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ABSTRACT. The aim of this paper is to consider a non-autonomous predator-
prey-like system, with a Gompertz growth law for the prey. By introducing
random variations in both prey birth and predator death rates, a stochastic
model for the predator-prey-like system in a random environment is proposed
and investigated. The corresponding Fokker-Planck equation is solved to ob-
tain the joint probability density for the prey and predator populations and the
marginal probability densities. The asymptotic behavior of the predator-prey
stochastic model is also analyzed.

1. Introduction. During the past four decades, several deterministic and sto-
chastic predator-prey models have been proposed and applied in a wide range of
fields, including tumor cells (virus)-immune system, susceptible-infectious diseases,
parasite-host interactions, plant-herbivore systems (cf., for instance, [1], [2], [5]-[13],
[16], [19], [22]-[24]). In particular, a non linear two dimensional dynamical system
is considered in [8] and [13]:

dx ( 3:5—1+ yE—l)
— =Y — X @]
a Y ¢ ¢ 5

(1)
dy ¢ —1
%——nyﬂLﬁy £

where z(t) and y(t) are the population densities of preys and predators, respectively,
with 2(0) = zo, y(0) = yo, and a, B,m,7,§ € RT, 0 > 0.
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For £ =1 the system (1) becomes:

dzr ( )
— =zx(r—px)—ax
dt 0 Y,
(2)
d
d_?i = —sy + By,

with r = v+ o+ o and s = n + 5. By setting o = 0 in (2), we obtain the Lotka-
Volterra model (cf. [9], [20]) in which the prey population will grow without limit in
absence of the predators (malthusian growth of prey population), contrary to what
is expected in a more realistic predator-prey ecosystem. The constant « tells how
rapidly the prey population would die out through encounters with predators, and
[ is the constant increasing rate for the predators due to encounters with the preys.
This model has no asymptotic stability and the equations admit periodic solutions
oscillating around its equilibrium values = s/ and y = r/«. Differently from
Lotka-Volterra model, for o > 0 a self-regulation term —p? is added to the prey
equation, so that system (2) admits an asymptotic stable equilibrium at z = s/
and y = (Br — 0s)/(ap).

Note that system (1) extends the Lotka-Volterra predator-prey system. The case
& < 1in (1) represents a situation in which the prey population adapts themselves
somewhat to the growing menace of predator population so that it is affected to a
lesser degree compared to Lotka-Volterra case. The case £ > 1 in (1) represents a
situation in which the prey population becomes exhausted by the predators so that
they suffer to a greater degree from the increase in predator population compared
to Lotka-Volterra case.

For £ — 0 the system (1) leads to:

d
d—f =(y—olhz)z—azlny,
(3)
d
d—g; =-ny+pfylnz,

with 2(0) = z, y(0) = yo. Such a predator-prey-like system shows that the prey
population has the property of self-regulation; it is similar to (2), but the associated
set of differential equations can be solved exactly. The prey population grows with
a Gompertz law in the absence of the predators

— b _ TN et
z(t) = exp{ ) + (ln:zo Q) e },

where v denotes the Gompertz intrinsic growth rate of the prey and exp(~y/p) is the
carrying capacity. The population of the predators, instead, decreases exponentially
without the preys, i.e.

y(t) =yoe ",
where 7 is the death rate of the predator in the absence of the prey. Similarly
to Lotka-Volterra system, for ¢ = 0 the model described by (3) has no asymptotic
stability and the equations have periodic solutions oscillating around its equilibrium
values © = exp{n/B} and y = exp{y/a}. When ¢ > 0, system (3) admits an
asymptotic stable equilibrium at x = exp{n/A} and y = exp{(8vy — on)/(aB)}.
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The aim of this paper is to consider a non-autonomous predator-prey-like system
described by the differential equations

(Cll_f = k(t) [(7— olnx)r—ax lny]u
(4)

dy
= = k() (=ny + By nz),

where z(t) and y(t) describe the densities of the prey and predator populations,
respectively, with z(0) = =z, y(0) = yo. We assume that a,3,7,7v € R, o > 0
and k(t) is a continuous positive function such that f0+oo k(r) dT = +00. System
(4) provides a generalization of system (3); indeed, when k(t) = 1 we note that (4)
identifies with (3). In (4) we suppose that the growth rate of prey, the death rate
of the predator, the self-regulation rate and the interactive terms are proportional
to k(t). For instance, the choice of k(t) as a time periodic function is equivalent
to assuming that the rates and the interaction terms oscillate between a minimum
and a maximum value.

In Section 2 the explicit solutions of (4) are obtained; furthermore, the state
of the system at time ¢ + At is determined exactly in terms of the state of the
system at time ¢. Similarly to the deterministic model (4), in Section 3 a sto-
chastic model is proposed. Under suitable assumptions of random environment,
we obtain a two-dimensional diffusion process {X (¢),Y (¢),t > 0}, where X (¢) and
Y (t) are two correlated stochastic processes, describing the prey and predator pop-
ulation densities, respectively. Furthermore, the joint probability density function
f(x,y,t|zo, yo), solution of a two-dimensional Fokker-Planck equation, is explicitly
determined. In Section 4 the marginal probability densities for the prey and preda-
tor populations are obtained. Finally, the asymptotic behavior of the predator-prey
stochastic model is analyzed in Section 5.

We want to dedicate the remainder of this paper to the memory of our late
mentor, colleague and unforgettable friend, Luigi M. Ricciardi.

2. Deterministic time evolution. In this section we write the explicit solutions
of deterministic system (4), by distinguishing the following cases: (i) 0? —4af3 > 0,
(ii) 0*> — 4aB < 0 and (i) 0* — 4af8 = 0.

