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Abstract. With the aim to describe the interaction between a couple of neu-
rons a stochastic model is proposed and formalized. In such a model, main-

taining statements of the Leaky Integrate-and-Fire framework, we include a

random component in the synaptic current, whose role is to modify the equi-
librium point of the membrane potential of one of the two neurons and when

a spike of the other one occurs it is turned on. The initial and after spike reset
positions do not allow to identify the inter-spike intervals with the correspond-

ing first passage times. However, we are able to apply some well-known results

for the first passage time problem for the Ornstein-Uhlenbeck process in order
to obtain (i) an approximation of the probability density function of the inter-

spike intervals in one-way-type interaction and (ii) an approximation of the

tail of the probability density function of the inter-spike intervals in the mu-
tual interaction. Such an approximation is admissible for small instantaneous

firing rates of both neurons.

1. Introduction. In the last decade an increasing attention has been dedicated to
the explanation of the dynamics of couples of interacting neurons [6, 7, 16, 17], of
little and large networks of neurons [14, 18, 19] by using different stochastic models.
Some of these models are essentially based on Stein equations [6, 7], jump-diffusion
processes [18] or Gaussian processes [1] subject to Poissonian inputs originated by
the surrounding neurons. More recently a different approach is presented in [15] in
which the dynamics of pairs of neurons is described through copulas.

Inspired by these papers, by combining previous investigations on the dynamics
of pairs of neurons [6, 7] and by some analytical results related to the first passage
time problem for the linear time-inhomogeneous Ornstein-Uhlenbeck (OU) process
[3, 4, 8, 12, 13], which we refer as the generalized OU process, we now analyze the
response of the model sketched in Fig. 1, that seems to be able to describe the
interactions between the two neurons.

With reference to the left side of Fig. 1, the synaptic current, responsible for the
variation of the membrane potential of a neuron (say Neuron 1), is subject to the
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Figure 1. Schemes of two interacting neurons. Inside each box,
the arrows represent fluxes of synaptic current. The vertical one
takes in account all the other synapses, while the horizontal one
the synapses of the interacting neuron.

influence of a constant voltage generator. Such a device turns on as a consequence
of a post-synaptic potential due to one of the two neurons (say Neuron 2) and stays
on until an action potential of Neuron 1 occurs. The same phenomenon occurs for
Neuron 2. Nothing prevents that only one of the two neurons is effectively influenced
by the other: it happens, for example, when one of the generators produces a zero
voltage (as shown, with respect to the Neuron 1, in the right side of Fig. 1).

2. The model. Denoting by VS a deterministic level representing the neuronal
potential threshold of both neurons and by Vi =

{
Vi(t) : t ≥ 0

}
the sub-threshold

membrane potential time course of Neuron i (i = 1, 2),1 we consider the following
stochastic differential equations:

dVi(t) =
[
ai(t)Vi(t) +Bi,3−i(t)

]
dt+

√
σ2
i (t)dWi(t) (i = 1, 2; t ≥ 0). (1)

Whenever the membrane potential of one of them achieves VS, it is usual to say
that the neuron fires or a spike occurs; after a spike the membrane potential of the
corresponding neuron is reset to a preassigned value, say v0, below the potential
threshold.

In Eqs. (1), W1 =
{
W1(t) : t ≥ 0

}
andW2 =

{
W2(t) : t ≥ 0

}
are two independent

standard Brownian motions, while Bi,3−i =
{
Bi,3−i(t) : t ≥ 0

}
is a stochastic

process whose value at time t depends on σ-algebra σ({V1(s), V2(s) : 0 ≤ s ≤ t}).
Appropriate regularity conditions on ai(t), Bi,3−i and σ2

i (t) are required. In the
sequel, in order to describe the time evolution of the membrane potential of two
interacting neurons, as far as for Leaky Integrate-and-Fire (LIF) models for a single
neuron, the following functions are considered:

ai(t) := −1

θ
, Bi,3−i(t) :=

ρ+ µθ

θ
+ Ii,3−i(t), σ2

i (t) := σ2
i (i = 1, 2). (2)

As usual, θ > 0, ρ and µ represent the membrane decay time constant, the mem-
brane resting potential and a constant current (due to an excitatory-inhibitory
synaptic balance or/and to an external stimulus), respectively. With the aim to
specify the process Ii,3−i =

