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Abstract. In this paper, a macroscopic model describing endothelial cell mi-

gration on bioactive micropatterned polymers is presented. It is based on a sys-
tem of partial differential equations of Patlak-Keller-Segel type that describes

the evolution of the cell densities. The model is studied mathematically and

numerically. We prove existence and uniqueness results of the solution to the
differential system. We also show that fundamental physical properties such

as mass conservation, positivity and boundedness of the solution are satisfied.

The numerical study allows us to show that the modeling results are in good
agreement with the experiments.

1. Introduction. Tissue engineering is the use of combination of cells, engineer-
ing, materials, and suitable biochemical factors to improve or replace biological
functions [26]. The main challenge of this scientific field consists in providing func-
tional microvascular networks which are able to supply tissue with nutrients and
oxygen and to remove metabolic wastes [18]. The lack of vascularization hampers
the survival of engineered tissues after implantation [18]. Researchers rely on the
increasing knowledge of angiogenic and vasculogenic processes to stimulate vascular
network formation [31, 32]. This complex process of new blood vessel formation is
orchestrated by the interaction between endothelial cells (ECs) and their neighbor-
ing mural cells via a complex network of intracellular signaling mechanisms [17, 28].

2010 Mathematics Subject Classification. Primary: 92B05, 92C17.
Key words and phrases. Tissue engineering, Keller-Segel type model, endothelial cells

migration.
The authors wish to thanks the GIS AMA “Advanced Materials in Aquitaine” (http://www.

ama-materials.com/) for its financial support.

997

http://dx.doi.org/10.3934/mbe.2013.10.997
http://www.ama-materials.com/
http://www.ama-materials.com/


998 COLIN, DURRIEU, JOIE, LEI, MAMMERI, POIGNARD AND SAUT

Ever since the introduction of the in vitro experimental models of angiogenesis [11],
there has been an increasing research interest to understand the intricate process of
tube formation. Although many efforts have been made, the mechanism associated
with angiogenesis and vascularization is still poorly understood. A deeper compre-
hension of cells-biomaterials interaction is then required for basic understanding of
angiogenesis and vascularization in tissue engineering [5].

One strategy in developing clinical implants consists of appropriate utilizations of
bioactive materials: bioactive materials may induce in vivo regenerative response at
the site of damage, whereas when used in vitro, they can stimulate the tissue growth
for subsequent implantation [2, 23]. Different bioactive ligands have been used to
study their effects on cell functions for a better understanding of vascularization [31].
In the aim of promoting angiogenesis in the case of tissue engineering or of inhibiting
angiogenesis in the case of cancer, it is important to understand the mechanisms
that regulate lumen formation. Successful micropatterning of cells is becoming a
key component of this field [16]. Researchers are now interested in the behavior of
cells on substrates that have been patterned by micro– or nano–fabrication [10, 27].
It is known that cell positioning and physiology can be controlled by the substrate
on which the cells adhere [6]. Our experiments show that the use of cell adhesion
peptides that are micropatterned onto material makes possible the formation of
tube-like structures unlike the use of virgin or homogeneously grafted materials
[22, 23].

Actually, experimental studies using micropatterned substrates revealed that the
cell migration is governed by the geometry of patterns. Endothelial cells so cultured
form extensive cell-cell interactions. In some configurations, accumulation of en-
dothelial cell junctions implies that some cells form tube-like structures. The goal
of the present paper is to provide a model that describes such experimental results.

Adhesive areas are composed of cell adhesion peptides or growth factor peptides
that make the cells adhere. These areas are surrounded by non-adhesive areas [22].
We assume (and this is actually confirmed by experiments) that active principles
(cell adhesion peptides or growth factors) do not diffuse. Therefore endothelial
cells located outside the adhesive areas cannot straightforwardly “feel” the active
principles. They find out the adhesive areas indirectly. We do not consider the
influence of nutrients and assume that cells obtain enough nutrients from the ma-
terial (due to grafted active principles onto material). Endothelial cells are seeded
onto micropatterned bioactive materials for several hours, then the unadherent cells
are removed by rinsing with culture medium. Only the adhered endothelial cells
remain on the material. The initial cell density is around 40 000 cells per cm2. At
the beginning of the experiments, during the migration phase, we observe that cells
have a random motility and stop on adhesive areas. Moreover the attraction of
endothelial cells on adhesive areas seems to be higher than the attraction of cells
located outside these areas. Experiments show that endothelial cells are grouping
together along the micropatterns. On bioactive materials composed of thin strips
of tens of micrometers width, that is the order of magnitude of cell size, endothelial
cells line their cytoskeleton to adjust themselves with the bioactive micropattern.
Note also that tubes containing a central lumen may appear for such micropatterns
[23, 7]. In other words, blood vessels are created from an initial random density of
endothelial cells. Such phenomenon is not observed with larger strips [7, 20, 25].
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To illustrate these experiments, we present in Fig. 1 pictures of the micropat-
terned bioactive materials at the end of the migration phase. Two different mi-
cropatterns are considered: on Fig. 1(a) thin adhesive areas (bioactive pattern size:
10 µm and distance between patterns: 100 µm) have beed used, whereas Fig. 1(b)
shows the end of the migration on large strips (bioactive pattern size: 300 µm and
distance between patterns: 100 µm). We refer the reader to [22, 23] for a detailed
description of these experiments.