Case (i). For p? —4a3 > 0, the solutions of system (4) are:
1 A1 n o By —0n\] aw
t) = — 1 — L) - 1 _=r & 1
z(t) eXp{B+[)\1—)\2(nIO 3) Al—/\z(nyo B )}6

_[)\1/\—2)\2 (1na:0 B %) N f N (hll/o - BWT_ﬁm)}eAW(t)},
()

y(t) = exp{ﬂwa—ﬁgn s[5 & (e —3) - )\1)\—2/\2 (1o - m%ﬁw)}e“”“’

Tt g) - (-2l
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Since f0+oo k(r) dr = 400, prey and predator populations admit an asymptotic

behavior:
: _ n : _ By—on)
i o) = ep{ 31 1 (0 - eo{ 201 7)
Case (ii). For o> — 4a3 < 0, by setting
1
(1) = 26(t) /BB — ®)

the solutions of (4) are:
- Ty emev(®)/2 _n
x(t) exp{ 3 +e {(ln Zo ﬁ) cos|z(t)]

_\/ﬁ(g (lnxo — %) +2a (lnyo — B'YQ;BQW)) Sin[z(t)]} }7
9)

y(t) = exp{ﬁl[;ﬂm7 + emev(®)/2 [(lnyo - ma;ﬂgn) cos|z(t)]

1 n By —eny\\ ..
SRR I TP Y (P T L AT Y
= 28 (meo—5) +o(mw — 1 2(0)]
For o > 0, the system moves around the stable equilibrium state with a decreasing

amplitude, and finally reaches the equilibrium state. When ¢ = 0 (malthusian
growth of prey population) (9) become:

_ n n «Q TN .
x(t) = exp{B + (lnxo - E) cos[\/a—ﬁz/}(t)] - \/% (lnyo - 5) sm[\/@w(t)] },
(10)
y(t) = exp{% + (1ny0 — g) cos[mw(t)} + \/g (1n:1:0 - %) sin[\/ﬁw(tﬂ },
showing that z(¢) and y(¢) become periodic functions when ¢ increases.
Case (iii). For o? —4af =0, i.e. o = 2y/af, the solutions of (4) are:
— n n
x(t) = eXp{E +| (1= VaBu®) (nwo - E)
—_— (lnyo Py - 277\/@)} e\/@’l[)(t)}7

af
(1)
o) = exp{ P2 [t (m - 3)
(14 VB0 (1o - W)] emw@)}.

Since f0+oo k(7) dr = 400, the prey and predator populations admit the asymptotic
behavior (7).
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3. Stochastic Model: Joint probability density function. The deterministic
approach has some limitations in biology, in the sense that it is always difficult to
predict the future of the system accurately. One of the reasons to this difficulty is
that biological systems are subject to random fluctuations, that partially result from
the environment factors such as epidemics and nature disasters. From this view-
point, we denote by {X (t),Y (¢),t > 0} a two-dimensional stochastic process, where
X (t) and Y (t) represent the prey and predator population densities, respectively.
Under the assumption of random environment, we interpret the increments of prey
birth rate (v At) and of predator death rate (n At) in the time generation At as the
components of a two—-dimensional correlated Wiener process {W1(t), Wa(t),t > 0}
such that E[Wy(t)] = vyt, E[Wa(t)] = nt, Var[Wy(t)] = o3 t, Var[Wa(t)] = 03t and
Cov[Wi(t), Wa(t)] = —o12t, with o1 > 0, 02 > 0, 012 € R and 0?03 — 02, > 0. The
stochastic processes W1 (t) and Ws(t) are respectively refered as the fluctuations of
the prey birth rate and of the predator death rate, and they are correlated. The
constants 0% and o3 are the intensities of noises and ¢ = —o12/(0102) denotes the
correlation coefficient between Wi (t) and Wa(t).

Our approach follows the lines indicated in [3], [4], [14], [15], [17], [18] to describe
the evolution of a single species in the random environment. In particular, in [4],
[14], [15] and [18], starting from the solution of the differential equation (malthusian,
logistic, Gompertz or other growth models), one-dimensional diffusion processes
have been constructed, analyzed and compared.

Fori,j =0,1,..., let

By (o8 i P80 X QI (480 -V OPIX O =2,V (=4}

be the infinitesimal moments of a two-dimensional process {X (¢),Y (¢),t > 0}. In
Appendix A, we prove that {X(¢),Y (¢),t > 0} is a diffusion process characterized
by the following infinitesimal moments:

Biolw, 1) = ak(t) {7 — 0 e — alny + 20Tk},

(){—n+/31n:c+§o§k2(t)},
o2k (t) ?
o2k (t) y?

U2k2( )fc%
0 (4,j=0,1,...;i+7>2).

Boi(z,y,

Bao(z,y,

(2, y,1)

(2, y,1)
Boa(z,y,t)
(2,9,

t) =

Bii(z,y,
Bij(xuya

We note that the drifts Big(z,y,t) and Boi(z,y,t) and the infinitesimal variances
Bao(z,y,t) and Boa(z,y,t) satisfy the relations:

1 0Bso(z,9,1)
B t)=h t)+ - ————=
10(%% ) 1($7y7 )+4 8(17 9
(13)
1 9Bo2 (2, y,t)
B tY=h z
01(117,2/7 ) Q(Iayv )+4 ay ;
where hy(z,y,t) and ha(x,y,t) identify with the right-hand side of the equations of
system (4), respectively. Then, the joint probability density function f(x,y, t|xo, yo)
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of {X(t),Y(t),t > 0} is solution of the Fokker-Planck equation:
2
k)= [y = - 71
5t k(t)ar {{7 olnz —alny + 5 k(t)}xf}

0.2 2
—k(t)(% [{—n + 5 Ine+ 2 k(t)} yf} + %0% k%)%{x? f}

2 82
k2(t { 2 } K2(t { } 14
+202 () yg Y f + 012 ()8I8y xyf ( )
with the delta initial condition:
}gl%f(fl?,yvﬂfo,yo) =d(z —20) 5(y — yo). (15)
In order to determine f(x,y,t|zo,yo), we first of all carry out the positions:

By — on By — on
(e

u:lnx—ﬂ, v=Iny———, uozlnxo—ﬂ, vo = lnyg—
B ap B

. (16)
Next, we consider the transformations

z c(u /\2v)w c(u Alv)z c(u )\2v)w c(u Alv)

=C - 5 9 = C2 - 5 y <0 — C1 0— 5 v/, 0= C2 00— 5, Y0,

B p B p

lerea (A2 — A1)l o

———— f(z,w, t|zg, wq), 17

e T w0, wo) (17)

with cjca (A2 — A1) # 0. These allow you to change the Fokker-Planck equation (14)
into the following:

7. é‘{ 97} - 2 fparion )

) 9%f
()aJ; 5 2ﬁ2 k?(t)a‘/;+clcQ B§k2(t)a

f(.’II Y, t|$0, yO)

2 i ﬁ2
where we have set

= ﬂQU% +A 202 - 2[3)\20127
= B%0% + N2 — 2B\1012, (19)
= 207 + afos + oBoia.

The delta condition (15) becomes:
}in% Flz,w, t]z0, wo) = 8(z — 20) 6(w — wo). (20)
re

Equation (18), with condition (20), is the Fokker-Planck equation of a non-ho-
mogeneous Ornstein-Uhlenbeck process, whose solution f(z,w,t|zo,w0) is a two-
dimensional normal density. Multidimensional time-homogeneous Ornstein-Uhlen-
beck process are take in account in [21].

In the sequel we set:

—_e—o(t)
e2MY(t) _ 1 e2N0(t) _q 1—e7¢ >0
El(t):Tv E2(t):T7 Es(t)= 0 0 (21)
! ? w(t)v 0= 0.
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Proposition 1. When 0? — 4a8 > 0, the joint probability density function of the
diffusion process {X (t),Y (t),t > 0} is:

B |0*—4ap { B
ex —

F @,y 0, y0) = |Po(t)u? + Qs (80

2mzy \| p(t) 2¢(t)
+P(H)u + Q1(t)v + Pra(t)uv + Po(t)} }, (22)
where we have set:
¢(t) = D1D2 By (t) Eo(t) — DI E3(t), (23)

Py(t) = DyBEs(t) + D1 By (t) — 2D5 Bs(t),

Qs(t) = DQEQ(LL)(%)2 + DlEl(t)(%)Q - %aDgEg(t),

Pi(t) = —2D2Es(t) mq (t|zo, yo) — 2D1 Er () ma(t|zo, yo)
+2D3E3 (t) mao (t|$0, y()) + 2D3E3 (t) mq (t|$0, yo),

Qu(t) = 2D B (1) % ma(t]0, y0) + 2D B (1) % maltlz,wo)  (24)
—ngg(t)%mzmxo,yo) 2DaEs(1) %m1(t|1’0, o),

Pio(t) = —2D2E2(t)% — 9D, E, (t)% - 2D3§E3(t),

Py(t) = DaEy(t) mi(t|wo, yo) + D1 E1(t) m3(t|wo,yo)
—2D3E3(t) mq (t|xo, yo) ma(t|zo, yo),

and
A _
ma(tlzo, yo) = {(ln:vo — %) - ﬁ(lnyo -~ BVTBQ”)}GWQ
(25)
= _my_ M By =\
m2(t|$07 yo) - |:(1n Zo ﬂ> ﬂ (ln Yo aﬂ >:| e .
Proof. The proof is given in Appendix B. 0

Proposition 2. When ¢ — 4a3 < 0 the joint probability density function of the
diffusion process {X (t), Y (t),t > 0} is:

B [4aB —o? { 8% 15
exp

f(@,y,t{zo, yo) = [Pz(t)u2 + Qa(t)0”

2ray \| - A(t) 25(1)
FP(Bu+ Qu(t)o + Pro(tun + Po(t)] } (26)
where
@(t) = D3 E3(t) — D1 Do E; (t)Ea(2)
— D2 EX(1) — ’Z ;’;2 {1+ 72000 — 2em V0 cosfaz (1))}, (27)

pj(t) = _Pj(t) (] =0, 172)7 Qj(t) = _Qj(t) (.7 = 172)7 PIZ(t) = _P12(t)' (28)
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Proof. The proof is given in Appendix C. O
When 0% —4a8 =0, i.e. ¢ = 2v/af3, the joint probability density function of the

diffusion process {X (¢),Y (¢t),t > 0} can be obtained taking the limit as ¢ — 2+/af

in (22) or, equivalently, in (26).

Proposition 3. For o = 2v/af one has:

2
Pt ) = 52y [ expf = 2 a0 + 0a(0)

2may \| (1) 20(t)
+A1(tu+ QB + Asa(tyuw + Ao (8)] } (29)
where:
O ot MO g U=
(30)
Q) = lim Q;(t) G Pro(1)

J = 17 2)7 A12(t) = hm

o—2v/ap 0> — 4aff’ o—2y/aB 02 —4daf’

In particular, from (30) one has

(Bo? + ao3)(Boi + aos + 4y/afo1s) + 4afoios

olt) = 1602
x(1- e—2mw<t>)2 _ BY*(t) (Boi + o3 + 2012\/@)26—2\/@/;@)
4o ’
_ Bo?+5a03 + 4o12\/aB —avaBe() _ . —2vaBu(t)
As(t) = T (1—6 2 t)—e 2vaBu(t (31)
2 2
X{w(t)(%af + o 2@012) by 0% E 200 }
_ Bot + a0l —2aB() o —2vaBu()
Q2(t)_W(1_62 t)+62 ¢
Boi —agd o 5o Bot +aod +2v/afois
X{ﬂf(t)T - \/%1/) (1) 5 }

From (31), it follows that ¢(t) > 0, A2(t) > 0 and Q3(¢) > 0 for ¢ > 0.
In the next section, in order to determine the probability densities of prey and
predator populations, the densities (22), (26) and (29) are utilized.