{
Ii,3−i(t) : t ≥ 0

}
we have to introduce some additional

settings. Let Ti,0 = 0, we denote by {Ti,n}n∈N0
the sequence of spike instants of

the Neuron i and by

Ai,n = {Ti,m}m∈N ∩ [T3−i,n−1, T3−i,n[ (i = 1, 2; n ∈ N)

1In the sequel we omit such a specification.
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the set (eventually empty) of its firing times belonging to a generic interval between
two successive spikes of the Neuron 3− i. It is now useful to introduce the sequence
{Li,n}n∈N:

Li,n :=


minAi,n, if Ai,n 6= ∅,

(i = 1, 2; n ∈ N)

T3−i,n, otherwise.

(3)

Therefore, {Ii,3−i(t) : t ≥ 0} describes a synaptic current (see, for instance, in [11,
16, 17]) obeying:2

− α dIi,3−i(t)
dt

= Ii,3−i(t)− kiH3−i(t) (i = 1, 2; t ≥ 0), (4)

where,

H3−i(t) :=


0, if t < L3−i,n,

(i = 1, 2; n ∈ N; Ti,n−1 ≤ t < Ti,n),

1, if t ≥ L3−i,n.

(5)

In Eqs. (4), k1 and k2 represent the intensities of the two neurons interaction:3

excitatory (inhibitory) in the case of positive (negative) values; while zero intensity
represents the case in which the corresponding neuron is not affected by the spikes
of the other one. Furthermore, α is the decay time constant of the synaptic current.
Finally, as for Vi(T

+
i,n) = v0, even the synaptic current is subject to a reset to a

preassigned value, say i0, after each spike, i.e. Ii,3−i(T
+
i,n) = i0 (n ∈ N). With the

aim to make the contribution of the second term on the right hand side of Eqs. (4)
dependent on the time elapsed since the last spike of the same neuron, we take into
account the following (not continuous) solution

Ii,3−i(t) = i0e
−(t−Ti,n−1)/α + ki

[
1− e−(t−Ti,n−1)/α

]
H3−i(t)

(i = 1, 2; n ∈ N; Ti,n−1 ≤ t < Ti,n).
(6)

Fig. 2 is a qualitative illustration of the features of the above described model.
Some useful remarks are listed here.

1. With regards to positions in (5), one recognizes that

Hi(T
+
3−i,n) = 0, Hi(T

+
i,n) = 1 (i = 1, 2; n ∈ N)

and

H1(t) +H2(t) = 1 (t ≥ min {T1,1, T2,1}).
2. An interval between two successive spikes of the same neuron is called inter-

spike interval (ISI). The dynamics and the reset positions described above
do not allow us to identify each ISI of Neuron i with the first passage time
(FPT) of the process Vi =

{
Vi(t) : t ≥ Ti,n

}
, starting at v0 at time Ti,n = ii,n,

through a threshold VS > v0: in fact, when the Neuron i fires the neuronal
potential of the Neuron 3− i continues its evolution without any reset.

2The quantities µ and {Ii,3−i(t) : t ≥ 0} are improperly called currents; indeed, each of them

represents a current divided by the capacitance of the related neuronal membrane.
3More explicitly, the value of ki is strictly related to the chemical nature of a special synapse

of Neuron i.
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Figure 2. On the left: Qualitative description of the model for
Neuron 1; lowercase letters indicate the sample paths of the in-
volved stochastic processes. On time axis, firing times of each neu-
ron and reference times of (5) are shown. On bottom, plot of the
function which indicates the firing times of Neuron 2. In the mid-
dle, the synaptic current acting on Neuron 1. On top, a path v1(t)
of the process V1 and its firing threshold. Note that, after a spike
of Neuron 2 the synaptic current decreases, reducing the oscillation
point of function v1(t) (k1 < 0), h2(t+1,.) = 0, and h2(t+2,.) = 1. On

the right: Same description with reference to Neuron 2 (k2 < 0).
Note that h1(t+1,.) = 1, h1(t+2,.) = 0 and, for t > t1,1, one has

h1(t) = 0 and h2(t) = 1 or h1(t) = 1 and h2(t) = 0.

3. We consider the values of the sequences {Li,n}n∈N defined in (3) as the “ref-
erence times”: in such times there is a change of the course of the synaptic
currents of Neuron 3− i.