(a) thin areas (b) large areas

Figure 1. Endothelial cell alignment onto micropatterned poly-
mer (PET) (10µm (A) and 300 µm (B) stripes of SVVYGLR pep-
tides) [22]. The distance between bioactive patterns is 100 µm.

We observed that for the large adhesive areas, the adhered cell density is smaller
than for thin strips. Therefore the geometry of the micropatterns is crucial in the
endothelial cell migration and thus, in the formation of new vessels.

In this paper, we are interested in understanding how these patterns (size and
spacing of the bioactive microfeatures) do influence endothelial cell migration. The
model we present here is a Patlak-Keller-Segel type model [1, 13, 21, 30]. The
chemotaxis term takes the cell-cell interactions into account instead of the cell-
chemical attractant interactions. We show that this new model based on a system
of coupled partial differential equations satisfies the mass conservation law and that
existence and uniqueness results of weak solution hold. We also provide numerical
results in accordance with the experiments, which ensures the validity of our model.
Moreover, these numerical simulations make possible to obtain informations on
the influence of the geometry and of the initial concentration of cells on the cell
migration.

The outline of the article is the following. In section 2 we describe the mathe-
matical model and we state the main result of global existence and uniqueness of
the weak solution to the P.D.E system. Section 3 is devoted to the proof of the
main theorem. We then provide numerical results in section 4 in order to compare
the simulations to the experiments.

2. Description of the model and main result. In this section, we describe
the Patlak-Keller-Segel type model we study throughout the paper. The model is
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composed of a diffusion term coupled with a reaction term, that describes the effect
of the chemoattractants, which statisfy a diffusion equation.

Various continuous models of Patlak-Keller-Segel type have been used to describe
cell motility [21, 30, 4, 14, 8, 33]. The governing equations of these models are
written in the following general form, in a domain Ω ⊂ Rn:

∂tu = ∇. (D1(u, v)∇u− χ(u, v)u∇v) + f(u, v) on Ω,
∂tv = ∇. (D2(u, v)∇v) + g(u, v)− h(u, v)v on Ω,

where u denotes the cells density, v is the chemical signal concentration. The
diffusive terms take the random cell motility into account, whereas the advection
describes the influence of the chemical signal on the cell motion. The two corre-
sponding diffusion parameters are denoted by D1 and D2, while χ is the chemotaxis
coefficient. The function f describes the growth and the death of cells, whereas
the functions g and h describe respectively the production and the degradation of
the chemotaxic signal. These equations have been theoretically studied for several
years [3, 4, 8, 12, 14, 33]. Based on this extensive literature, we provide a slightly
modified model to describe the cell migration on bioactive micropatterns.

2.1. Statement of the equations. According to the experiments, the behavior
of the cells is drastically different on the adhesive areas and outside these areas.
Actually, outside the adhesive strips, the cells seem to attract each other (prob-
ably thanks to the chemoattractant they produce) and also diffuse randomly in
the domain, but as soon as they reach the adhesive strips the cells seem stuck on
the strips and then they diffuse only on the bioactive material, ignoring the outer
cells. Moreover, it seems that the cells located on the adhesive strips produce more
chemoattractant than the outer cells.

Since there is no clear understanding of the way that endothelial cells communi-
cate, we chose to consider the chemotaxis term as the attraction between endothelial
cells (and we do not consider any gradient of concentration of the chemoattractant).

Based on these assumptions, we derive the following model. Consider a domain

Ω splitted between adhesive areas, denoted by Ω̃, and non-adhesive areas denoted

by Ω \ Ω̃. We assume that all the domains are bounded domains with smooth
boundary.

Two different types of endothelial cells are considered. We denote by u1(t, x, y)
the density of endothelial cells, at any point (x, y) and at time t, that can freely
move (i.e. they have yet to move over adhesion proteins). Cells that are adhering
on the substrate are tracked through their density u2. The function v represents
the density of the chemoattractant. The equations governing the endothelial cell
migration are given for t > 0 by

∂tu1 = d1∆u1 − λ1Ω̃u1(1− u2)−∇. (χ(u1, v)u1∇v) , in Ω, (1a)

∂tu2 = d2∆u2 + λ1Ω̃u1(1− u2), in Ω̃, (1b)

∂tv = ∆v − ηv + γ1u1 + γ2u2, in Ω, (1c)

with the homogeneous boundary conditions on ∂Ω and ∂Ω̃:

∂nu1|∂Ω = 0, ∂nu2|∂Ω̃ = 0, ∂nv|∂Ω = 0, (1d)

and with the initial conditions (u0
1, u

0
2, 0):

u1|t=0 = u0
1, u2|t=0 = u0

2, v|t=0 = 0. (1e)
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We then denote by u the total cell density:

u(t, x) = u1(t, x) + u2(t, x), t ≥ 0, x ∈ Ω,

where u2 is extended by 0 in Ω \ Ω̃.
The parameters d1, d2, η, γ1, γ2 and λ are strictly positive and they will be

fitted by the experiments in a forthcoming work, but we consider here that they
are given constants. The coefficients d1 and d2 denote the diffusion coefficients of
the cells u1 and u2 respectively. The coefficient η > 0 is the self-degradation rate
of the chemoattractant produced by the cells, while the coefficients γ1 and γ2 are
the coefficients of the production of the chemoattractant respectively for the cell u1

and u2. The parameter λ is the speed with which u1 become u2, when u1 lies in the

bioactive micropatterns Ω̃. The first two equations describe the cell migration in Ω.
Outside the bioactive strips, the endothelial cells diffuse and attract the neighboring
cells via the chemotaxis sensitivity function :

χ(u1, v) = χ0 v

1 + |v|
(1− u1), withχ0 > 0.