4. Stochastic Model: Marginal probability densities. Let fx(x,tzo,yo) and
fv (y,t|zo, yo) the probability densities of prey and predator populations:

+oo +oo
fX(ant|$07y0) = f(x7y7t|$07t0) dy7 fY(y7t|:E07y0) = f($7yat|$0,t0) dx.
0 0
(32)
In the sequel, we determine the marginal densities, the averages, the medians and
the coefficients of variation of prey and predator populations.
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Proposition 4. For o> — 4o > 0, one has

1 0% — 4ap ox {_92—4a6

fx(x,t|z0,90) = T N0 20:(0) [lnx—ux(ﬂfl?o,yo)r},

(33)

1 02 — 4ap 0® —dap 2
Iy (Y, tlzo, yo) = on X0 {—7 {lny - uy(t|:vo,yo)} }7

2P (t)
where Pa(t), Q2(t) are defined in (24) and
px (tzo, yo) = Inw(t), py (tlzo, yo) = Iny(t), (34)
with 2(t) and y(t) given in (5).
Proof. Making use of (22) in (32), one obtains:

1 0% —4ap B2 2
(oo, o) = —= [ Soa= e = s [Halt? + Ha(oyu+ Ho(0)]

(35)

1 [0*—4ap B
ootz o) = —= | CeP e s (R0 + ey + 5]}

2(t)
with u, v are defined in (16) and

H(t) = Pa(t) — P122((t) o(t)(* — 4ap)

4Q2(t) B*Qa(t) 7
- Ql(t)P12(t) - 2(/7(0\/ Q2 — 40&ﬂ
HQ(t)_Pl(t)_ 2Q2(t) - BQQz(t)

Ha(t) = Rolt) = o0 = 20 [ham o, o) = damatlan. )

[Arma (tlzo, yo) — Aema(tlzo, yo)],

(36)
2 > 4o
oz en- 511328 W)éfpzﬁ =
Ko(t) = Q1(t) - Plé%f(}(t) _ _w(ﬂm [m1 ([0, yo) — ma(t|zo, o)),

41111’2((?) - % [ml (t|zo, yo) — ma(t|xo, yo)]Q,

The right-hand sides of (36) are obtained making use of (19), (21), (23) and (24).
Substituting (36) in (35) one obtains the marginal densities (33), with

K(t) = Polt) -

n - Aimi(tlzo, yo) — Aama(t|zo, yo)

px(thoo, o) = 5 + V& —dap |

(37)
By —on | Bmi(t|zo,yo) — ma(t|zo, yo)]
t|xo, = + .
/J'Y( | 0 yO) O[ﬂ \/m
Hence, by virtue of (25), the right-hand sides of (37) are identified with (34), with
x(t) and y(t) given in (5). O
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Proposition 4 shows that the marginal densities of prey and predator populations
are lognormal densities. Furthermore, the conditional medians of X (¢) and Y ()
coincide with the solutions z(t) and y(t) of the deterministic system (4), i.e.

M[X (t)|xo,y0] = el x (tlzo.y0) = x(t), M[Y (¢)|xo0, yo] = ey (tlzoo) = y(t), (38)

with z(t), y(t) given in (5). The conditional means and the conditional coefficients
of variation of prey and predator populations are:

Qa(t) B Py(t)
5P 10F) b B (0o, ol =y(t) exp{iw e 3

CIX(8) 0, ] = \/exp{%} —1, Y ()00 = \/exp{gzP_z% 1o

with Pa(t), Q2(t) as in (24).

Figures 1 and 2 show the medians and the averages of prey and predator popula-
tions in the case g> —4af > 0 for k(t) = 1 and for k(t) = 1+ 0.8sin(t), respectively,
with the same choices of parameters. In these figures, the averages and the medians
are moving toward the stable equilibrium state, and finally reach the equilibrium
values represented by the dashed lines.

EIX(t) 0, yo] = (1) exp

Mean predaétgt ~ Mean prey Median predator — Median prey

15y

10

E[X®)]

_— MIX)]

MLY(®)]
0 5 10 15 20 25 30 0 5 10 15 20 25 30

FI1GURE 1. Averages and medians of prey and predator populations
for g = 15, yo = 10, a =04, 8 =0.3, v = 1.5, n = 0.6, o = 0.8,
g1 = 05, O = 05, 012 = 01, k(t) =1.

Mean predaétgt ~ Mean prey Median predator — Median prey

15 E[Y(1)]

T MIX@)

E[X®)]

MLY(®)]

: : : : : 't 0 : : : : 't
0 5 10 15 20 25 30 0 5 10 15 20 25 30

FIGURE 2. As in Figure 1 with k(¢) = 1 + 0.8 sin(¢).
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Proposition 5. For o> — 4af < 0, one has

1 4af8 — 02 { daff — p?
expy —

(ot i) = o el S

[lnx — ux(t|1170,y0)}2}7

(39)

fy (y, tzo, yo) = . af— & { daf - ¢
yVar \| Pa(t) Py(t)
where Py(t), Qa(t) are given in (28), and where pux (
wy (tlxo,yo) = Iny(t), with 2(t) and y(t) given in (9
Proof. By virtue of (26), (32) lead to:
1 daf — 02 B2
o\ et exp{ - 25(1)