4. To take in account the case of a time dependent threshold, in the present
model we have to introduce a prototype function VS(t) by which a stochastic
threshold {VS, i(t) : t ≥ 0} can be defined as follows:

V
S, i

(t) := VS(t− Ti,n−1) (i = 1, 2;n ∈ N;Ti,n−1 ≤ t < Ti,n).

The extension to the case of different values of v0, i0, θ, α, ρ and µ and different
VS(t) for the two neurons is easy to accomplish. In the sequel, we consider them
coincident in order to make easier the required calculations.

3. First passage time for the OU process. Here we consider one single neuron,
by describing its sub-threshold membrane potential, {V (t) : t ≥ t0},4 within the
framework described above. To this purpose, we keep unchanged meaning and
symbols (if necessary without the subscript used as a reference of the considered
neuron) of the quantities introduced before. Assuming the absence of the synaptic
current (i0 = 0), the equation for the sub-threshold membrane potential is the
following

dV (t) =

[
−V (t)

θ
+
ρ+ µθ

θ

]
dt+

√
σ2dW (t) (t ≥ t0), (7)

4In order to give more generality to the subsequent considerations, here we take t0 as the time
in which the observations start.
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with V (t0) = v0. It is well known that the (Gaussian-Diffusion) OU process V ={
V (t) : t ≥ t0

}
with mean and variance

mV(t|v0, t0) = v0e
−(t−t0)/θ + (ρ+ µθ)

[
1− e−(t−t0)/θ

]
CV(τ, t|v0, t0) =

σ2θ

2
e−(t−t0)/θ

[
e(τ−t0)/θ − e−(τ−t0)/θ

]
(t0 ≤ τ ≤ t),

respectively, is the (unique) solution of Eq. (7).
Hence, mV (t|v0, t0) and CV (τ, t|v0, t0) completely specify the distribution of any
order; in particular, the transition probability density function

fV(v, t|w, τ) :=
d

dv
P(V (t) ≤ v|V (τ) = w) (t0 ≤ τ < t)

coincides with that of a Gaussian random variable with

MV(t|w, τ) = we−(t−τ)/θ + (ρ+ µθ)
[
1− e−(t−τ)/θ

]
,

D2
V(t|τ) =

σ2θ

2

[
1− e−2(t−τ)/θ

]
,

as mean and variance, respectively.
Let S(t) (t ≥ t0) be the firing threshold of the considered neuron, in the sequel

assumed as a continuous function. Then, the first passage time of {V (t) : t ≥ t0}
through S(t)

TV,S(v0, t0) := inf{t ≥ t0 : V (t) ≥ S(t)} (v0 ≤ S(t0))

is an (fair) absolutely continuous random variable, for which we denote by

gV[S(t), t|v0, t0] :=
d

dt
P(TV,S ≤ t)

its probability density function.5

For S(t) ∈ C2([t0,+∞[), in this specific context, the following function has a
particular relevance:

ψV(S(t), t|w, τ) =

[
Ṡ(t)+

S(t)−(ρ+ µθ)

θ
− σ2S(t)−MV (t|w, τ)

D2(t|τ)

]
fV(S(t), t|w, τ).6

Indeed, the following integral equation holds (see, [2]):

gV[S(t), t|v0, t0] =− ψV[S(t), t|v0, t0]

+

∫ t

t0

ψV[S(t), t|S(τ), τ ]gV[S(τ), τ |v0, t0] dτ.
(8)

Note that, by choosing S(t) = (ρ+ µθ) + c1e
(t−t0)/θ + c2e

−(t−t0)/θ, with c1 and c2
arbitrary constants, one has a null kernel of the Eq. (8) for all t0 ≤ τ ≤ t. In this
case, the probability density function of the FPT is equal to the known term in
Eq. (8). However, this result is not relevant in the considered biological context.

Eq. (8) is very important, since via a numerical procedure a good approximation
of the required function can be obtained by it (see, [8]). The main drawback,
due to computational complexity of the considered quadrature rules, is related to
the determination of the tail of gV[S(t), t|v0, t0] when S(t) � mV(t|v0, t0) for all

5In the sequel, we denote by TX,S(x0, t0) the first passage time of {X(t) : t ≥ t0} through S(t)

given X(t0) = x0 and by gX(S(t), t|x0, t0) the corresponding probability density function.
6In [9], the authors call this function “singularity-removed probability current”, since

limτ→t ψV(S(t), t|S(τ), τ) = 0.
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t > t0. In this situation, if lim
t→+∞

S(t) = S (asymptotically constant threshold), the

following result, adapted by [10], can be fruitfully used.