Here above, χ0 is a chemotaxis parameter, and the term (1−u1) is settled to prevent
the overcrowding of the cells u1. Endothelial cells once they reach the adhesive area

Ω̃ are captured and then diffuse only in the strip. This is handled by the penalty
term −λ1Ω̃u1(1 − u2). Cells on the strips still have a random motility and their
concentration grows up as the term λ1Ω̃u1(1−u2), where 1−u2 prevents the blow-
up of u2 in equation (1b). The third equation (1c) describes the production of the
chemoattractant by the cells. Since the cells on the strip seem to be more attractive,
we suppose that the production coefficients satisfy 0 < γ1 < γ2. We also add a
degradation coefficient η > 0 describing the metabolization of the chemoattractant.

2.2. Main theoretical result. We have the following theorem which is a straight-
forward consequence of the results of section 3:

Theorem 2.1. Let d1, d2, η, γ1, γ2 and λ be strictly positive constants. Suppose

that the initial data (u0
1, u

0
2) ∈ L∞(Ω)× L∞(Ω̃) are such that

∀x ∈ Ω, 0 ≤ u0
1(x) ≤ 1, ∀x ∈ Ω̃, 0 ≤ u0

2(x) ≤ 1.

There exists a unique weak solution (u1, u2, v) to problem (1) such that

(u1, u2, v) ∈ L∞
(

[0,+∞);L∞(Ω)
)
× L∞

(
[0,∞);L∞(Ω̃)

)
× L∞

(
[0,∞);L∞(Ω)

)
,

and for almost any t > 0

0 ≤ u1(t, ·) ≤ 1, 0 ≤ u2(t, ·) ≤ 1, and 0 ≤ v(t, ·) ≤ 1

η
(γ1 + γ2) .

The next section is devoted to prove this theorem. The proof is based on Gaussian
upper bounds for heat kernels [29]–[35].

3. Theoretical study of the model . In this section we study the mathematical

properties of the model. Throughout this section we suppose that Ω̃ and Ω are
smooth domains of R2. We remind that d1, d2 and η are strictly positive coefficients.
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3.1. Kernels of the operators. The aim of this paragraph is to provide estimates
satisfied by the kernels of the operators ∂t−∆+η and ∂t−d1∆ in Ω and by the kernel

of ∂t − d2∆ in Ω̃, with homogeneous Neumann conditions imposed respectively on

∂Ω and ∂Ω̃.

Definition 3.1. The kernels B, G and G̃ of the respective operators ∂t − ∆ + η,

∂t− d1∆ on Ω, and ∂t− d2∆ on Ω̃, all with homogeneous Neumann conditions, are
respectively defined by

∀(x, y) ∈ Ω, lim
t→0+

B(t, x, y) = δy(x),

and for any (t, y) ∈ (0,∞)× Ω,{
∂tB(t, x, y) = ∆B(t, x, y)− ηB(t, x, y), ∀x ∈ Ω,

∂nB(t, x∂Ω, y) = 0, ∀x∂Ω ∈ ∂Ω,
(2a)

for B, while G is given by

∀(x, y) ∈ Ω, lim
t→0+

G(t, x, y) = δy(x), (3a)

and for any (t, y) ∈ (0,∞)× Ω,{
∂tG(t, x, y) = d1∆G(t, x, y), ∀x ∈ Ω,

∂nG(t, x∂Ω, y) = 0, ∀x∂Ω ∈ ∂Ω,
(3b)

and G̃ is the solution to

∀(x, y) ∈ Ω̃, lim
t→0+

G̃(t, x, y) = δy(x), (4a)

and for any (t, y) ∈ (0,∞)× Ω̃,{
∂tG̃(t, x, y) = d2∆G̃(t, x, y), ∀x ∈ Ω̃,

∂nG̃(t, x∂Ω̃, y) = 0, ∀x∂Ω̃ ∈ ∂Ω̃.
(4b)

Note that the above kernels are symmetric in their second and third variables.