[lny — py (t|zo, yo)} 2}7

t|zo, yo) = Inz(t) and

)-

fx (@, t|wo,y0) = [ﬁl( Ju® + ﬁ2(f)u+ﬁ3(f)} }7

T e
Y \Y;t|Zo,Yo) = = Xp

yver\  Pu(t) 2¢(t)
with u, v defined in (16) and

. Bir) sz(t) _ @(t)(%jﬂ_gz)
4 (t) B2Qs(t)
00— By QO Pia(t) _ 2i$(t)V/4aB — ¢
2( ) = 1( ) 2@2( ) B ﬂ26~22(t) [
~ ~ 2 ~
Eww:%w_iggz_ﬁg%

[fq( W2 + Ko(t)o + f(g(t)} }

3

Aimi (two, yo) — Aema(t]zo, yo)],

2
[(A1ma (o, o) — Aema(t|zo, yo)]

(41)
= Ay PR et [das — 0?)
K1 (t) = Qaft) B B
5N _ _151( DPw(t) _ 2ig(t)v4aB —e? il
Ks(t) = Qu1(t) ~ B ) [ma (t]zo, yo) — ma(tlzo, yo)],
Ra(t) = Bot) — 2O = _ 2O 1 o) — ma (el o))

4P () Py(t)

The right-hand sides of (41) are obtained making use of (19), (21), (27) and (28).
Furthermore, by virtue of (25), we note that the following identities hold:

ma (¢, y0) — ma(to, yo) = ie-gww{z(lnxo ~ ) sinl=(0)]

42 (1o — L) [ VA5 = Fcosla(0)] + osinfo (1] }
(42)

/\1m1 (t|$0,y0) — /\gmg(ﬂxo,yo) = iegw(t)/2{ (ln:vo — %)

X (mcos[z(t)] - Qsin[z(t)]) -2« (ln Yo — BVT_BQH) sin[z(t)]},
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where z(t) is defined in (8). Hence, making use of (41) and (42) in (40) we obtain
(39), where px (t[zo,y0) = Inz(t) and py (t|xo,yo) = Iny(t), with z(t) and y(t)
given in (9). O

Since (39) are lognormal densities, the conditional medians of X (¢) and Y(¢)
coincide with the solutions x(t) and y(t) given in (9). Here, the conditional means
and the conditional coefficients of variation of prey and predator populations are:

E[X<t>|xo,yo1=w<t>exp{mff;i%}, E[Y(tﬂwo,yo]:y(t)exp{mf;i%}a
CIX (8]0, yo] = \/GXP{%} -1, ClY()lzo, 4ol = \/GXP{%} -1

with Py(t), Qo(t) as in (28).

Figures 3 and 4 show the averages and the medians of prey and predator popula-
tions in the case ¢ = 0, for k(t) = 1 and for k(t) = 1 +t¢, respectively, with the same
choices of parameters. The choice of o = 0 corresponds to the case of malthusian
growth of prey population. The stochastic model does not have asymptotic stabil-
ity and averages and medians exhibit different behaviors. Indeed, in Figure 3 the
medians of prey and predator populations oscillate around their equilibrium values,
whereas the averages increase with ¢. Instead, in Figure 4 the medians become
periodic functions when ¢ increases, whereas the averages increase with ¢.

Mean predaztsot ~ Mean prey Median predator — Median prey
E[X(®)] 20
MIX(®)]
Diery] \ MIYO)

15
10}

5

0 ‘ ‘ ‘ ‘ ‘ 't 0 T T |
0 200 400 600 800 1000 1200 0O 200 400 600 800 1000 1200

FIGURE 3. Averages and medians of prey and predator populations
for zp = 15, yo = 10, « = 0.03, 8 = 0.02, v = 0.06, n = 0.04, o = 0,
o1 = 0.02, 09 = 0.02, 012 = 0.0001, k(t) = 1.

Mean predilgt — Mean prey Median predator — Median prey

25

W
30} ﬂ‘ ( 20

15
200 gy

10
10

0 20 40 60 80
FIGURE 4. As in Figure 3 with k(t) =1+t .

Figures 5 and 6 show the averages and medians of prey and predator populations
in the case ¢ > 0 and * — 4af < 0 for k(t) = 1 and for k(t) = 1 + 0.8 sin(t),
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respectively, with the same choices of parameters. The averages and the medians

are moving around the stable equilibrium state with a decreasing amplitude, and
finally reach the equilibrium values represented by the dashed lines.

Mean predeggt — Mean prey Median predator — Median prey

20t
15 /[ \EX]

0 10 20 30 40 50 0 10 20 30 40 50

MIY(b)]

FIGURE 5. Averages and medians of prey and predator populations
for g =15, yo = 10, a =04, § = 0.3, v =0.6, n = 0.5, o = 0.2,
o1 = 0.5, g9 = 0.5, g12 = 0.1, k(t) =1.

Mean predeggt — Mean prey Median predator — Median prey

20F
15}
10

st/ MIY(b)]

0 10 20 30 40 50 0 10 20 30 40 50

FIGURE 6. As in Figure 5 with k(¢) = 1 + 0.8 sin(#).

Proposition 6. For p = 2v/af, one has

[x(x,t|z0,y0) = ﬁ %@exp{—ﬂé(w [lnfﬂ - Mx(ﬂivo,yo)r},

(43)

1 1 1 2
fy (y,tlzo, y0) = on mexp{—m[lny—uym%,yo)} },

where Qa(t), Aa(t) are given in (31), and where pux (t|xo,y0) = Inx(t) and
wy (tlxo,yo) = Iny(t), with x(t) and y(t) given in (11).