Theorem 3.1. Let S ∈ R such that lim
t→+∞

mV(t|v0, t0) = ρ+ µθ < S and, with

characteristic time constant β, lim
t→+∞

S(t) = S. Setting

hV := − lim
t→+∞

ψV[S(t), t|w, τ ] =
S − (ρ+ µθ)

θ
√
πσ2θ

e
− [S − (ρ+ µθ)]2

σ2θ ,

if

inf
t≥t0

[S(t)−mV(t|v0, t0)] > sup
t≥t0

√
2CV(t, t|v0, t0) =

√
σ2θ,

for t− t0 � max{β, θ} one has:

gV[S(t), t|v0, t0] ≈ hV e
−hV·(t−t0).

4. One-way interaction. In the present section we intend to determine the dis-
tribution of the inter-spike interval Ti of the two neurons subject to the dynamics
sketched on the right side of Fig. 1. For this purpose, in Eqs. (6), it is sufficient to
require

k1 = 0 and k2 6= 0.

In such a case, the spikes of the Neuron 2 do not affect the membrane potential of
the Neuron 1 and the ISI’s distribution of Neuron 1 is equal to the first passage time
distribution of the corresponding membrane potential through the firing threshold.
This cannot be stated for the ISI’s distribution of the Neuron 2. In order to evaluate
such a distribution it is necessary to set the appropriate initial conditions. Specifi-
cally, we have to observe the dynamics until both neurons fire and then impose the
initial conditions in these times. To fix ideas, we choose two times, 0 < t1 < t2,
such that V1(t1) = v0, V2(t2) = v0 and no spike of Neuron 1 occurs between t1 and
t2.

4.1. Distribution of T1. Here, we refer to X1 =
{
X1(t) : t ≥ t1

}
as the OU

process of Section 3, having infinitesimal variance equal to σ2
1 and initial condition

X1(t1) = v0. For t > t1, Eq. (1), written for i = 1, is linear with a degenerate-type
initial condition. This remark allows us to state that V1, conditioned to stay in v0
at time t1, is a Gauss-Diffusion process having mean value

E [V1(t)] = v0e
−(t−t1)/θ + (ρ+ µθ)

[
1− e−(t−t1)/θ

]
+ e−(t−t1)/θ

∫ t

t1

i0e
−(s−t1)/αe(s−t1)/θ ds

= mX1
(t|v0, t1) +m1(t|t1),

(9)

where

m1(t|t1) = i0

[
e−(t−t1)/α − e−(t−t1)/θ

1/θ − 1/α

]
. (10)

Furthermore, since the covariance of {V1(t) : t ≥ t1} is determined only by means
of −1/θ and σ2

1 , we can say that it is equal to CX1
(τ, t|v0, t1). It follows that

V1(t) = m1(t|t1) +X1(t), (11)
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therefore, given that m1(t1|t1) = 0⇒ X1(t1) = V1(t1) = v0, one has:

T1
d
= TV1,VS

(v0, t1)
d
= TX1,VS -m1

(v0, t1).

Finally, it results:

gV1
(VS, t|v0, t1) = gX1

[VS −m1(t|t1), t|v0, t1] . (12)

Note that, with characteristic time constant max{α, θ}, we have

lim
t→+∞

m1(t|t1) = 0⇒ lim
t→+∞

[VS −m1(t|t1)] = VS,

so, let be

hV1
:=

VS − (ρ+ µθ)

θ
√
πσ2

1θ
e
− [VS − (ρ+ µθ)]2

σ2
1θ , (13)

if

VS − sup
t≥t1

[m1(t|t1) +mX1
(t|v0, t1)] >

√
σ2
1θ,

Theorem 3.1 applied to the threshold S(t) = VS −m1(t|t1) provides, for t − t1 �
max{α, θ}, the following approximation:

gV1
(VS, t|v0, t1) ≈ hV1

e−hV1
·(t−t1). (14)