Proposition 1. For any y ∈ Ω (respectively for any y ∈ Ω̃), we have the following

estimates for positive constants CΩ and CΩ̃, which depend on the domain Ω and Ω̃
respectively:

‖G(t, ·, y)‖L1(Ω) ≤ CΩ, (5a)∥∥∥G̃(t, ·, y)
∥∥∥
L1(Ω)

≤ CΩ̃, (5b)

‖B(t, ·, y)‖L1(Ω) ≤ CΩ, (5c)

and gradient estimates hold too:

‖∇xG(t, ·, y)‖L1(Ω) ≤ CΩ max(1, t−3/4), (6a)∥∥∥∇xG̃(t, ·, y)
∥∥∥
L1(Ω)

≤ CΩ̃ max(1, t−3/4), (6b)

‖∇xB(t, ·, y)‖L1(Ω) ≤ CΩ max(1, t−3/4). (6c)
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In addition due to the boundedness of Ω, we also have

‖∇yG(t, ·, y)‖L1(Ω) ≤ CΩ max(1, t−3/4), (7a)∥∥∥∇yG̃(t, ·, y)
∥∥∥
L1(Ω)

≤ CΩ̃ max(1, t−3/4), (7b)

‖∇yB(t, ·, y)‖L1(Ω) ≤ CΩ max(1, t−3/4). (7c)

Proof. Obviously the diffusion coefficients d1 and d2, since they are strictly positive
constants, do not play a crucial role, and can be supposed to be equal to 1, after an
appropriate rescaling of the time variable t. Moreover it is sufficient to prove the
above estimates for the heat kernel G, since

B = e−ηtG.

For t ≥ 1, estimates (3.2)–(3.3) of [35] straightforwardly provide the result. Suppose
that 0 < t ≤ 1. Estimates (5) easily come from Theorem 6.10 pp 171 of [29], since
for any x ∈ Ω,

0 ≤ 1√
t

∫
Ω

e−|x−y|
2/t dy ≤ 2π.

Estimates (6) are consequences of the section 6.6 entitled Weighted Gradient Esti-
mates and in particular of Theorem 6.19 p 185 [29]. Actually by Cauchy-Schwarz
inequality

‖∇xG(t, ·, y)‖2L1(Ω) ≤
∫

Ω

|∇xG(t, ·, y)|2 e2β|x−y|2/t dy

∫
Ω

e−2β|x−y|2/t dy

≤ Ct−2ect
∫

Ω

e−2β|x−y|2/t dy,

≤ 2πCt−3/2ect ≤ Ct−3/2,

hence the estimates (6).
Now let φ ∈ L∞(Ω), by estimates (6) and since the measure |Ω| of Ω is bounded

we infer∫
Ω

|φ(y)|
∫

Ω

|∇yG(t, x, y)| dx dy =

∫
Ω×Ω

|φ(y)| |∇yG(t, x, y)| dy dx,

≤ ‖φ‖L∞(Ω)

∫
Ω

‖∇yG(t, x, ·)‖L1(Ω) dx,

≤ |Ω|Ct−3/4‖φ‖L∞(Ω),

hence estimates (7), which ends the proof of the proposition.

Remark 1. The above estimates are probably not optimal, since for the half-plane
the heat kernel writes:

G(t, x, y) =
1

4πt

(
e|x−y|

2/(4t) + e|x−y
c|2/(4t)

)
, where yc = (y1,−y2),

and therefore the power t−3/4 has to be replaced by t−1/2 similarly to the heat
kernel of the whole plane R2. However these results are sufficient to prove existence
and uniqueness of the solution to problem (1).
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Corollary 1. In particular, for T > 0, and for any φ ∈ L∞([0, T ];L∞(Ω)) the
solution to the following problem:{

∂tu = ∆u− ηu+ φ(t, ·), in Ω,

∂nu|∂Ω = 0, u|t=0 = 0,
(8)

satisfies almost everywhere in (0, T )× Ω:

|∇u(t, ·)| ≤ CΩt
1/4 sup

s∈(0,T )

‖φ(s, ·)‖L∞(Ω). (9)

Proof. Since

u(t, ·) =

∫ t

0

∫
Ω

B(t− s, ·, y)φ(s, y) dy,

and thus

|∇u(t, x)| ≤
∫ t

0

∫
Ω

|∇xB(t− s, x, y)φ(s, y)| dy,

≤ sup
s∈(0,T )

‖φ(s, ·)‖L∞(Ω)

∫ t

0

‖∇xB(t− s, x, ·)‖L1(Ω),

inequality (9) holds.

3.2. Local existence. Using the above appropriate kernels, we deduce that a weak
solution to problem (1) writes:

u1(t, x) =

∫
Ω

G(t, x, y)u0
1(y) dy − λ

∫ t

0

∫
Ω̃

G̃(t− s, x, y)u1(s, y)(1− u2)(s, y) dy ds

+

∫ t

0

∫
Ω

u1(s, y)χ(u1, v)(s, y)∇yG(t− s, x, y) · ∇v(s, y) dy ds,

(10a)

u2(t, x) =

∫
Ω̃

G̃(t, x, y)u0
2(y) dy + λ

∫ t

0

∫
Ω̃

G̃(t− s, x, y)u1(s, y)(1− u2)(s, y) dy ds,

(10b)

v(t, x) =

∫ t

0

∫
Ω

B(t− s, x, y) (γ1u1(s, y) + γ2u2(s, y)) dy ds. (10c)

In this paragraph we aim at proving a local-existence result.

3.2.1. Definition of the appropriate functional space X TM . Let M be a strictly pos-
itive constant, and let T > 0 that will be chosen later. We define the functional
space X TM as

X TM =

{
Λ ∈ L∞ ([0, T ];L∞(Ω)) : sup

t∈[0,T ]

‖Λ(t, ·)‖L∞(Ω) ≤M

}
.