Proof. When ¢ = 2+v/af3, the marginal density functions of prey and predator pop-
ulations can be obtained by taking the limit as ¢ — 2v/af in (33) or, equivalently,
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in (39). Indeed, making use of (25) and (37), one can prove that
lim_ o (thro,yo) = 5+ eV (1= VaB () (nao - 7)

0—2Vap
—a)(t) (lnyo - W)} =1Inz(t),
(44)
. _ By —2nVap —VaB(t) n
Q_};%#Y(ﬂxo,yo) T +e ! {&/J(t) (hliZ?o - E>
+(1 + @w@)) (1nyo - %)} =Iny(t),
with z(t) and y(t) given in (11). Furthermore, recalling (30) and (31), one has
@) _g,1), PO gy, (45)

1 = 1m _— —
o—2vaB 0? — 4af o—2vap 0% — 4af3

Hence, taking the limit as ¢ — 21/af in (33) and making use of (44) and (45), one
is led to (43). O

From Proposition 6, the conditional medians of X (¢) and Y (¢) coincide with the
solutions z(t) and y(t) given in (11). Furthermore, the conditional means and the
conditional coefficients of variation of prey and predator populations are:

E[X(t)]wo, yo] = 2(t)e™ /2, E[Y (t)]xo, yo] = y(t)e"*H/?,
CIX (t)|zo, o] = Ve =1,  CIY (t)|zo,y0] = Veh=® — 1.

Figures 7 and 8 show the averages and medians of prey and predator populations
in the case o = 2y/af for k(t) = 1 and for k(t) = 1 + 0.8 sin(¢), respectively, with
the same choices of parameters. In these figures, the averages and the medians are
moving toward the stable equilibrium state, and finally reach the equilibrium values
represented by the dashed lines.

Mean predator — Mean prey

0; Median predator — Median prey

15§ 7 MIxol

10¢

MIY(®)]

FIGURE 7. Averages and medians of prey and predator populations
for xg = 15, yo = 10, « = 0.2, 6 =03,y =12, 7= 0.8, o =
24/0.06, o1 = 0.5, 02 = 0.5, 012 = 0.1, k(¢) = 1.

As shown in Figures 1-8 the choice of the function k(t) plays an important role
in the description of the transient phase of the evolution of prey and predator popu-
lations. For ¢ > 0, on the contrary, the behaviors of prey and predator populations
are insensitive to the functional form of k(¢) when ¢ increases.
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Mean predator — Mean prey

20, Median predator — Median prey

15¢ MIX(1)]

EIX®]
|~ EIY(O]
104

MIY(®)]

‘ ‘ : ‘ : i t
0 5 10 15 20 25 30 0 5 10 15 20 25 30

FIGURE 8. As in Figure 7 with k(¢) = 1 4 0.8 sin(¢) .

5. Steady-state probability densities. Under the assumption that k(t) is a con-
tinuous positive function, such that f0+oo k(7) dr = 400, the predator-prey system

in random environment reaches a situation of equilibrium when ¢ > 0. We denote
by

W(z,y) = lim _f(z,y, o, yo) (46)
the steady-state joint density and by

Wx(z) = lim fx(z,t|z0,%0), Wy (y) = 1i+m Ty (Y, t|xo, yo) (47)

t——+oo t——+o0

the steady-state marginal densities of prey and predator populations.

Proposition 7. For o > 0 the steady-state joint density s

W(a,y) = == of
’ mxy \| (Bo? + ao3)? + 0?0103 + 20 (8o} + ao3)o12

y exp{— Q[(ﬂQU% + 0203 + aBod + 2B0012)u? + a(Bo? + o3 )v? + 20 O'%’U/U} }
(Bo? + ac?)? + 0?0203 + 20012(B0? + aol) ’

(48)
with u,v defined in (16).
Proof. When o > 0 and ¢* — 4a3 > 0, from (23) and (24) one has
e(t)  Bl(Bof + ao3)® + 0*0703 + 20012(Bot + ao3)]
t—igloo Q2 — 40&ﬂ B 40‘92 ,
lim Py(t)  [Poi 4 (0* + aB)os 4+ 260012
to+oo 02 — daff 2af0 ’
(49)
QQ(t) _ ﬂo’% + O[O'% lim Plg(t) _ O'_%
t—too 02 — dafd 280 7 t=teo g —4af B
Pi(t) : Qi(t) . Po(t)
tﬁlgnoo 0% — 4ap =0 tilgrnoo 0% — 4ap =0 t%grnoo 0% — 4ap -

Hence, for ¢ > 0 and ¢* —4a3 > 0 the steady-state joint density (48) follows taking
the limit as ¢ increases in (22) and making use of (49). For ¢ > 0 and ¢ —4a3 <0
we proceed in a similar way, obtaining again (48). O
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Proposition 8. For g > 0, the steady-state marginal densities of prey and predator
populations are

Wx (x) ! L exp{—%(lnx—ﬂ)2},

" o7\ Bo? T ac? Bo? + aoc? B
(50)
1 afo
W =
v (@) yvT \//320% + (aB + 0%)o3 + 280012
abe By — on)?
— 1 _=r &7 .
Xexp{ B2a7 + (aff + 0%)o5 +2B0012 (n af )

Proof. Relations (50) immediately follow from (33), (39) and (43). O

We note that the asymptotic densities of prey and predator populations are both
sensitive to the noise intensities o7 and o3, while the noise coefficient 1o has a
crucial impact only on the asymptotic density of predator population.

For o > 0 the asymptotic medians and averages are:

_ n B n  Boi+ aoc?
M(X)—QXP{B}, E(X)_GXP{B—FW}’
(51)
- — 2 52 2\ 2
M(Y) = eXP{MTﬂQn}, EY)= exp{ﬁvaﬁgn + proi + (af 1’0[9[32)02 + 25@012}'

Figures 9 and 10 show the steady-state densities for prey and predator popula-
tions for different values of the noise intensities o7 and o3, respectively. We note
that an increase in the noise intensities induce a leftward shift of the peaks of the
densities.

