quiescent state (v, r) = (0, 0).

from the left. Neurons 9, 24 receive inhibitory synapses from the right. In Figure 12
a comparison between the dynamics shown in Figures 3–11 is presented. It is im-
portant to underline that the action potential of neurons which receive an inhibitory
synapse reaches lower values than excitatory synapses. Moreover, throughout the
whole dynamics, inhibitory synapses produce a slower wave. Both phenomena can
be observed in Figure 12. As underlined in the case of all excitatory synapses, all
neurons return to the resting state at the end of the integration. Due to the period-
icity of boundary conditions, the travelling waves collide. Neurons in the refractory
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Figure 9. Non-zero elements in the Laplacian matrix which pro-
duces the dynamics shown in Figure 10.
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Figure 10. Integration of Eq. (7) with the Laplacian discretiza-
tion (4) built up as explained above in the text. The parameters
and the initial datum are the same as in the previous dynamics. Ac-
cordingly to Eq. (12), the dynamics describes a wave which travel
on the right. At the end of the integration, each neuron returns to
the resting state.

period cannot propagate the signals in turn and cause the decay of the action poten-
tial in the whole set of neurons. Let us underline that, if we had assumed that four
adjacent-labelled neurons receive an inhibitory synapse, the signal would abruptly
disappear and neurons would suddenly return to their quiescent state.

5. Conclusions. In summary, we have proposed the model (7) which is able to
describe the dynamics of the action potential and the recovery variable within a
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Figure 11. Integration of Eq. (7) with the Laplacian discretiza-
tion (4) with q = k = 1. In Eq. (4), admitted weights wij are
+1 and −1; this translates in considering both excitatory and in-
hibitory synapses.
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Figure 12. Comparison between dynamics shown in Figures 11–
3. Black dots represent the dynamics with several inhibitory
synapses. Red diamonds describe the the dynamics with only ex-
citatory synapses.

neural network (Sec II). A thoroughly explained mathematical structure allows us to
formally describe several fundamental features of interactions in neural populations.
In fact, the description of not only near neighbor interactions and the presence
of inhibitory synapses has been achieved. Then, the stability of the equilibrium
point of the solution has been performed in two sample model cases (Sec III). To
provide a graphical explanation of the model with different connection structures,
several frames of dynamics have been shown (Sec IV). A novel representation offers
a relevant understanding of the solution provided by the model.
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Future work should explore some important aspects concerning the model. First
of all, a way to make the model more biophysically relevant is to consider a non-
negligible time delay in coupling. After having introduced this ingredient we will
be able to compare the results provided by the model with in-vitro experiments.
Moreover, a currently ongoing work deals with the solutions obtained by exploiting
the model with the number of neurons that tends to infinity in a bounded area. We
expect this technique to open up a new way to study signal dynamics within large
populations of neurons.
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