Let L be the linear operator defined on X TM ×X TM by

L : (ν1, ν2) 7→
∫ t

0

∫
Ω

B(t− s, ·, y) (γ1ν1(s, y) + γ2ν2(s, y)) dy ds.

Using estimates (5)–(6) we infer that for any (ν1, ν2) ∈ X TM ×X TM :

‖L(ν1, ν2)(t, ·)‖L∞(Ω) ≤ CΩ(γ1 + γ2)M,

‖∇L(ν1, ν2)(t, ·)‖L∞(Ω) ≤ CΩ(γ1 + γ2)Mt1/4.
(11)
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Define now the operator T on X TM ×X TM by

T : (ν1, ν2) 7→
((
T1 − T2

)
(ν1, ν2) , T2(ν1, ν2)

)
,

where T1 is the operator defined on XM ×X TM by

T1(ν1, ν2) =

∫ t

0

∫
Ω

ν1χ (ν1,L(ν1, ν2))∇yG(t− s, ·, y) · ∇yL(ν1, ν2) dy ds,

and T2 is defined by

T2(ν1, ν2) = λ

∫ t

0

∫
Ω̃

G̃(t− s, x, y)ν1(s, y)(1− ν2)(s, y) dy ds.

Remark 2. Proving that T is a contraction mapping from X TM × X TM onto itself
for small enough time T will then ensure the local existence of the weak solution
given by (10) to problem (1).

3.2.2. Contraction mappings.

Proposition 2. The operator T is a contraction mapping from X TM × X TM onto
itself for T small enough.

Proof. The proof is based on the properties of the kernels B, G and G̃ given by
Proposition 1. Thanks to estimates (5) we deduce for any (ν1, ν2) ∈ X TM ×X TM :

‖T2(ν1, ν2)‖L∞(Ω̃) ≤ CΩλM(1 +M)T,

hence for T small enough T2 maps X TM ×X TM onto X TM . Moreover using inequality:

|ν1(1− ν2)− µ1(1− µ2)| ≤ (1 + |ν2|)|ν1 − µ1|+ |ν2||µ1 − µ2|,

we infer for T small enough the operator T2 is a contraction mapping from X TM×X TM
onto X TM .

Prove now that T1 is a contraction mapping from X TM × X TM onto X TM . First
observe that for any s ∈ R, |s|/(1 + |s|) ≤ 1 hence for any ν1 ∈ X TM , for any s ∈ R,

‖χ1(ν1, s)(t, ·)‖L∞(Ω) ≤ χ
0(1 +M), for almost any t ∈ (0, T ),

hence for any (ν1, ν2) ∈ X TM ×X TM
‖χ1(ν1,L(ν1, ν2))(t, ·)‖L∞(Ω) ≤ χ

0(1 +M), for almost any t ∈ (0, T ),

and thanks to estimates (6)–(11)

|T1(ν1, ν2)(t, ·)| ≤ CΩ (γ1 + γ2)χ0(1 +M)M2
√
T .

This implies that for T small enough T1 maps X TM × X TM onto X TM . In addition
observe that for two couples (ν1, ν2) and (µ1, µ2) belonging to X TM ×X TM we have

T1(ν1, ν2)− T1(µ1, µ2)

=

∫ t

0

∫
Ω

(ν1 − µ1)χν1,ν2∇yG(t− s, ·, y) · ∇yL(ν1, ν2) dy ds

+

∫ t

0

∫
Ω

µ1χ
ν1,ν2∇yG(t− s, ·, y) · ∇yL(ν1 − µ1, ν2 − µ2) dy ds

+

∫ t

0

∫
Ω

µ1 (χν1,ν2 − χµ1,µ2)∇yG(t− s, ·, y) · ∇yL(µ1, µ2) dy ds,
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where to simplify notations we have denoted by χν1,ν2 the function

χν1,ν2 = χ(ν1,L(ν1, ν2)),

and similarly for χµ1,µ2 . According to estimates (6) and thanks to the definition of
L we infer

‖∇yL(ν1 − µ1, ν2 − µ2)‖ ≤ CΩ(γ1 + γ2)t1/4
(
‖ν1 − µ1‖L∞(Ω) + ‖ν2 − µ2‖L∞(Ω)

)
.

Moreover, observing that

χν1,ν2 − χµ1,µ2 = χ0 L(ν1, ν2)

1 + |L(ν1, ν2)|
(µ1 − ν1)

+ χ0(1− µ1)

(
L(ν1, ν2)

1 + |L(ν1, ν2)|
− L(µ1, µ2)

1 + |L(µ1, µ2)|

)
,

we deduce from estimates (5)–(6)–(7) and (11) that there exists a constant C > 0
which depends on M , and on the parameters χ0, γ1, γ2, λ such that

‖T1(ν1, ν2)− T1(µ1, µ2)‖L∞(Ω) ≤ C
√
T ,

which ensures the strict contractility of T1 for T small enough, and therefore T is a
strict contraction from X TM ×X TM onto itself.

The Picard fixed point theorem straightforwardly implies the following theorem
of existence and uniqueness for small time.