Wi (X)
0.12-

0.10p ,
0.08}/
0.06f [ |

0045/ | s‘ “‘

002!/

0.00

. . . i — 0.0 . . . . )
5 10 15 20 25 0.0 05 1.0 15 20 25

FIGURE 9. Asymptotic marginal densities of prey and predator
populations for « = 0.4, 8 = 0.3, v = 1.5, n = 0.6, o = 0.8. Here,
o2 = 0.5, 012 = 0.1 and for o4y = 0.3,0.6,0.9,1.2,1.5 (from the
right to the left).

Figure 11 show the steady-state densities for prey and predator populations for
different values of the noise coefficient o15. The peaks’ height of the steady-state
densities of the predator population increases when oi5 increases positively or de-
creases negatively, whereas the steady-state density of prey population has the same
fitting curve for different values of o1s.
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Wx(X) Wy (y)
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0.12f 10f\
1
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0.06f N
Il 04 AN
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Ficure 10. As in Figure 9 with o1 = 0.5, 012 = 0.1 and for
o9 = 0.3,0.4,0.5,0.6,0.7 (from the right to the left).

Wy(X) Wy (y)
0.14, 12,
0.12f 10}
0.10¢ 08} /7%
0.08f VNS
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0.06F i NN
0.40)!
0.04f I TR
0.02} 02f) .
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FIGURE 11. As in Figure 9 with o1 = 0.5, 0o = 0.5 and 012 =
—0.2,-0.1,0,0.1,0.2 (from the right to the left).

6. Concluding remarks. A non-autonomous deterministic system to describe the
evolution of prey and predator system is considered. A self-regulation term is
included in the prey equation and the effects of prey-predator interactions are taken
in account. Under the assumption of random environment, a stochastic model is
constructed to investigate the interactions between prey and predator populations.
The joint probability density and the marginal probability densities for the prey and
predator populations are explicitly obtained. We note that the medians of prey and
predator processes coincide with the solution of the deterministic system, where the
averages depend on the intensities of noise and on the noise correlation coeflicient.
The asymptotic behavior of the predator-prey stochastic model is also analyzed.
We prove that the steady-state density of the predator population is sensitive not
only to the noise intensities, but also to the noise correlation coefficient.

Appendix A. Infinitesimal moments. Under the assumption of random envi-
ronment, we express the increments X (t + At) — X (¢) and Y (¢t + At) — Y (¢) for the
prey and predator populations in the interval (¢, + At) in terms of the state of the
system at time ¢. In order to derive the infinitesimal moments (12), we consider the
following cases: (i) 0> — 4af3 > 0, (ii) 0®> — 4aB < 0 and (i) ¢0* — 4af3 = 0.

Case (i). For o> — 4a > 0, recalling (5), the state of the system at time t 4+ At
can be expressed as:
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B AL — A2

ﬁ'y —on e)\lwt(At) _ e}\zwt(At)
_ CYB ) Al _ )\2 }a

A (At) _ A2the (At)
z(t + At) = z(t) exp{ (1n:1:(t) — ﬁ) {_ 1+ Ae Age }

—a(ln y(t)

Mt (At) ey (A)
y(t -+ At) = y(t) exp{ﬁ(lnx(t) -5 M=

B ﬂ")/ _ 977) - /\Qekﬂl’t(At) _ AleAzwt(At)
CYB )\1 — /\2 ’

— (111 y(t)
where
t+AL
Vi(Al) = (i + At) — (1) = /t k(7)dr.

Under the assumption of random environment, starting from (52), we obtain the
system of stochastic equations related to the prey and predator populations

B Wa(A)\ M Rio(At) — AoRa o (At)
X(t+At) - X() = X(¢) [exp{(AtlnX(t) - ) .
_ ﬂ W1 (At) — QWQ(At)) Rlyt(At) — ngt(At) } _ 1:|
Oéﬁ /\1 — )\2 ’

—a (At InY(t)

(53)
Y(t+ A =Y () = V(1) [exp{B(At In X () - W22At)) R“(AQ = f;f(m)
BWi(At) — QW2(Af)) AoRy i (At) — A1 Rpy(At) } _ 1]
Oéﬁ /\1 — )\2 ’

- (At Y (t) -

where
Nt (A) _

Rj(A1) =

(j=1,2).

Recalling that
dim Rjo(At) = k(1) (= 1,2),

from (53) we easily obtain (12).

Case (ii). For o> —4a < 0, by virtue of (9), the state of the system at time ¢+ At
is:

x(t+At) = x(t) exp{ (ln x(t) — %) [—1 + cos|z(At)]e~ ¥ (AN/2

—oy(At)/2 —oy(At)/2 _
_ee sin[zt(At)]] _ 2aer T (lny(t)— Fr=o n)sin[zt(At)]},

v/ 4o B — o> v/ 4o B — o> af
(54)
—oi(At)/2
y(t+At) = y(t) exp{ % (ln x(t)— %) sin[z: (At)]
— —oyi(At)/
—I—(lny(t)— 517[3&”7) {_1 + cos[z(At)]e~ e (AD/2 4 % sin[zt(At)]] }
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where

zi(At) = z(t + At) — 2(t) = %wt(At)\/élaﬁ — 02

Under the assumption of random environment, from (54) we derive the system of

stochastic equations:

X(t+ At — X(t) = X (1) [exp{—(Ath(t) - WQ(M) [Ct(At) . %}
—7#&2;‘_ R (Atmy () - Al (At)a_ﬁQWQ(At))St(At)} - 1],
(55)
- 26 _Wa(AY)
Y(t+At)—Y(t) =Y (1) {exp{ — (At In X (t) 5 )St(At)
BWi(At) — o Wi (At) 0 Si(At)
—(AtlnY(t) - : B 2 ) |:Ct(At) - 7m:| } - 1:|7
where
Co(AL) = 1-— e*Z/ftt(At)ﬂ N 1-— cosA[,?(At)] o202
Si(At) = Wewwt(m)/z
Since
: 0 . k(t) -
Aim Cy(At) = Dk(t),  lim Si(At) = == v/daf — %,

from (55) we obtain the infinitesimal moments (12).