4.2. Distribution of T (1)
2 . Now, we refer to X2 =

{
X2(t) : t ≥ t2

}
as the OU

process of Section 3, having infinitesimal variance equal to σ2
2 and initial condition

X2(t2) = v0, with t1 < t2 and no other spike of Neuron 1 occurs in [t1, t2]. Here

with T (1)
2 we denote the first ISI of Neuron 2 after t2. Then, by conditioning with

respect to Ft := σ({V1(s), V2(s) : 0 ≤ s ≤ t}) the process H1 =
{
H1(t) : 0 ≤ s ≤ t

}
is known and Eq. (1), written for i = 2, is linear with a degenerate-type initial
condition. Therefore, under Ft2 , the process V2, conditioned to stay in v0 at time
t2, is a Gauss-Diffusion process with mean value

E [V2(t)|Ft2 ] = v0e
−(t−t2)/θ + (ρ+ µθ)

[
1− e−(t−t2)/θ

]
+m2(t|t2)

+ e−(t−t2)/θ
∫ t

t2

k2

[
1− e−(s−t2)/α

]
H1(s)e(s−t2)/θ ds

= mX2
(t|v0, t2) +m2(t|t2) +m2,1(t|t1, t2;Ft2),

where,

m2(t|t2) = i0

[
e−(t−t2)/α − e−(t−t2)/θ

1/θ − 1/α

]
,

and

m2,1(t|t1, t2;Ft2) := e−(t−t2)/θ
∫ t

t2

k2

[
1− e−(s−t2)/α

]
H1(s)e(s−t2)/θ ds.

Since the process H1 is measurable, one has:

m2,1(t|t1, t2) : = E [m2,1(t|t1, t2;Ft2)]

= e−(t−t2)/θ
∫ t

t2

k2

[
1− e−(s−t2)/α

]
e(s−t2)/θ E [H1(s)] ds

= k2e
−(t−t2)/θ

∫ t

t2

[
1− e−(s−t2)/α

]
e(s−t2)/θ P1,2(s|t1, t2) ds,

(15)
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where,

P1,2(s|t1, t2) = P [TV1,VS
(v0, t1) ≤ s|TV1,VS

(v0, t1) > t2] . (16)

So that {V2(t) : t ≥ t2} is a Gauss-Diffusion with mean

E [V2(t)] = E {E [V2(t)|Ft2 ]} = mX2
(t|v0, t2) +m2(t|t2) +m2,1(t|t1, t2)

and covariance CX2
(τ, t|v0, t2). It follows that

V2(t) = X2(t) +m2(t|t2) +m2,1(t|t1, t2).

Thereby, since m2(t2|t2) = m2,1(t2|t1, t2) = 0⇒ X2(t2) = V2(t2) = v0, one has:

T (1)
2

d
= TV2,VS

(v0, t2)
d
= TX2,VS -m2-m2,1

(v0, t2), (17)

and

gV2
(VS, t|v0, t2) = gX2

[VS −m2(t|t2)−m2,1(t|t1, t2), t|v0, t2] . (18)

Since

0 ≤ e−(t−t2)/θ
∫ t

t2

[
1− e−(s−t2)/α

]
e(s−t2)/θ P1,2(s|t1, t2) ds ≤ θ

[
1− e−(t−t2)/θ

]
,

one has

0 ≤ l2 = lim
t→+∞

e−(t−t2)/θ
∫ t

t2

[
1− e−(s−t2)/α

]
e(s−t2)/θ P1,2(s|t1, t2) ds ≤ θ

and

lim
t→+∞

m2(t|t2) = 0⇒ lim
t→+∞

[VS −m2(t|t2)−m2,1(t|t1, t2)] = VS − k2l2.

Then, by setting

hV2
:=

VS − k2l2 − (ρ+ µθ)

θ
√
πσ2

2θ
e
− [VS − k2l2 − (ρ+ µθ)]2

σ2
2θ ,

if VS− sup
t≥t2

[m2(t|t2)+m2,1(t|t1, t2)+mX2
(t|v0, t2)] >

√
σ2
2θ, Theorem 3.1 applied to

the threshold S(t) = VS−m2(t|t2)−m2,1(t|t1, t2) provides, for t− t2 � max{α, θ},
the following approximation:

gV2
(VS, t|v0, t2) ≈ hV2

e−hV2
·(t−t2). (19)

Note that (18) and (19) are challenging to use due to the numerical evaluations of
P1,2(s|t1, t2) in m2,1(t|t1, t2) and hV2

(in which the calculation of l2 is required).
Finally, we explicitly observe that the probability density function of T2 is the

average of gV2
(VS, t|v0, t2) with respect to the probability density function of the

random variable describing the time interval elapsing from the last occurrence of a
Neuron 1 spike and t2.