Theorem 3.2. Let (u0
1, u

0
2) ∈ L∞(Ω) × L∞(Ω̃). Then for T small enough there

exists a unique weak solution (u1, u2, v) to (1) such that

(u1, u2, v) ∈ L∞ ([0, T ];L∞(Ω))× L∞
(

[0, T ];L∞(Ω̃)
)
× L∞

(
[0, T ];L∞(Ω)

)
.

3.3. Mass conservation and global existence. We first observe that the total
mass of cells is conserved.

Proposition 3. Let (u0
1, u

0
2) ∈ L∞(Ω) × L∞(Ω̃) and let T small enough so that a

weak solution (10) to (1) exists. Then for any t ∈ [0, T ]∫
Ω

u(t, x) dx =

∫
Ω

(u1 + 1Ω̃ u2)(t, x) dx =

∫
Ω

u0
1 dx+

∫
Ω̃

u0
2 dx

Proof. Actually integrating (1a) and (1b) respectively and summing the integrands
imply, since ∂nu1|∂Ω, ∂nu2|∂Ω̃ and ∂nv|∂Ω vanish

∂t

∫
Ω

u(x) dx = ∂t

∫
Ω

(u1(x) + u2(x)) dx = 0.

We now show that if u0
1 and u0

2 are positive and bounded by 1 then u1 and u2

stay positive and bounded by 1 on [0, T ].

Proposition 4. Let (u0
1, u

0
2) ∈ L∞(Ω) × L∞(Ω̃) and let T small enough so that a

weak solution given by (10) to problem (1) exists. If (u0
1, u

0
2) are such that

0 ≤ u0
1 ≤ 1, 0 ≤ u0

2 ≤ 1,

then for almost any t ∈ [0, T ]

0 ≤ u1(t, x) ≤ 1, 0 ≤ u2(t, x) ≤ 1.
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In addition

0 ≤ v(t, x) ≤ 1

η
(γ1 + γ2) , for x ∈ Ω.

Therefore the weak solution (10) exists for almost any t ∈ (0,+∞).

Proof. First observe that if u1 is positive then since u0
2 is positive the function u2

is positive almost everywhere. Actually multiplying (1b) by u−2 = max(0,−u2) and
integrating by parts implies

1

2
∂t‖u−2 (t, ·)‖2

L2(Ω̃)
= −d2‖∇u−2 ‖2L2(Ω̃)

− λ
∫

Ω̃

(
u1u
−
2 + u1(u−2 )2

)
dx ≤ 0,

hence u−2 equal zero. From this, we infer that v is positive by multiplying (1c) by
v−, integrating by parts and using the well-known Gronwall lemma.

Prove now that u−1 = max(0,−u1) vanishes too. Multiply (1a) by u−1 and inte-
grate by parts to obtain for almost any t ∈ [0, T ]:

1

2
∂t‖u−1 (t, ·)‖2L2(Ω) ≤ −d1‖∇u−1 (t, ·)‖2L2(Ω) + λ(1 +M)‖u−1 (t, ·)‖2

L2(Ω̃)

+ χ0

∣∣∣∣∫
Ω

u−1
v

1 + |v|
(1− u−1 )∇v∇u−1 dx

∣∣∣∣ .
Moreover applying estimates (9) to v implies∣∣∣∣∫

Ω

u−1 (1− (u1 + u2))∇v∇u−1 dx
∣∣∣∣ ≤ CΩt

1/4‖γ1u1(t, ·) + γ21Ω̃u2(t·)‖L∞(Ω)

×
∫

Ω

u−1 (t, x)|1− u−1 |(t, x)∇u−1 (t, x) dx,

≤ CΩT
1/4M(γ1 + γ2)(1 + 2M)

×
∫

Ω

∣∣u−1 (t, x)∇u−1 (t, x)
∣∣ dx,

≤ C̃T 1/4

(
1

4α
‖∇u−1 ‖2L2(Ω) + α‖u−1 ‖2L2(Ω)

)
,

by Cauchy-Schwarz estimates and the well-known Peetre’s inequality with α > 0
large enough. Thus, since |s|/(1 + |s|) ≤ 1 for any s ∈ R, we infer

∂t‖u−1 (t, ·)‖2L2(Ω) ≤ αC̃T
1/4‖u−1 (t, ·)‖2L2(Ω).

Gronwall’s lemma implies therefore that

‖u−1 (t, ·)‖2L2(Ω) = 0,

since u−1 (0, ·) equals zero.
Prove now that u2 ≤ 1. Let U2 = u2 − 1:

∂tU2 = ∆U2 − λu1U2,

hence, multiplying by U+
2 = max(0, U2) and integrating by parts the above equa-

tion lead to ∂t‖U+
2 ‖2L2(Ω) ≤ 0. Since U+

2 (0, ·) equals 0, we infer that U2 vanishes

everywhere, and therefore u2 ≤ 1.
Similarly let

U1 = u1 − 1.
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Then U1 satisfies in Ω:

∂tU1 = d1∆U1 − λ1Ω̃(1− u2) (U1 + 1) + χ0∇.
(

(U1 + 1)
v

1 + |v|
U1∇v

)
. (12)

Once again, multiply (12) by U+
1 = max(U1, 0) and integrate by parts to obtain

1

2
∂t‖U+

1 ‖2L2(Ω) =− d1‖∇U+
1 ‖2L2(Ω) − λ

∫
Ω̃

(1− u2)U+
1 (U+

1 + 1) dx

− χ0

∫
Ω

(U+
1 + 1)

v

1 + |v|
U+

1 ∇v · ∇U
+
1 dx.