Case (iii). For o? —4af = 0, by using (11), the state of the system at time ¢ + At
is:

x(t + At) = z(t) exp{ (lnzzr(t) — %) [—1 + (1 — \/a—ﬂq/,t(At)) e_mwt(At)}
—au (A1) (ny(t) - MT_ﬁw)emwt(m)},
(56)

y(t + At) = y(t) exp{ﬁwt(At) (lnx(t) - %)e*\/@wt(m)

+(1ny(t) - BVT%Q”) [_1 + (1 + @wt(m))e—mwt(m)] }
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Under the assumption of random environment, by virtue of (56) we obtain

X(t+At) - X(t) = X(¢) [exp{_ (At In X (t) — ) {Ut(m) + VaBVi(At)

_a(At my () — 2N (At)a_ﬂ" Wz(m))vt(m)} - 1} ,

Wa(At)
B

(57)

Y(t+At) - Y(t) = Y(t) [exp{B(At In X (t) — %)W(At)

_(At InY(t) — ﬁWl(At)a_ﬁQWQ(At)) [Ut(At) - \/@%(At)} } - 1],
where
Ui(At) = 1_%@, Vi(At) = % o~ VaB P (Al)
Being

lim Uy(At) = Jafk(t),  lim Vi(At) = k(t),

from (57) we derive the infinitesimal moments (12), with o = 2\/a8.
In conclusion, {X(t),Y (t),t > 0} is a two-dimensional diffusion process charac-
terized by infinitesimal moments (12).

Appendix B. Proof of Proposition 1. When o? — 4o > 0, by setting ¢; = 1
and ¢ = —1 in (17) and in (18), we obtain:

2 2
|:D2E2 (t) (Z — Zoehw(t)>

-~

f(Z, w, t|207 wO) = L exp{_ﬁ—
21/ p(t) 2¢(t)
2
+D;1E;(t) (w — woe)‘W(t)) + 2D3FE5(t) (z — zoehw(t)) (w — woe)‘W(t))] }, (58)
where F;(t) (i = 1,2,3) and ¢(t) are given in (21) and (23), respectively. Note that
©(t) > 0 for t > 0. Indeed, since
DyD; — D = 2(¢* — 4ap) (003 — 0F,) > 0,

making use of the Cauchy-Schwarz inequality for integrals, from (23) for ¢ > 0 one
has:

o(t) > E1(t)Es(t) (D1 Dy — D3) > 0.
By virtue of (17), with ¢; = 1 and ¢z = —1, and of (58) one obtains the joint

probability density function of the diffusion process {X(t), Y (t),t > 0} as in (22).
For ¢t > 0, one has P(t) > 0 and Q2(t) > 0. Indeed, they can be re-written as

()
Py(t) = / [D2e2m + Dye?" — 2D3e—ﬂ da,
0

Qa(t) = /()Wt) [Dz(%):”‘ﬂ + Dy (%)%uﬂ — 2D3%e*9ﬂ dz,
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whose integrated functions satisfy the inequalities:
D 62)\11 + D162)\2m _ 2D e 0T > [ﬂgl (eAlm _ 6)\2x) _ 0_2()\16)\1m _ A26A2m)}27
/\2 )\1 A o
DQ( ) 2)\2:6_|_D ( ) 21m_2D3_6 ox
g g B
> [01(/\16)‘1”” — X2e™2%) — oy (eM?® — eAzz)]Q.

This completes the proof of Proposition 1.

Appendix C. Proof of Proposition 2. When ¢ — 4af8 < 0, by setting ¢; = 1
and c¢g = ¢ in (17) and (18), one obtains

—~ 2 2
f(zv w, tlZO, wO) = %67\/@ exp{—%(t) |:—D2E2(t) (2 _ Zoeklw(t)>2
+D1E4(2) (w - woe’\zw(t)y — 2iD3Es(t) (z — zoe’\lw(t)) (w — woe’\zw(t)ﬂ }, (59)

with z(¢) and @(t) defined in (8) and (27), respectively. For ¢ > 0, we note that
@(t) > 0. Indeed, since

D DiDy _ (4af — 0*)(Bof + a0l — g1020)°

= 0
0? 4ap 4o 0? >
from (27) it follows
i D? DD, _, D2 DD, -
1) = 23 _ oy (t) (_3 — ) _ 9e—0¥(t)

a0 0 4ap e 0 4ap ‘

D2 DD, D2 DD, _ 2
x{g—; = IaB cos[2z(t)]} > (9_23 = lad )(1 —e Qw(t)) > 0.

Making use of (17), with ¢; = 1 and ¢z = 4, by virtue of (59) the joint probability
density function of the diffusion process {X(¢),Y(t),t > 0} is the one in (26).
Recalling (24), we derive alternative expressions for P2 (t) and Q2(t):

Py(t) = (afos — B*0})[Er(t) + Ex(t)] + (003 + 2B012) [\ Ea(t) + Ao Ex (t)]

+2D3E3(t)7
(60)
Qa(t) = (007 + 20012)[M Er(t) + A Ex(t)] + (aBof — o03)[Ex(t) + Ea(t)]
+2§D3E3(t),
where
Ei(t) + Ex(t) = 5 15{0 — 0e7 W cos[22(t)] + /4o — g2e” ¥ ® sin[2z(t)]},

MEs(t) + M Eq (t) = {2a6 —0*— (208 -0 )efgw(t) cos[2z(t)]

203
—o/4aB — g2e ¥ ® sin[2z(t)]},
MEL(t) + M Ea(t) = =1 + e~ 2%®) cos[22(t)).

Relations (60) show that Py(t) > 0 and Qo(t) > 0 for t > 0. This completes the
proof of Proposition 2.
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