4.3. An approximation of the distribution of T2. Let now suppose

VS − sup
t≥t1

[m1(t|t1) +mX1
(t|v0, t1)] >

√
σ2
1θ, (20)

t2 − t1 � max{α, θ}.

These statements allow us to apply Eq. (14) for t ≥ t2: the asymptotic regimen of
the membrane potential of Neuron 1 is guaranteed with respect to states and times
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by the first and the second one, respectively. Thus, for the function P1,2(s|t1, t2)
defined in (16), for s ≥ t2, one has:

P1,2(s|t1, t2) ≈ [1− e−hV1
·(s−t1)]− [1− e−hV1

·(t2−t1)]

e−hV1
·(t2−t1)

= [1− e−hV1
·(s−t2)].

By virtue of this approximation in Eq. (15), we obtain:

m̃2,1(t|t1, t2) : = k2e
−(t−t2)/θ

∫ t

t2

[
1−e−(s−t2)/α

]
e(s−t2)/θ

[
1− e−hV1

·(s−t2)/θ
]
ds

= k2θ
[
1− e−(t−t2)/θ

]
− k2

e−(t−t2)/α − e−(t−t2)/θ

1/θ − 1/α

+ k2
e−hV1

(t−t2)/θ − e−(t−t2)/θ

hV1
− 1/θ

− k2
e−(hV1

+1/α)(t−t2) − e−(t−t2)/θ

hV1
+ 1/α− 1/θ

=: m̃2,1(t|t2).

(21)

Therefore, by setting

Ṽ2(t) = X2(t) +m2(t|t2) + m̃2,1(t|t2),

we can say that the process Ṽ2 =
{
Ṽ2(t) : t ≥ t2

}
is a Gauss-Diffusion process that,

after t2, approximates V2 and

T (1)
2

d
≈ TṼ2,VS

(v0, t2)
d
= TV,VS -m2-m̃2,1

(v0, t2).

Finally, one has:

gV2
(VS, t|v0, t2) ≈ gV [VS −m2(t|t2)− m̃2,1(t|t2), t|v0, t2] . (22)

We emphasize that the function m̃2,1, given in analytical form in (21), does not
depend on t1, so that:

T2
d
≈ TV,VS -m2-m̃2,1

(v0, t2), (23)

and the approximation (22) also holds for the probability density function of T2. In
Figs. 3 and 4 the case of Neuron 2 with a special inhibitory synapse is considered;
the values of the involved parameters are indicated in the corresponding caption.
We obtained the simulated ISIs by virtue of Eqs. (1): it is evident that spikes of
Neuron 1 are able to decrease the firing activity of Neuron 2. Finally, on the right
side of Fig. 4, the agreement between the ISIs’ histogram of Neuron 2 with the
approximated density function seems to be very satisfactory.

Figure 3. A spike train of Neuron 2. On the left: Neuron 2 with
no interaction with Neuron 1 (k2 = 0). On the right: Neuron 2
interacting with Neuron 1 (k2 = −1). Other parameters: VS = 2,
v0 = −2, ρ = 0, µ = 0, i0 = 0.5, θ = α = 1, σ2

2 = 4, σ2
1 = 2.
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Figure 4. ISIs’ histogram and probability density function of FPT
for Neuron 2. On the left: With no interaction (k2 = 0). On the
right: The interaction with Neuron 1 is considered (k2 = −1).
Other parameters are chosen as in Fig. 3. Continuous lines depict
numerical evaluation obtained by virtue of Eq. (22).

5. Mutual interaction. Here we limit ourselves to present a result holding in an
appropriate asymptotic regimen for both neurons; extensions to a more general case
will be object of our future studies.