Since 1 − u2 is positive and using Cauchy-Schwarz estimate and Peetre inequality
for α large enough (as used above to prove that u1 ≥ 0) implies that

∂t‖U+
1 ‖2L2(Ω) ≤ αC‖U

+
1 ‖2L2(Ω).

Therefore Gronwall lemma implies that U+
1 vanishes almost everywhere in (0, T )×Ω

hence u1 ≤ 1.
To obtain the positivity of v, first multiply (1c) by v− and integrate by part to

infer, since u1 and u2 are positive that:

∂t‖v−‖2L2(Ω) ≤ 0.

Then the function V = v − η−1(γ1 + γ2) satisfies

∂tV = ∆V − ηV + γ1(u1 − 1) + γ2(u2 − 1).

Since γ1(u1 − 1) + γ2(u2 − 1) ≤ 0, we infer that V + identically vanishes after
multiplication and integration by parts, hence

0 ≤ v ≤ η−1(γ1 + γ2).

From the implicit representation integral of u1 and u2 we deduce easily that if
TM is the maximal time of existence, then there exists a sequence (tn)n∈N tending
to TM , with tn < TM such that

lim
n→+∞

‖u1(tn, ·)‖L∞ = +∞,

hence u1 and u2 exists for almost any t ∈ (0,+∞) by contraposition.

Theorem 2.1 is an easy consequence of the above results.
The following result is a straightforward consequence of proposition 4. It ensures

that the mass of the cells tends to concentrate on the micropatterns.

Corollary 2. Let (u0
1, u

0
2) ∈ L∞(Ω)× L∞(Ω̃) such that

0 ≤ u0
1 ≤ 1, 0 ≤ u0

2 ≤ 1,

and let (u1, u2) the weak solution to problem (1). Then

0 ≤
∫

Ω

u1(t, x) dx ≤
∫

Ω

u1(0, x) dx,∫
Ω̃

u2(0, x) dx ≤
∫

Ω̃

u2(t, x) dx ≤ |Ω̃|.

4. Numerical results. We now describe the numerical schemes that are used
to compute problem (1), and then we show the simulations that corroborate the
experimental results.
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4.1. Approximation of the problem. We consider a cartesian mesh (composed
by quadrilaterals). We discretize the model using the finite volume method [9] and
we use an implicit Crank-Nicolson scheme for the time discretization. We solve the
model using a decoupled approach [15]. In particular, the first equation is split into
advection and diffusion parts. Let us recall the expression of this equation :

∂tu1 = d1∆u1 − λ1Ω̃u1(1− u2)−∇. (χ(u1, v)u1∇v) in Ω. (13)

To simplify the notations we define A and B as:

A(u1, u2) = d1∆u1 − λ1Ω̃u1(1− u2), and B(u1, v) = ∇. (χ(u1, v)u1∇v) .

Let us denote the time step by ∆t, set tn = n∆t and let (un1 , u
n
2 , v

n) be the
solution at the time tn. At each time step we first solve the diffusive part :

ũn+1
1 − un1

∆t
=

1

2

(
A(ũn+1

1 , un+1
2 ) +A(un1 , u

n
2 )
)
.

For all the diffusive terms, the spatial discretization is handled by a centered finite
volume scheme, all the species being computed at the centre of each element of the
mesh. We then solve the advection part :

un+1
1 − ũn+1

1

∆t
=

1

2

(
B(un+1

1 , vn+1) +B(ũn+1
1 , vn)

)
.

The high order WENO 5 (Weighted Essentially Non-Oscillatory) finite difference
scheme introduced in [24] and improved in [19] has been used to handle the convec-
tive term. These solvers are implemented in the academic library eLYSe1.

In the following the initial conditions write

u0
1 = 1Ω\Ω̃ u

0, u0
2 = 1Ω̃ u

0, (14)

where u0 is a function of x ∈ Ω. Hence the supports of u1 and u2 are disjoint at
the initial time.

4.2. Mathematical behavior of the model. In this paragraph, we present the
numerical results, that corroborate the mathematical results of the previous section.
We want to check the properties of the model, when the maximal cell density on
the adhesive area is reached. The domain Ω is the unit square Ω = [0, 1] × [0, 1].

The cartesian grid is composed by 100 × 100 quadrilaterals. The domain Ω̃ is the
strip of width 0.08 located at the middle of Ω (cf Fig. 2).

At the initial time the cells are uniformly distributed meaning u0 of (14) is
constant. We consider two different values of u0:

u0 =

{
0.08,

0.25.

We plot the results along the axis {y = 0.5} in order to have the profile of the
distribution of u1 and u2. The densities u1 along the axis at different time steps
are given by Fig. 3 and the densities u2 at the same time steps are given by Fig. 4.