Being in the framework described in the previous section, the idea that we want
to develop begins with the already highlighted remark that in Eq. (21) the initial
time t1 disappears. Since,

lim
t→+∞

m̃2,1(t|t2) = k2θ,

it follows that:

lim
t→+∞

m2(t|t2) = 0⇒ lim
t→+∞

[VS −m2(t|t2)− m̃2,1(t|t2)] = VS − k2θ.

Then, by setting

hṼ2
:=

VS − k2θ − (ρ+ µθ)

θ
√
πσ2

2θ
e
− [VS − k2θ − (ρ+ µθ)]2

σ2
2θ , (24)

if

VS − sup
t≥t2

[m2(t|t2) + m̃2,1(t|t2) +mX2
(t|v0, t2)] >

√
σ2
2θ,

Theorem 3.1, applied to the threshold S(t) = VS−m2(t|t2)−m̃2,1(t|t2), for t− t2 �
max{α, θ}, provides the following approximation:

gṼ 2
(VS, t|v0, t2) ≈ hṼ2

e
−h

Ṽ2
·(t−t2). (25)

Now, from Eq. (24) it appears that hṼ2
is totally unrelated to the evolution of the

membrane potential of Neuron 1. Accordingly, setting

hṼ1
:=

VS − k1θ − (ρ+ µθ)

θ
√
πσ2

1θ
e
− [VS − k1θ − (ρ+ µθ)]2

σ2
1θ ,
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by exchanging the role of Neuron 1 with the one of Neuron 2, if

VS − sup
t≥t1

[m1(t|t1) + m̃1,2(t|t1) +mX1
(t|v0, t2)] >

√
σ2
1θ,

for t− t1 � max{α, θ}, we obtain:

gṼ1
(VS , t|v0, t1) ≈ hṼ1

e
−hṼ1

·(t−t1). (26)

In Fig. 5, with the choice of parameters indicated in the caption, tails of probabil-
ity density function of FPT for both neurons and corresponding ISIs’ histograms
obtained via simulation of Eqs. (1), are shown. The agreement seems to be quite
satisfactory.
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Figure 5. ISIs’ histogram and tails of probability density func-
tion of FPT obtained via Eqs. (26) and (25); for both neurons we
consider the special synapses as inhibitory, k1 = k2 = −0.1. On
the left: Neuron 1. On the right: Neuron 2. Other parameters:
VS = 2, v0 = −2, ρ = 0, µ = 0, i0 = 0.5, θ = α = 1, σ2

1 = 1,
σ2
2 = 0.75.

6. Summary. The idea developed in the present article consists in modeling the
interaction between two neurons by using two generalized coupled stochastic Leaky
Integrated-and-Fire equations, each one describing the stochastic evolution of the
neuron membrane voltage (for biological background see, for instance, [5]). The
coupling is realized by including a function for the synaptic current that jumps
when the other neuron fires.

We are able to determine two Gauss-Diffusion processes suitable to describe the
above dynamics by obtaining their mean and covariance function applying classical
rules for calculation of the conditional expected value of the processes. The Eq. (15)
shows that the mean of one of such processes involves the distribution of the FPT
of the other one.

By proceeding along this line, one can determine an approximation of the FPT
distribution of each process, by solving a system of non singular second-type Volterra
integral equations via a numerical procedure.

We explicitly note that, in this interactive scheme, it is not possible to identify
the ISI of each neuron with the FPT of the respective above stochastic process:
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the reason essentially stays in the fact that the reset of one of the two neurons
occurs (every time) after a different time spent from the last firing time of the other
neuron. The complete solution of the problem could be obtained by averaging the
FPT distribution with the distribution of this random time. Our future research
will be devoted to deal with such a problem.

However under the hypothesis that one of the two membrane potentials (e.g. that
of the Neuron 1) stays in a particular asymptotic regime (in short: its equilibrium
level has to be quite below the firing threshold) we obtain in the present paper an
approximation of the FPT distribution of the membrane potential of the Neuron 2
(see Eq. (22)) that does not depend on the last firing time of the Neuron 1: in
such a case the distribution of the ISIs of the Neuron 2 can be identified with the
determined FPT distribution (see Eq. (23)).

Finally, we compare our numerical approximation of the FPT probability density
function with the histogram of ISIs simulated by applying the numerical Euler
scheme to the involved stochastic differential equations (1). A quite satisfactory
agreement between the results is shown in several graphics for the case of one-way
interaction and in the case of mutual interaction between the two neurons.
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