When considering u0 = 0.08, the maximal density on the adhesive area is never
reached. We observe that u1 is decreasing, while u2 is increasing with respect to
the time. In the second case, for u0 = 0.25, the maximal density of u2 is reached
at t = 0.3 therefore after this time the cells u1 cannot become u2. As expected, the
migration stops. These simulations show that a minimum amount of endothelial
cells is required at the initial time in order to reach the maximal concentration on

1http://www.math.u-bordeaux1.fr/~osaut/

http://www.math.u-bordeaux1.fr/~osaut/
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Figure 2. Geometry of the micropattern.
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Figure 3. Profiles of u1(t, x, y = 0.5) at different time steps for
two different initial conditions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

u
2
 

N

t = 0.002
t = 0.01
t = 0.1

t = 0.15
t = 0.2
t = 0.3
t = 0.4

(a) Profiles of u2 for u0 = 0.08

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

u
2

N

t = 0.002
t = 0.01
t = 0.1

t = 0.15
t = 0.2
t = 0.3
t = 0.4

(b) Profiles of u2 for u0 = 0.25

Figure 4. Behavior of u2(t, x, y = 0.5) at different time steps.

the strips at the end of the experiment. If this initial concentration is too small the
final density of endothelial cells is suboptimal.



ENDOTHELIAL CELL MIGRATION 1011

4.3. Behavior on realistic benchmarks. We now provide simulations in realistic
setups: throughout this subsection the initial data u0 of (14) is a normal random
distribution (between 0 and 1).

4.3.1. Behavior on the thin strips. We first consider a bioactive micropattern com-
posed by six adhesive thin strips (in red on Fig. 5(b)).

(a) The initial random distribu-

tion of endothelial cells

(b) The micropattern. Width

strips = 0.05

Figure 5. Initial setup: endothelial cells (left) and adhesion sub-
strate (right).

The simulation Fig. 6, represents the total density of endothelial cells (u =
u1 + u2) at time t = 0.3 (in Fig. 6(a)) and 1.0 (in Fig. 6(b)) obtained for the
following set of parameters: d1 = d2 = χ0 = γ2 = 1, γ1 = 0.5, λ = 100.

(a) t = 0.3 (b) t = 1.0

Figure 6. The total density of endothelial cells u at two different
time steps.

Fig. 7 shows the behavior of v for the same set of parameters.
The numerical results are in good agreement with the expected evolutions. In-

deed, the cell density u2 on the adhesive areas increases with the time variable,
whereas outside u1 becomes very small. Cells are stucked on the strips and stop
moving once they are over them. As a consequence the density of the attractant on
the strips also increases.
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(a) t = 0.3 (b) t = 0.6

Figure 7. The density v at two different time steps.

4.3.2. Behavior on large strips. We now consider a domain Ω = [0, 1]× [0, 1] com-
posed by two large strips of length 0.2. The geometry is presented in Fig. 8(b)

(a) The initial random distribu-

tion of endothelial cells

(b) The micropattern. Width

strip = 0.2

Figure 8. Initial setup: endothelial cells (left) and patterns (right).

In Fig. 9, we present the total density of endothelial cells (u = u1 + u2) at times
0.3 (in Fig. 9(a)) and 1.0 (in Fig. 9(b)) obtained for the choice of parameters :
d1 = d2 = χ0 = γ2 = 1, γ1 = 0.5, λ = 100.

In Fig. 10, we present the behavior of the chemoattractant v for the same set of
parameters at the times t = 0.3 and t = 0.6.

As previously we observe a behavior in good agreement with the experiments.
When considering two large adhesive areas the velocity of the migration is smaller
than for a large number of thin strips. Indeed at the time step t = 1.0 we observe
that with thin strips the migration seems to be more advanced than in the case
with large strips. This could be explained by the fact that some cells are far away
from a strip and their migration toward the strips takes more time.

4.3.3. Influence of the number of strips on the migration. We want to study the
influence of the pattern spacing on the cell migration. We set the surface of the
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(a) t = 0.3 (b) t = 1.0

Figure 9. The density of endothelial cells u at two different time
steps.

(a) t = 0.3 (b) t = 0.6

Figure 10. The density of the signal v at two different time steps.

adhesive domain, and let the number of strips, Ns, vary. The average of u2 in term
of the time for Ns = 1, 2, and 4 is presented in Fig. 11.

We observe that when considering four strips the migration is quicker. Moreover
the mean density reached is higher, which corroborates the experiments.

5. Conclusion. In this paper a macroscopic model describing the endothelial cell
migration on bioactive micropatterns is presented. Its major biological assumption
is that the cells produce a chemical substance so as to gather, but the bioactive
chemical substance does not diffuse any chemoattractants: it just attracts the cells
to locate on it.

Mathematically, mass conservation, global existence and uniqueness results are
shown. Numerically, the model behaves in good agreement with the biological
experiments. Despite the lack of direct attraction of the bioactive patterns, the
non-washed out endothelial cells end up on the patterns since the cells adhered
on the micropatterns produce more chemoattractants than the cells outside the
bioactive materials. We have observed two facts that have been reported by the
experiments:
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1. For a given surface of bioactive material, the process of cell migration is more
efficient with a large number of thin strips than with a small number of large
strips.

2. There exists a minimum value of the initial density of endothelial cells to be
imposed in order to have an optimal cell migration towards bioactive patterns.

We therefore believe that this model is a first step towards better understanding
of cell migration on micropatterns, the long-term goal being optimal designing of
patterns in order to build biological tissues.
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